Real Time Systems

Instructor: Prof. Dimitris Maroulis

Semester: 3rd

Field: Information Technology in Medicine and Biology

Introduction and basic principles of real-time systems (definitions, requirements, properties, temporal identicality, predictability-determinism, reliability). Techniques and tools for development, analysis, design.

a flow diagrams (flow, events, transformations, terminators, control).

State transition diagrams (states, transitions, conditions, operations, event storimg).

ER Diagrams (entities, relationships, objects, rules).

Accompanying documentation, general framework

diagrams

, events list and behavioral patterns.

General requirements, controls.

Modeling-

architecture of

processors (specifications, evaluation, requirements

assessment

,multithreading, hyperthreading, interfaces, control processes).

Real time operating systems.

Software modeling (architecture, processes, parallelism, security, evaluation).

Modern architecture and advanced methods for data collection in real-time biomedical systems.

Development of software to

support

real-time biomedical applications and analyze and optimize performance.

Network and internet real-time applications in telemedicine. Presentation of "real" applications with emphasis on collecting, processing and analysing biomedical data in order to assist medical diagnosis.