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 Abstract

 This paper aims at investigating novel solutions to the problem of textile defect detection from

images, that can find applications in building robust quality control  vision based systems in textile

production. The proposed solutions focus on detecting defects from the textural properties of  their

corresponding wavelet transformed images. More specifically a novel methodology is investigated

for discriminating defects in textile  images by applying supervised and unsupervised neural

classification techniques, employing multilayer perceptrons (MLP) - trained with the on-line

backpropagation algorithm - and Kohonen’s Self-Organizing  Feature Maps (SOFM)  respectively.

These parallel  techniques are applied  to innovative wavelet based feature vectors. These vectors are

extracted from the wavelet transformed original images using the cooccurrence matrices framework

and SVD analysis. The results of  the proposed methodology are illustrated in defective textile

images where the defective areas are recognized with about 98.5%  accuracy.
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I. Introduction

Defect recognition from images is becoming increasingly significant in a variety of applications

since quality control plays a very important role in the manufacturing of virtually every product.

Despite the lot of interest, relatively little work has been done in this field since this classification

problem presents many difficulties. More specifically the defective areas in quality control images can

be viewed as abnormalities or abrupt changes in their statistical properties with varying  spatial

probability distributions not only within the set of images but also within a single image space.

Moreover, the existence of variations in image statistical properties which could be characterized as

normal renders defect detection an even more difficult task. Also, the lack of unique characteristics

concerning geometry etc. explains more completely the difficulties encountered. However, the

resurgence of interest for neural network research has revealed the existence of powerful classifiers

which do not depend on the specific probability distribution characterizing their input space.

Moreover, these parallel techniques have exhibited improved performance in approximating the



probability distribution underlying the input data compared to other conventional non-parametric

regression techniques. Among these parallel algorithms, MLP plays the most important role in

supervised probability approximation while Kohonen’s SOFM is the best tool for unsupervised

probability approximation. Both techniques are invoked in this paper to solve the defect detection

problem. We should mention, however, that if parallel unsupervised classification schemes are able to

provide acceptable solutions they are probably the solution of choice, since the multitude of  textile

defect cases renders supervised  training a less practical approach.  On the other hand , the

emergence of the 2-D wavelet transform [5],[6] as a popular tool in image processing offers the

ability of robust feature extraction from images. Combinations of both neural network and wavelet

techniques have been used with success in various applications [10]. Therefore, it is worth

attempting to investigate whether they can jointly offer a viable solution to the defect recognition

problem. To this end, we propose a novel methodology in detecting defective areas in images by

examining the discrimination abilities of their textural properties in the wavelet domain. Besides

neural network classifiers and the 2-D wavelet transform, the tools utilized in such an analysis are

cooccurrence matrix based textural feature extraction [4] and SVD analysis.

The problem of  defect detection in the literature is usually considered as deciding about the

presence or absence of defects in the original images. However, it is much more useful to consider it

as the approximation of the defect spatial probability distribution within the original image since then,

production line problems could automatically be detected and probably fixed. This is the approach

adopted in this paper which significantly differs from the conventional ones.

Therefore, the problem at hand can be clearly viewed as an image segmentation one, where the

image should be segmented in defective and non defective areas only unlike its conventional

consideration. Concerning the classical segmentation problem, that is dividing an image into

homogeneous regions, the discovery of a generally effective scheme remains a challenge. To this end,

many interesting techniques have been suggested so far including spatial frequency techniques  and

relevant ones like texture clustering in the wavelet domain [9]. Most of these methodologies use very

simple features like the energy of the wavelet channels or the variance of the wavelet coefficients [3,

9].

Our approach stems from this line of research. However, there is need for much more

sophisticated feature extraction methods if one wants to solve the segmentation problem in its defect

recognition incarnation, taking into account the high accuracy required in defect description.

