








 

   
AbstractMicroarray technology provides the ability of 

monitoring the gene expression levels of thousands of genes in 
parallel. Gene expression data classification applies for 
diseases’ diagnosis or prediction. We propose a novel 
intelligent system for the classification of multiclass gene 
expression data. It is based on a cascading Support Vector 
Machines (SVM) scheme and utilizes Welch’s t-test for the 
detection of differentially expressed genes. The system was 
applied for the discrimination of normal and lung cancer 
subtypes’ specimens. The overall accuracy achieved was 
98.5%. The results show that the proposed system can be 
efficiently used for microarray data analysis. 
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I. INTRODUCTION 
A variety of techniques have been developed by molecular 
biologists in order to study gene expression changes 
associated with biological evolution mechanisms and 
diseases. Microarray technology first provided the 
advantage of monitoring the gene expression levels of 
thousands of genes in parallel. Microarrays consist of large 
numbers of individual DNA sequences printed as spots in a 
systematic order on a microscope’s glass. Each spot 
produced by a DNA microarray hybridization experiment 
represents the expression levels’ ratio of a particular gene 
under two different experimental conditions [1].  

Microarray technology motivated computer scientists to 
focus on solving biological problems such as the 
identification of the functional roles of the genes, the way 
they are organized, the way they interact and the way their 
expression levels are changed by various diseases.  The 
major related research areas include the detection of 
differential expression, pattern discovery, class prediction 
and inference of regulatory pathways and networks [2].  

Class prediction methods involve supervised machine 
learning techniques for diseases’ diagnosis or prediction. 
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This is a challenging task mainly due to the following 
reasons: 
1. Microarray data consist of a large number of features 

(gene expression measurements), while the number of 
samples involved is disproportionaly small. 

2. A significant percentage of genes is usually not 
associated with the problem under investigation. 

3. The biochemical procedure used to produce 
microarrays, adds a lot of noise to the measurements. 

The first two issues could lead to peaking phenomena 
associated with the “curse of dimensionality” [3], while the 
third introduces a large amount of uncertainty in our 
measurements, making the classification task harder. In 
order to remove irrelevant genes, identify the differentially 
expressed genes and reduce the feature space dimensions, 
gene selection algorithms are usually applied prior to the 
classification stage [2].  

Several classification approaches have been proposed in 
the literature on microarray data including linear 
discriminant analysis, k-nearest neighbors (k-NN), parzen 
windows, decision trees, Neural Networks (NN) and 
Support Vector Machines (SVM) [4]-[8]. Comparative 
studies suggest that SVMs outperform other methods 
[5][9]. SVMs are remarkably robust machine learning 
algorithms that are based on statistical learning theory [10]. 
Their performance is not easily affected by sparse or noisy 
data, they resist overfitting and to the “curse of 
dimensionality”.  

The afore mentioned approaches have been applied to 
binary classification problems, such as the discrimination 
among normal and cancerous samples of colon, breast and 
ovarian cancer cases as well as the discrimination among 
two leukemia subtypes. The classification task becomes 
more complex as the number of classes increases. 
Multiclass classification approaches that have been 
proposed for microarray data classification include 
Multicategory SVMs for the classification of leukemia 
subtypes [11]; binary classifiers in conjunction with three 
combination scenarios, namely one-vs-one, one-vs-all and 
hierarchical partitioning for the discrimination of 14 
common tumor types [12]. 

Under this framework we developed a novel system of 
cascading SVMs, for multiclass classification of gene 
expression data, which utilizes Welch’s t-test for the 
detection of differentially expressed genes. The system was 
applied for the classification of normal and lung cancer 
subtypes samples [13].  

The rest of this paper is organized in 3 sections. In 
section 2 the proposed system is described. In section 3 the 
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results of the system’s experimental evaluation on lung 
cancer data are apposed. The last section summarizes the 
conclusions of this study. 

