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ABSTRACT

In this contribution is investigated the use of textural descriptors as descriptors for primitive textural
information in medical images. A few approaches have been presented in the literature to the direction of
the discrimination of texture in medical images compared with similar approaches used for texture
recognition. In this paper we try to prove that texture exists in medical images and can be encoded using
the proposed statistical based descriptors. We have selected four different methods for the estimation of
such descriptors. These have been tested in various texture images and in endoscopic medical images,
attempting this way to create the texture models possibly exist in the images. The texture spaces described
by the corresponding vectors of the features are used as input to different multilayer perceptron type
neural networks for the characterization of images from their texture content. An in depth experimental
study has been conducted comparing textural feature extraction techniques on various images along with
a novel discrete wavelet transform based methodology.

Keywords: Texture analysis, cooccuurrence matrices, fractal dimension, wavelets

1. INTRODUCTION descriptors are usually represented by sets of
statistical measures defining by this way the
vectors to be used, consequently, for the

recognition.

An important problem in the development of
medical systems is the design of complex image
mechanisms that will be capable to discriminate

among the different regions. The estimation of
image characteristics requires significant effort
in order to depict an image in terms of a
representation that best matches its information
content.

Texture plays an important role for the
characterisation of regions from digital images.
It ‘carries  information about the micro-structure
of the regions and the distribution of the grey
levels within such regions. A scheme for the
recognition based on the texture information
should be capable of encoding the properties of
the texture using a number of descriptors. These

2. DESCRIPTION OF THE PROPOSED
APPROACH

This paper deals with the design of image
indices for the labeling of the comresponding
regions in terms of their second order
characteristics and, more specifically, texture.
The proposed index design scheme is simple: an
image is divided “in “rectangular- regions of
predefined dimensions and each one is labeled
according to its textural content. The approach
followed has two major processing stages. The
first stage consists of all the processing that will



erformed on an image to extract all the
,;deh'tiﬁable' features.

we usually choose a famlly of texture attributes
that account for the main spatial relations

petween
QOriginal Image

ilExtracted wmdow

: from the original l
! image :

(SO, = Y-

Feature Vector

the grey levels of the texture. The image is
divided in non-overlapping square regions of
equal dimensions. The descriptors are estimated
for each of these regions composing the textural
feature vectors. These will then be used for the
classification and labeling of these regions in
terms of their textural content using statistical
pattern recognition techniques.

In this paper we used statistical descriptors
produced by three different transformations [1],
[6-10]:

¢ Cooccurrence matrices

* Run length encoding

¢ Fractal dimension

¢ Discrete Wavelet Transform

The latter one is proposed as new descriptor for
texture classification based on measures
obtained from the detailed coefficients of the
Discrete Wavelet Transform (DWT) [11-13].
An image division scheme into regions of
Square non-overlappmg windows of equal
dimensions has been adopted.

_Multilayer Perceptron (MLP) type neural
networks have been involved in the image
classification and labelling approach of each
window [3] [4].

3 FEATURE EXTRACTION
3.1 Cooccurrence matrices

Cooccurrence matrices [2] represent the spatial
distribution and the dependence of the gray

levels within a local area. Each (i,j)th entry of
the matrices, represents the probability of going
from one pixel with gray level (/) to another
with a gray level (j) under a predefined distance
and angle. From these matrices, sets of
statistical measures are computed (called feature
vectors) for building different texture models. In
our experiments, we have considered four
angles, namely 0, 45, 90, 135 as well as a
predefined distance of one pixel in the
formation of the cooccurrence matrices.
Therefore, we have formed four cooccurrence
matrices. According to our experiments, the
following four statistical measures out of the 14,
originally proposed by Haralick [2][3], provide
high discrimination accuracy that can be only
marginally increased by adding more measures
in the feature vector:

o Energy - Angular Second Moment
fi=3 )
i
o Correlation

BINED)

i=1l j=1

pli. J) = ety

f'z_
GOr

» Inverse Difference Moment

fB‘ZZ ( )(’J)

s Entropy
fs=- 33 pli. i)log(p(i. )
I J
Thus, using the above mentioned four

cooccurrence matrices we have obtained 16
features describing spatial distribution in each
window

3.2 Run-length encoding

The run length matrix P with elements p(i,)),
where the (/)th dimension corresponds to the
gray level and has a length equal to the
maximum gray level »n, while the (j)th
dimension corresponds to the run length and has
length equal to the maximum run length I,
represents the frequency that (j) points with a
gray level () continue in the direction ¢ [12]. As
with the cooccurrence matrix, ¢ = 0°, 45°, 90°
and 135° offer the greatest interest. Five features
can be calculated from the run length matrix as
shown in the equations below:
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Long Run Emphasis
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Short Run Emphasis
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Run Length Nonuniformity
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Run Percentage
> 2 7plig)
3 ! j

N? ’
where N? is the number of points in the image.