Following this reasoning we propose to incorporate in the research efforts the cooccurrence matrices

analysis, since it offers a very accurate tool for describing  image characteristics and especially

texture [4]. It clearly provides second order information about pixel intensities when the majority of

the other feature extraction techniques do not exploit it at all. In addition, SVD analysis can localize



important information concerning the pixel intensity matrices, which has recently been demonstrated

that it can effectively be used in invariant pattern recognition [8]. Two are the main stages of the

suggested system. Namely, enhanced feature selection in the wavelet domain (enhanced in terms of

the information these features carry) and neural network based classification. The viability of the

concepts and methods employed in the proposed approach is illustrated in the experimental section

of the paper, where it is clearly shown  that, by achieving a nearly 98.50 % defective area

classification accuracy, with either the supervised or unsupervised parallel classification methods

involved, our methodology is very promising for use in the quality control field.

II.  The Wavelet Transformation

Wavelets offer a general mathematical approach for hierarchical function decomposition.

According to this transformation, a function, which can be a function representing an image, a curve,

signal etc., can be described in terms of a coarse level in addition with details that range from broad

to narrow scales. Wavelets offer an novel technique for computing the levels of detail present, under

a framework that is based on a chain of approximation vector spaces {V j ⊂  L2 ( )ℜ2 , j∈Ζ } and a

scaling functionφ  such that the set of functions ( ){ }2 22− − − ∈j j t k k/ :φ Ζ forming an orthonormal

basis for V j . These two components introduce a mathematical framework presented by Mallat [11]

and called multiresolution analysis.

A multiresolution analysis (MRA) scheme of  L2 ( )ℜ2 can be defined as a sequence of closed

subspaces {V j ⊂  L2 ( )ℜ2 , j∈Ζ } satisfying the following properties :

• Containment : V V Lj j⊂ ⊂−1
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The subspaces Wj are called  wavelet subspaces and contain the difference in signal

information between the two spaces V j and V j−1 . These sets contribute to a wavelet decomposition of

L2 according to (1). In [11] has been proved that a mother wavelet ψ  can be created  such that the

set of functions ( ){ }ψ 2− − ∈j t k k: Ζ  forms a basis for Wj . The spaces Wj are mutually orthogonal and

the set of scaled and dilated wavelets ( ){ }2 22− − − ∈ ∈j j t k j k/ : ,ψ Ζ Ζ provide an orthonormal wavelet

basis for L2 ( )ℜ2 . Approximating and detailed signals can be obtained by projecting the input signal

to the corresponding (approximation or detailed) space. Practically the approximation and detail

projection coefficients associated   with V j  and Wj are computed from the approximation and detail

coefficients at the next higher scale V j−1 , using a Quadrature Mirror Filter (QMF) pair and a

pyramidal subband coding scheme [12,13].

III.  Improved Feature Extraction in the Wavelet Domain

The problem of defective area segmentation in textile images using texture discrimination or

other second order information, is considered in the wavelet domain, since it has been demonstrated

that the discrete wavelet transform (DWT) can  lead to better texture modeling [1]. Also, in this way

we can better exploit the well known local information extraction properties of wavelet signal

decomposition as well as the well known features of wavelet denoising  procedures [7]. We use the

popular 2-D discrete wavelet transform scheme  ([5],[6] etc.) in order to obtain the wavelet analysis

of the original images containing defects. It is expected that the images considered in the wavelet

domain should be smooth but due to the well known time-frequency localization properties of the

wavelet transform, the defective areas- whose statistics vary from the ones of the image background-

should more or less clearly emerge from the background. We have experimented with the standard 2-

D Wavelet transform using nearly all the well known wavelet bases like Haar,  Daubechies, Coiflet,

Symmlet  etc. as well as with Meyer’s and Kolaczyk’s 2-D Wavelet transforms [6]. However, and

this is very interesting, only the 2-D Haar wavelet transform has exhibited the expected and desired

properties. All the other orthonormal, continuous and compactly supported wavelet  bases have

smoothed the images  so much that the defective areas don't appear in the subbands. We have

performed a one-level wavelet decomposition of the images, thus resulting in four main wavelet

channels. Among the three channels 2, 3, 4 (frequency index) we have selected for further processing

the one whose histogram presents the maximum variance. A lot of experimentation has shown that

this is the channel corresponding to the most clear appearance of the defective areas. The subsequent

step in the proposed methodology is to raster scan the image obtained from the selected wavelet

channel  with sliding windows of M x M dimensions. We have experimented with 256 x 256 images



and we have found that M=8 is a good size for the sliding window. For each such window we

perform two types of analysis in order to obtain improved features in terms of information content.