II. SYSTEM DESCRIPTION 
The proposed system aims to the classification of a gene 

expression vector x to its appropriate class ωi, i=1,2,...N.   
The gene expression levels are normalized to conform to 
zero mean and unitary variance in order to obtain directly 
comparable sample measurements. The system implements 
a cascading scheme of SVM classifiers as illustrated in 
Fig.1. It consists of N-1 blocks. Each block Bi consists of 
two modules. The first module noted as Si, realizes gene 
selection and the second noted as Ci, implements 
classification. System’s free parameters are tuned during 
training phase. Each block Bi is trained separately with a 
samples’ subset Xi of the available training set X, where 
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Module Si selects a subset of v genes gij, j=1,2…v which 
best discriminates class ωi from class ωh, via Welch’s t-test. 
The number of selected genes is determined by maximizing 
the performance of the classification module Ci.  

Presenting a vector x of unknown class to the system, 
module Ci is fed with the selected subset of genes, gij and 
outputs yi=1 if x∈ωi or yi=0 if x∉ωi. If yi=0, the sample 
enters to the next block Bi+1. If yi=1, the classification task 
terminates and x is assigned to class ωi. The last block BN-1 
decides whether x∈ωN-1 or x∈ωN.  

A. Welch’s t-test 
Welch’s t-test is a statistical test that assumes unequal 

variances among classes and it can be applied in problems 
involving a small number of samples [14]. The genes are 
ranked based on how well they lead to a large between-
class distance and a small within-class variance in the 
feature’s space. Genes’ ranking is achieved by calculating 
the absolute value of the t-statistic Z(j) for each gene j: 
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where (mi
j, σi

j) and (mh
j, σh

j) correspond to the mean and 
standard deviation of gene’s j expression levels of the 
training samples that belong to ωi and ωh classes 
respectively. The number of samples belonging to each of 
the above classes is denoted by Ni and Nh. The larger the 
absolute value of Z(j) the higher the expression of gene j. 

B. Support Vector Machines 
Let Φ be a non-linear mapping from the input space 

nI ℜ⊆ to the feature space mF ℜ⊆ . The SVM algorithm 
is capable of finding a hyperplane defined by the equation 

 wΦ(x) + b = 0 (3) 

so that the margin of separation is maximized.  It is easy to 
prove [10][15] that for the maximal margin hyperplane, 
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where the variables λi are Lagrange multipliers that can be 
estimated by maximizing the quantity 
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with respect to λi, where the following constraints should 

be satisfied: ∑
=

=
N
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0λ  and ci ≤≤ λ0 , for i = 1, 2, …, N, 

and a given cost value c. Increasing c corresponds to a 
higher penalty for errors.  

),( ji xxK  is called kernel function and it is defined as 
the inner product  

 )()(),( jiji xxxxK ΦΦ= Τ  (6) 

Linear, polynomial, Radial Basis (RBF) and sigmoid are 
the most common functions used as SVM kernels. We used 
the RBF kernel: 

 ( ) γ/
2
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were γ is a strictly positive constant. This kernel, usually 
has better boundary response as it allows for extrapolation, 

Fig. 1. Cascading SVMs system for microarray data classification. 
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and most high-dimensional data sets can be approximated 
by Gaussian-like distributions similar to that used by RBF 
networks [15]. 

III. RESULTS 
The experimentation presented in this study aims to the 

evaluation of the proposed system’s performance. The 
dataset used has been first studied by Bhattacharjee et al. 
[13], who applied hierarchical unsupervised classification 
to reveal unknown adenocarcinoma subclasses. It consists 
of 203 samples spanning 6 different classes which 
correspond to normal lung specimens, Small-Cell Lung 
Carcinomas (SCLC), Adenocarcinomas (AC), Large-Cell 
Lung Carcinomas (LCLC), Squamous Carcinomas (SC) 
and ACs which are suspected to be extrapulmonary 
metastases (MAC). The number of samples per class is 17, 
6, 127, 21, 20 and 12 respectively. Each sample is 
represented by a 12600 dimensional vector formed by the 
expression levels of the measured genes. 

A 5-block cascading SVMs architecture was used for the 
6-class classification problem. The block sequence used for 
the discrimination of the corresponding classes is presented 
in Table I.  