Fs

The run lengths are expected large for
coarse textures, especially structural textures,
but can be quite small for fine textures. The
nonuniformity features are small if the gray
levels or the run lengths are similar throughout
the matrix, while the long run length is large if
there is high intensity clustering in the texture.

3.3 Fractal dimension

The fractal dimension is a feature that
characterizes the roughness of an image [8]. A
well-known method for evaluating the fractal
dimension is a variation of the well-known box-
counting procedure, which is efficient and
accurate for texture classification tasks [11].
Following this approach, the grey-level
image is-considered -as-a 3-dimensional -space
(x,y2), with (x,y) denoting a 2-dimensional
location, and (z) denoting the grey level. This 3-
dimensional space is partitioned into cubes of
size rx rx r. The position of the columns of the

cubes, vertical to the (x,y) pixel plane is
assigned as (i, ), where

(1) =(=/rzfr);

and the boxes are enumerated from bottom to

- top. In every column (i,;) the cubes & and /

which contain the minimum and maximum grey
levels of the column, respectively, are found.

The fractal dimension D is estimated
through the least mean square linear fit of

log(N , ) against log(l/r) for different values of
r
log(N,)
- log(1/7)
The number N, is computed as
N,= %‘,n,(i, i)

where n,(i,j) =1~k +1.

It is possible that two images of different
texture and different optical appearance have
the same fractal dimension. Thus, the
discrimination capability of the fractal
dimension, in some cases, is problematic. In
order to alleviate this problem, the fractal
dimension has been computed in the original
subimage, as well as in the first two lower
resolution versions of the original subimage and
the first two sets of detail subimages, containing
higher horizontal and vertical frequency spectral
information. Decomposing the original image
through the dyadic wavelet transform [6] has
produced the subimages. The aforementioned
feature extraction procedure is originally
proposed in [4]. Following this procedure,
seven-dimensional training patterns can be
created from each image region.

3.4 DWT Textural Descriptor

The problem of texture discrimination, aiming
at labeling image areas, is considered in the
wavelet domain, since it has been demonstrated
that discrete wavelet transform (DWT) can lead
to better texture modeling [13]. We use the~
popular 2-D DWT schemes [6][14] performing
a one-level wavelet decomposition of the image °
regions, thus resulting in four wavelet channels.

Concerning the wavelet decomposition of the
image regions, among the one approximate and
the three detail wavelet channels 2, 3, 4

98(frequency index) we have selected for further



~',ocessiﬂg oﬁly the three detail channels, whose
P ances are the largest, since they might carry
yar;e information than the approximate one. A

ofe sophisticated approach is proposed by
applyins cooccurrence analysis to the three
detail wavelet channels and extracting 30016 =
43 relevant measures [13][14].

3.4.1 Wavelet T ransform

wavelets offer a general mathematical approach
for hierarchical ~function decomposition.
According to this transformation, a function,
which can be a function representing an image,
a curve, signal etc., can be described in terms of
a coarse level in addition with details that range
‘from broad to narrow scales. Wavelets offer an
.povel technique for computing the levels of
" detail present, under a framework that is based
on a chain of approximation vector spaces

(v, c I? (®?), jeZ} and a scaling
functiong such that the set of functions
{2""2 ¢(2"’ ! —-k):k eZ}formihg an orthonormal
basis for V ;. These two components introduce

a mathematical framework presented by Mallat
(6] and called multiresolution analysis.
A multiresolution analysis (MRA) scheme

of Lz(iR’)can be defined as a sequence of
closed subspaces {V; c ? (®?), jez)
satisfying the following properties :

Containment : V,cV, < L; forall jez.
Decrease: lim,,V,=0,1e N,..V,=2> for
alN

Increase : tim,, v, =1, ie. quj =?, for
Jj<

all N, |

Dilation : u(2t) e Vi) & u(t) eV, -

Generator :  There is a function g ¥, whose

ranslation {4(¢ - k:% ez )} forms a basis for ¥, .

By defining complementary  subspaces

¥, =V, -V, so that V, =V, +W, then we

t‘:;n'writ'e, according to the «increase» property
at

Hw)=2w, o)
jeZ

| The suﬁspaces W, are called wavelet subspaces
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and contain the difference in signal information
between the two spaces V,and V_,. These sets

contribute to a wavelet decomposition of
I?* according to Eq.(1).

