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Abstract—Microarray technology provides the ability of
monitoring the gene expression levels of thousands of genes in
parallel. Gene expression data classification applies for
diseases’ diagnosis or prediction. We propose a novel
intelligent system for the classification of multiclass gene
expression data. It is based on a cascading Support Vector
Machines (SVM) scheme and utilizes Welch’s #-test for the
detection of differentially expressed genes. The system was
applied for the discrimination of normal and lung cancer
subtypes’ specimens. The overall accuracy achieved was
98.5%. The results show that the proposed system can be
efficiently used for microarray data analysis.

Index Terms—Classification, Gene Expression Data, Gene
Selection, Microarrays, SVM

I. INTRODUCTION

A variety of techniques have been developed by molecular
biologists in order to study gene expression changes
associated with biological evolution mechanisms and
diseases. Microarray technology first provided the
advantage of monitoring the gene expression levels of
thousands of genes in parallel. Microarrays consist of large
numbers of individual DNA sequences printed as spots in a
systematic order on a microscope’s glass. Each spot
produced by a DNA microarray hybridization experiment
represents the expression levels’ ratio of a particular gene
under two different experimental conditions [1].

Microarray technology motivated computer scientists to
focus on solving biological problems such as the
identification of the functional roles of the genes, the way
they are organized, the way they interact and the way their
expression levels are changed by various disecases. The
major related research areas include the detection of
differential expression, pattern discovery, class prediction
and inference of regulatory pathways and networks [2].

Class prediction methods involve supervised machine
learning techniques for diseases’ diagnosis or prediction.
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This is a challenging task mainly due to the following

reasons:

1. Microarray data consist of a large number of features
(gene expression measurements), while the number of
samples involved is disproportionaly small.

2. A significant percentage of genes is usually not
associated with the problem under investigation.

3. The biochemical procedure used to produce
microarrays, adds a lot of noise to the measurements.

The first two issues could lead to peaking phenomena

associated with the “curse of dimensionality” [3], while the

third introduces a large amount of uncertainty in our
measurements, making the classification task harder. In
order to remove irrelevant genes, identify the differentially
expressed genes and reduce the feature space dimensions,
gene selection algorithms are usually applied prior to the

classification stage [2].

Several classification approaches have been proposed in
the literature on microarray data including linear
discriminant analysis, k-nearest neighbors (k-NN), parzen
windows, decision trees, Neural Networks (NN) and
Support Vector Machines (SVM) [4]-[8]. Comparative
studies suggest that SVMs outperform other methods
[5][9]. SVMs are remarkably robust machine learning
algorithms that are based on statistical learning theory [10].
Their performance is not easily affected by sparse or noisy
data, they resist overfitting and to the “curse of
dimensionality”.

The afore mentioned approaches have been applied to
binary classification problems, such as the discrimination
among normal and cancerous samples of colon, breast and
ovarian cancer cases as well as the discrimination among
two leukemia subtypes. The classification task becomes
more complex as the number of classes increases.
Multiclass classification approaches that have been
proposed for microarray data classification include
Multicategory SVMs for the classification of leukemia
subtypes [11]; binary classifiers in conjunction with three
combination scenarios, namely one-vs-one, one-vs-all and
hierarchical partitioning for the discrimination of 14
common tumor types [12].

Under this framework we developed a novel system of
cascading SVMs, for multiclass classification of gene
expression data, which utilizes Welch’s #-test for the
detection of differentially expressed genes. The system was
applied for the classification of normal and lung cancer
subtypes samples [13].

The rest of this paper is organized in 3 sections. In
section 2 the proposed system is described. In section 3 the
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Fig. 1. Cascading SVMs system for microarray data classification.

results of the system’s experimental evaluation on lung
cancer data are apposed. The last section summarizes the
conclusions of this study.

II. SYSTEM DESCRIPTION

The proposed system aims to the classification of a gene
expression vector x to its appropriate class w;, i=1,2,...N.
The gene expression levels are normalized to conform to
zero mean and unitary variance in order to obtain directly
comparable sample measurements. The system implements
a cascading scheme of SVM classifiers as illustrated in
Fig.1. It consists of N-/ blocks. Each block B; consists of
two modules. The first module noted as S;, realizes gene
selection and the second noted as C; implements
classification. System’s free parameters are tuned during
training phase. Each block B; is trained separately with a
samples’ subset X; of the available training set X, where

X, =lre(@ua, )} o,=Uo, M

k>i
Module S; selects a subset of v genes gy, j=1,2...v which
best discriminates class @; from class @), via Welch’s ¢-test.
The number of selected genes is determined by maximizing
the performance of the classification module C..

Presenting a vector x of unknown class to the system,
module C; is fed with the selected subset of genes, g; and
outputs y=1 if xew; or y=0 if xg @, If y~=0, the sample
enters to the next block B;.;. If y=1, the classification task
terminates and x is assigned to class ®;. The last block By.;
decides whether xe wy.; or xe wy.

A. Welch’s t-test

Welch’s #-test is a statistical test that assumes unequal
variances among classes and it can be applied in problems
involving a small number of samples [14]. The genes are
ranked based on how well they lead to a large between-
class distance and a small within-class variance in the
feature’s space. Genes’ ranking is achieved by calculating
the absolute value of the ¢-statistic Z(j) for each gene j:

2
Z()) =
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where (m’}, O’IJ) and (mhj, o ) correspond to the mean and
standard deviation of gene’s j expression levels of the
training samples that belong to @, and ), classes
respectively. The number of samples belonging to each of
the above classes is denoted by N; and N,. The larger the
absolute value of Z(j) the higher the expression of gene ;.