First, we use the information that comes from the cooccurrence matrices [4]. These matrices

represent the spatial distribution and the dependence of the gray levels within a local area. Each (i,j)

th entry of the matrices, represents the probability of going from one pixel with gray level (i) to

another with a gray level (j) under a predefined distance and angle.  More matrices are formed for

specific spatial distances and predefined angles. From these matrices, sets of statistical measures are

computed (called feature vectors) for building different texture models.  We have considered four

angles, namely 00, 450, 900, 1350 as well as a predefined distance of one pixel in the formation of the

cooccurrence matrices. Therefore, we have formed four cooccurrence matrices. Due to

computational complexity issues regarding cooccurrence matrices analysis we have quantized  the

image obtained from the selected wavelet channel into 16 gray levels instead of the usual 256 levels,

without diverse effects in defective area recognition accuracy. This procedure, also, renders the on-

line implementation of the proposed system highly feasible. Among the 14 statistical measures,

originally proposed by Haralick [4], that are derived from each cooccurrence matrix  we have

considered only four of them. Namely, angular second moment, correlation, inverse difference

moment and entropy.
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These measures, we have experimentally found, that provide high discrimination accuracy that

can be only marginally increased by adding more measures in the feature vector. Thus, using the

above mentioned four cooccurrence matrices we have obtained 16 features describing spatial

distribution within each 8 x 8 sliding window in the wavelet domain. In addition, we have formed

another set of 8 features for each such window by extracting the singular values of  the matrix

corresponding to this window. SVD analysis has recently been successfully related to invariant

pattern recognition [8]. Therefore, it is reasonable to expect that it provides a meaningful means for

characterizing each sliding window,  thus preserving  first order information regarding this window,

while, on the other hand, the cooccurence matrices analysis extracts second order information.



Therefore, we have formed, for each sliding window, a feature vector containing 24 features that

uniquely characterizes it. These feature vectors feed the supervised and unsupervised parallel

classification methods of the subsequent stage of the suggested methodology, next described.

IV. Supervised and Unsupervised  segmentation of defective areas.

After obtaining information about  the first and second order characteristics of the wavelet

transformed images,  utilizing the above depicted methodology, we employ supervised and

unsupervised  neural network architectures to solve the segmentation problem already defined. More

specifically, a supervised neural network architecture of the multilayer feedforward type (MLPs),

trained with the online backpropagation error algorithm  is used, having as goal to decide whether a

region  belongs to a defective part or not. Also, a Kohonen’s SOFM model is utilized aimed at

clustering and labeling the pixels of an original image as belonging to defective areas or not.

The inputs to the MLP network are the 24 features of the feature vector extracted from each

sliding window. The best network architecture that has been tested in our experiments is the 24-35-

35-1. This network has been trained with the on line BP algorithm having learning rate equal to 0.3

and momentum coefficient equal to  0.4.  The desired outputs during training are determined by the

corresponding sliding window location. More specifically, if a sliding window belongs to a defective

area the desired output of the network is one, otherwise it is zero. We have defined, during MLP

training phase, that a sliding window belongs to a defective area if  any of the pixels in the 4 x 4

central window inside the original 8 X 8 corresponding sliding window belongs to the defect. The

reasoning underlying this definition is that the decision about whether a window belongs to a

defective area or not should come from a large neighborhood  information, thus preserving the 2-D

structure of the problem and not from information associated with only one pixel (e.g the central

pixel). In addition and probably more significantly, by defining the two classes in such a way, we can

obtain many more training patterns for the class  corresponding to the defective area, since defects,

normally, cover only a small area of the original image. It is important for the effective neural

network classifier learning to have enough training patterns for each one of the two classes but, on

the other hand, to preserve as much as possible the a priori spatial probability distribution of the

problem. We have experimentally found that a proportion of 1:3 for the training patterns belonging

to defective and non-defective areas respectively, is a good compromise for achieving both goals.