4. DISCUSSION AND RESULTS

4.1 Texture Images

A total of 12 Brodatz texture images : 3, 5, 9,
12, 15, 20, 51, 68, 77, 78, 79, 93 (as shown in
the following figure) of size 512x512 has been
used. From each texture image 10 subimages of
size 256x256, with 256 gray levels depth, were
randomly selected, and the above mentioned
feature extraction techniques have been applied.
The MLP generalization capability has been
tested using patterns from 20 subimages of the
same size randomly selected from each image.

Figure 1. Twelve textures found in the “Brodatz
Album”.

A recently proposed learning algorithm, named
BPVS, has been used to train the MLPs. For
each feature extraction method thirty simulation
runs have been performed using MLPs with 5 to
50 neurons in the hidden layer in order to find
the architecture with the best average
generalization capability. The best available
architecture for each case is exhibited in Table
1. For example, a MPL with 48 input neurons,
30 hidden and 12 output neurons with biases
exhibited the best performance for the DWT.

Feature extraction method —_mLp
DWT distribution estimation 48-30-12
fractal d_imension | 7-30-12
Coocerirrence analysis | 1640-12
.Gray level run length moments 5-10-12

Table 1. The best available MLP architectures.



The average generalization performance of the
30 MLPs that have been trained using DWT
features was the best and reached a 99.1%. The
number of misclassified test patterns out of 240
for each method is presented in Figure 2. As
shown in Figure 2, the MLPs that have been
trained using the DWT distribution estimation
patterns had significantly better generalization
capability than all the others. For example, 13
MLPs trained with DWT distribution estimation
patterns misclassified only 3 test patterns out of
240. On the other hand, 15 MLPs trained with
Fractal dimension patterns misclassified 13 test
patterns out of 240. Note that one MLP trained
with DWT distribution estimation patterns
achieved 100% classification success, ie. it
exhibited 0 misclassifications.

Nuobaer of rsined MLP:
- -4

-
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Figure 2. Number of trained MLPs with respect
to corresponding misclassified test patterns.

4.2 Endoscopic Images

In the experiments reported a 16-21-2 MFNN
architecture (i.e. 16 linear input neurons, 21
nonlinear hidden neurons and 2 nonlinear output
neurons) has been used and the cooccurrence
matrices for the textural description of tissue
samples have been applied. Preliminary results
have indicated that this scheme is capable of
detecting abnormalities within the same
colonoscopic image with 99% of success.
Below, —we- present~ results “on ~detecting
abnormalities, which belong to two different
types, in colonoscopic images taken from two
different colons. Image 1 (Fig. 3) is
macroscopically a Type IIs lesion according to
(Kudo, 1996) [14]. Histologically it is a Jow

grade cancer. Image 2 is macroscopically a.
Type V lesion according to (Kudo, 1996) [14].

Histologically it is a moderately differentiated
carcinoma. In both cases the performance of the

trained MFNNs has been tested on a set of 80

texture samples (40 normal and 40 abnormal)

from the two images.

| Image 1 |

Figure 3. Colonoscopic images used

The average performance of 10 MFNNs than
have been trained on this task is summarized in
Table 2. The reported parameters are: CE is
classification error in the training phase, u is

the average percentage of success in the testing
phase and the computational cost required to
train the networks is exhibited in terms of the
average number of gradient (uq, ) and of error
function evaluations (). Note that the value
of the u. is very similar for the two cases,
however the computational cost is quite
different.

CE s Hoo Hee
0.15 92.1 87 165
020 914 9 18

Table 2. Average performance of the 10 trained
MFNNSs.

Details on the generalization performance of the
10 networks are exhibited in Figure 4. Note, that
MFNNs trained according to the first_
termination condition (CE<0.15) exhibit better
performance than networks trained using the
second condition. For example, one network"
trained -using - the condition ~ CE<O0.15"
misclassified 3 out of the 80 test samples (i.e.
success 95%), while two networks trained
according to the condition CE<0.20
misclassified 5 out of the 80 test samples (i.e.

1gosuccess 93.75%).



B CE<0.15
O CE<0.20

Number of MFNNs that misclassified

3 4 5 6 7 8
Number of misclassified samples

Figure 4. Number of trained MFNNs with
respect to corresponding misclassified samples.

5. CONCLUSIONS

‘An image-indexing scheme for region-labeling
‘pplications based on image textural content has
been proposed and preliminary evaluated.
Regarding its components, a novel DWT
distribution  estimation technique has been
suggested for the texture description stage. This
method, along with three other well known
feature extraction techniques, have been
comparatively investigated in terms of their
effects on the generalization performance of the
labeling component of the indexing system. The
preliminary results indicate that the proposed
- pproach is considerably reliable for demanding
spplications.
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