TABLE I 
SYSTEM’S BLOCK SEQUENCE FOR LUNG CANCER DATA CLASSIFICATION 

 
Block ωi ωh 

B1 Normal {SCLC, LCLC, SC, MAC, AC} 

B2 SCLC {LCLC, SC, MAC, AC} 

B3 LCLC {SC, MAC, AC} 

B4 SC {MAC, AC} 

B5 MAC AC 

 
In each block all genes were ranked in descending 

significance using Welch’s t-test. System’s parameters 
were selected by grid search. The search parameters were 
the number of genes and SVM’s cost c. Among the 
available genes only the 50 top-ranked were considered. 
Preliminary tests showed that a further increase of this 
number did not result in any significant increase of the 
classification performance. The classification performance 
was evaluated by adopting a Leave-One-Out (LOO) cross 
validation approach. LOO is commonly used when the 
available dataset is small providing an almost unbiased 
estimate of the generalization ability of a classifier [16]. 

Under this experimental framework the minimum 
number of differentially expressed genes which maximizes 
the classification performance of each block was 
determined. The classification accuracy vs. the number of 
genes used in blocks B1, B2, B4 and B5 is illustrated in Fig. 
2, 3, 4 and 5 respectively. The diagram corresponding to 
the third block’s performance was omitted because it 
reached 100% accuracy by using only the first ranked gene. 
Maximum accuracies are designated with vertical dashed 
lines within figures. The classification performances 
achieved as well as the number of selected genes per block 
are summarized in Table II.  The overall accuracy of the 
proposed system reaches 98.5% (3 out of 203 samples were 
misclassified). It manages to accurately discriminate among 
normal specimens and different lung cancer types utilizing 
a rather small number of genes ranging from 1 to 40. 

The results achieved are comparable with the results 
reported in [8]. In that study two gene selection methods 

namely Recursive Feature Elimination (RFE) and 
Univariate Association Filtering (UAF) were combined 
with linear and polynomial SVM, NN and k-NN classifiers 
for the discrimination of (i) normal - cancerous, (ii) SC -
{MAC, AC} and (iii) MAC - AC specimens from the same 
dataset. 
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Fig. 2. Normal samples classification vs. number of genes (B1). 
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Fig. 3. SCLC samples classification vs. number of genes (B2). 
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Fig. 4. SC samples classification vs. number of genes (B4). 
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Fig. 5. MAC samples classification vs. number of genes (B5). 

 
These pairs of classes correspond to ωi - ωh pairs handled 
by the B1, B4 and B5 blocks of the cascading SVMs system. 
The best results reported in [8] as well as the results of our 
approach are compared in Table III. In cases (i) and (ii) we 
achieved a comparable accuracy by using a significantly 
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smaller number of genes. In case (iii) the accuracy we 
achieved was higher by using only 14 genes more. 

 
TABLE II 

MAXIMUM CLASSIFICATION ACCURACY AND PARAMETERS USED PER 
BLOCK 

 

Block Selected 
Genes Accuracy (%) 

B1 6 99.5 

B2 25 100 
B3 1 100 

B4 40 99.4 

B5 20 99.3 
 
 

TABLE III 
COMPARATIVE RESULTS 

 

 Cascading SVMs 
System 

Results 
reported in [8] 

ωi - ωh 
Accuracy 

(%) 
Selected 
Genes 

Accuracy 
(%) 

Selected 
Genes 

Normal-Cancerous 99.5 6 99.8 100 

SC-{MAC, AC} 99.4 40 99.6 500 

MAC-AC 99.3 20 97.6 6 

IV. CONCLUSIONS 
In this paper we presented a novel system for the 

classification of multiclass gene expression data. It 
implements a cascading scheme of SVMs combined with 
gene selection modules. The proposed system was applied 
for the classification of lung cancer data. A 5-block 
cascading architecture was used for the discrimination of 
the six classes comprising the dataset. The results showed 
that the lung cancer classes could be characterized by a 
very small number of genes compared to the total 12600 
genes involved in the experiment. The overall system’s 
accuracy for this dataset was estimated 98.5%.  

This study shows that the proposed system can be 
successfully used for the classification of gene expression 
data. A straightforward application of this system is disease 
diagnosis or even prediction under a medical decision 
support framework.  
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