 The same 24 features are the inputs to the SOFM network. The SOFM model used is a 30 X 20

two-dimensional map with rectangular neighborhood of gaussian type.  The training and test patterns

applied to the SOFM were the same feature vectors extracted from the sliding windows  previously

described in the MLP case.  The reference vectors of the map were initialized using small random



values. The running length of  the ordering  phase of the map training,  has been set to 2000, while

its corresponding initial learning rate and initial neighborhood radius have been set to 0.05 and  25

respectively. Finally, the  running length of  the convergence  phase of the map training,  has been set

to 15000, while its corresponding initial learning rate and initial neighborhood radius have been set

to 0.015 and 5 respectively.

V. Results and Discussion.

The efficiency of our approach in recognizing defects in automated inspection textile images,

based on utilizing wavelet texture information, is illustrated in the two textile images shown in fig. 1

The first one, which contains a very thin and long defect in its upper side as well as some  smaller

defects elsewhere, has been used to train the supervised and unsupervised parallel classification

methods involved. This image is 256 x 256, while the four wavelet channels obtained by applying the

2-D Haar wavelet transform are 128 x 128. These wavelet channels are shown in fig. 2. In fig. 3 the

selected wavelet channel 3 of maximum histogram variance is shown. There exist 14641 sliding

windows of  8 x 8 size in this wavelet channel. The supervised and unsupervised neural networks

involved  have been trained with a training set containing 1009 patterns extracted from these sliding

windows as described above. 280 out of the 1009 patterns belong to the long and thin defective area

of the upper side only, while the rest belong to the class of non defective areas.  The neural networks

have been tested on all the 14641 patterns coming from the sliding windows of the maximum

histogram variance wavelet channel of the first original image of fig.1. They  have also been applied

to the 14641 patterns extracted - through the same methodology -  from the second original image of

fig. 1, which is unknown to them.  The results are shown in fig. 4, 5, 6, 7. Note that the networks

based on the suggested methodology were able to generalize and find also some other minor defects

in the images, while other networks of the same type trained with the 64 pixel values of the sliding

windows, under exactly the same conditions, were able to find only the largest defects. This fact

demonstrates the efficiency of our feature extraction methodology based on wavelet textural and

SVD features. Finally, in terms of classification accuracy we have achieved an overall 98.50 %. The

evolution of the MLP training error and its generalization ability for the class corresponding to

defects is shown in fig. 8, 9 respectively.

VI. Conclusions

We have proposed novel methodologies for detecting defects in automated inspection textile

images based on wavelet and neural network segmentation methods, both supervised and

unsupervised, by exploiting information coming from textural analysis and SVD in the wavelet



channels of the 2-D Haar wavelet transformed original images. The efficiency of  this approach is

illustrated and the classification accuracy obtained is very high for both supervised and unsupervised

parallel classifications methods involved.  Clearly, our methodology deserves further evaluation in

quality control vision based systems.
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List of Figure Captions

Figure 1. Textile images containing representative defects

Figure 2. 2-D Haar basis wavelet transformation of the textile image 1(a)

Figure 3. QMF Channel No.3 of Image 1(a)

Figure 4. Image 1(a) segmented by the MLP

Figure 5. Image 1(a) segmented by the Kohonen’s SOFM

Figure 6. Image 1(b) segmented by the MLP

Figure 7. Image 1(b) segmented by the Kohonen’s SOFM

Figure 8. MLP Learning Error Evolution

Figure 9. MLP Generalization Performance Evolution
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