B. Support Vector Machines

Let @ be a non-linear mapping from the input space

I < R" to the feature space F < R" . The SVM algorithm
is capable of finding a hyperplane defined by the equation

wd(x) +b=0 3)

so that the margin of separation is maximized. It is easy to
prove [10][15] that for the maximal margin hyperplane,

N
w=2),iyiq)T(x,.) 4
i1

where the variables A; are Lagrange multipliers that can be
estimated by maximizing the quantity

N 1 &
z i_Ez jyiyjK(xiTXj) ©)
i=1 =l j=1

with respect to A;, where the following constraints should

be satisfied: Zliyl. =0 and 0<A <c,fori=1,2,...,N
i=1

and a given cost value c. Increasing ¢ corresponds to a

higher penalty for errors.

K(x;,x;) is called kernel function and it is defined as
the inner product

K(x;,x;)=@" (x)P(x;) (6)

Linear, polynomial, Radial Basis (RBF) and sigmoid are
the most common functions used as SVM kernels. We used
the RBF kernel:

K (xi X ): e_Hx’_x" [rr @)

were Y is a strictly positive constant. This kernel, usually
has better boundary response as it allows for extrapolation,



and most high-dimensional data sets can be approximated
by Gaussian-like distributions similar to that used by RBF
networks [15].

III. RESULTS

The experimentation presented in this study aims to the
evaluation of the proposed system’s performance. The
dataset used has been first studied by Bhattacharjee et al.
[13], who applied hierarchical unsupervised classification
to reveal unknown adenocarcinoma subclasses. It consists
of 203 samples spanning 6 different classes which
correspond to normal lung specimens, Small-Cell Lung
Carcinomas (SCLC), Adenocarcinomas (AC), Large-Cell
Lung Carcinomas (LCLC), Squamous Carcinomas (SC)
and ACs which are suspected to be extrapulmonary
metastases (MAC). The number of samples per class is 17,
6, 127, 21, 20 and 12 respectively. Each sample is
represented by a 12600 dimensional vector formed by the
expression levels of the measured genes.

A 5-block cascading SVMs architecture was used for the
6-class classification problem. The block sequence used for
the discrimination of the corresponding classes is presented

in Table I.
TABLE I
SYSTEM’S BLOCK SEQUENCE FOR LUNG CANCER DATA CLASSIFICATION

Block ; 0N
B, Normal {SCLC, LCLC, SC, MAC, AC}
B, SCLC {LCLC, SC, MAC, AC}
B; LCLC {SC, MAC, AC}
By SC {MAC, AC}
B; MAC AC

In each block all genes were ranked in descending
significance using Welch’s #-test. System’s parameters
were selected by grid search. The search parameters were
the number of genes and SVM’s cost ¢. Among the
available genes only the 50 top-ranked were considered.
Preliminary tests showed that a further increase of this
number did not result in any significant increase of the
classification performance. The classification performance
was evaluated by adopting a Leave-One-Out (LOO) cross
validation approach. LOO is commonly used when the
available dataset is small providing an almost unbiased
estimate of the generalization ability of a classifier [16].

Under this experimental framework the minimum
number of differentially expressed genes which maximizes
the classification performance of each block was
determined. The classification accuracy vs. the number of
genes used in blocks B;, B,, B, and Bs is illustrated in Fig.
2, 3, 4 and 5 respectively. The diagram corresponding to
the third block’s performance was omitted because it
reached 100% accuracy by using only the first ranked gene.
Maximum accuracies are designated with vertical dashed
lines within figures. The classification performances
achieved as well as the number of selected genes per block
are summarized in Table II. The overall accuracy of the
proposed system reaches 98.5% (3 out of 203 samples were
misclassified). It manages to accurately discriminate among
normal specimens and different lung cancer types utilizing
a rather small number of genes ranging from 1 to 40.

The results achieved are comparable with the results
reported in [8]. In that study two gene selection methods
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namely Recursive Feature Elimination (RFE) and
Univariate Association Filtering (UAF) were combined
with linear and polynomial SVM, NN and k-NN classifiers
for the discrimination of (i) normal - cancerous, (ii) SC -
{MAC, AC} and (iii) MAC - AC specimens from the same
dataset.
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These pairs of classes correspond to @; - w, pairs handled
by the B;, B, and B; blocks of the cascading SVMs system.
The best results reported in [8] as well as the results of our
approach are compared in Table III. In cases (i) and (ii) we
achieved a comparable accuracy by using a significantly



smaller number of genes. In case (iii) the accuracy we
achieved was higher by using only 14 genes more.

TABLE II
MAXIMUM CLASSIFICATION ACCURACY AND PARAMETERS USED PER
BLOCK
Selected o
Block Gencs Accuracy (%)
B, 6 99.5
B, 25 100
B; 1 100
By 40 99.4
Bs 20 99.3
TABLE III
COMPARATIVE RESULTS
Cascading SVMs Results
System reported in [8]
- O Accuracy Selected  Accuracy Selected
T (%) Genes (%) Genes
Normal-Cancerous 99.5 6 99.8 100
SC-{MAC, AC} 99.4 40 99.6 500
MAC-AC 99.3 20 97.6 6

IV. CONCLUSIONS

In this paper we presented a novel system for the
classification of multiclass gene expression data. It
implements a cascading scheme of SVMs combined with
gene selection modules. The proposed system was applied
for the classification of lung cancer data. A 5-block
cascading architecture was used for the discrimination of
the six classes comprising the dataset. The results showed
that the lung cancer classes could be characterized by a
very small number of genes compared to the total 12600
genes involved in the experiment. The overall system’s
accuracy for this dataset was estimated 98.5%.

This study shows that the proposed system can be
successfully used for the classification of gene expression
data. A straightforward application of this system is disease
diagnosis or even prediction under a medical decision
support framework.

[10]

[11]

[12]

[13]

[14]

[15]

[16]
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