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ABSTRACT 

 
In this paper we present a new feature extraction 
methodology for color texture recognition. It is based on 
the covariance of 2nd-order statistical features in the 
wavelet domain of the color channels of the images and it 
is named as Color Wavelet Covariance (CWC). The 
experimentation showed that the CWC features could be 
used effectively for texture representation even when 
illumination varies. The use of the linear K-L (Karhunen-
Loeve) transformation of the RGB color space for the 
extraction of the CWC features resulted in a performance 
that was comparable to the one achieved with more 
complex non-linear color transformations. The 
recognition accuracy tested with texture mosaics reached 
an average of 86%. Using images acquired under varying 
illumination the performance of the CWC features on the 
K-L space reached an average of 88%. 

 

1. INTRODUCTION 
 
Texture characterizes any visible surface and this is the 
major reason that texture analysis methodologies are 
incorporated into the construction of image analysis 
systems. During the last years an amount of scientific 
effort has been directed to the use of color in the texture 
representation approaches. Recent work includes 
perceptual approaches [1], the use of chromaticity 
moments [2], and the derivation of textural information 
from luminance channel along with pure chrominance 
features, as well as the processing of each color channel 
separately by applying gray-level texture analysis 
techniques [3]. Other approaches exploit the 
interdependence of the existent textural information 
within the different channels of a color image, usually 
captured by means of correlation. Van de Wouwer et al 
[4] achieved high classification rates using correlation 
signatures estimated from the wavelet coefficients of 
color images. Paschos [5] proposed a set of discriminative 
and robust chromatic correlation features using 
directional histograms. Vandebroucke et al [6] exploited 
the correlation of 1st order statistical features between the 

different color channels for unsupervised soccer image 
segmentation and Al-Rawi et al [7] proposed Zernike 
moments of correlation and covariance functions for 
illumination invariant color texture recognition.  

Under a similar framework we propose a new feature 
extraction methodology named as Color Wavelet 
Covariance (CWC) that exploits the covariance of 2nd-
order textural measures in the wavelet domain of the 
color channels of the images. We evaluate the 
performance of these features for color texture 
recognition in various color spaces and we investigate 
their performance under varying illumination. The 
classification task has been assigned to a Support Vector 
Machine (SVM) classifier, as SVMs have shown 
remarkably robust performance, even with sparse and 
noisy data, and they resist to the overfitting and to the 
"curse of dimensionality" [8][9]. 

The rest of this paper is organized in four sections. 
Section 2, includes the description of the proposed 
methodology for the extraction of color textural features. 
A short description of the classification model, with the 
use of SVMs, follows in section 3. In section 4, we 
appose the results of the application of the proposed 
methodology for color texture recognition using images 
from Vistex database [10] and images of objects acquired 
in different illumination conditions [11]. The conclusions 
of this study are summarized in the last section. 
 
2. COLOR WAVELET COVARIANCE FEATURES 

 
In the proposed feature extraction methodology we 
assume that a color image I, is decomposed into three 
color channels Ci, where i = 1, 2, 3. Each channel is raster 
scanned with a fixed size sliding square window. On each 
window a K-level 2D-Discrete Wavelet Transform 
(DWT) is applied. The Daubechies wavelet bases were 
used due to their orthonormal properties, which are 
important for the preservation of the textural structure 
along the different scales of the transform [10]. This 
transform results in a new representation of the original 
window, which consists of 

 B  = 3K + 1 (1) 

sub-windows, corresponding to different wavelet bands. 
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Each band is denoted as Bj(k), where k is the current level 
of the transform and j = 0, 1, 2, 3 for k = K, or j = 1, 2, 3 
for k < K. B0(k) corresponds to the low frequency band. 

The textural information contained in each window is 
captured with the use of cooccurrence matrices. 
Cooccurrence matrices encode the gray level spatial 
dependence based on the estimation of the 2nd order joint 
conditional probability density function f(i, j, d, a), which 
is computed by counting all pairs of pixels at distance d 
having gray levels i and j at a given direction a. The 
angular displacement of d = 1 is included in the range of 
the a-values {0, π/4, π/2, 3π/4}. 

The proposed approach for the estimation of color 
textural features takes advantage of the covariance 
between statistical measures of the cooccurrence matrix 
corresponding to each color channel of the image. To 
investigate the performance of this approach we have 
considered four Haralick's measures, namely the angular 
second moment (f1), the correlation (f2), the inverse 
difference moment (f3) and the entropy (f4). These four 
features provide high discrimination accuracy which can 
only be marginally increased by adding more features in 
the feature vector [13][14].  

The features f1- f4 are estimated over each sub-
window Bj(k), j ≠ 0, k = 1, 2, … K, of the color channels 
Ci, i = 1, 2, 3 of the image and they are noted as: 

 ,  (4) ( )aF kB
C

j

i

)(

  j ≠ 0,  k = 1, 2, … K, 

where F ∈ { f1, f2, f3, f4 } and a corresponds to the angle 
considered in the estimation of the cooccurrence matrices, 
a ∈{ 0, π/4, π/2, 3π/4 }. We define Color Wavelet 
Covariance of a feature F (CWC or CWCF), F ∈ { f1, f2, 
f3, f4 } at wavelet band Bj(k), j ≠ 0, k = 1, 2, … K, between 
two color channels Cl and Cm as: 
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estimated over the different angles a. For K=1, the 
corresponding feature vectors consist of 72 CWC features 
((3 variances + 3 covariances) x 4 cooccurrence matrices 
x 3 wavelet bands). 

The use of these features can lead to a reduced 
feature space compared to the original feature space 
defined by Eq.(4). 
 

3. SUPPORT VECTOR MACHINES FOR 
PATTERN CLASSIFICATION 

 
Let Φ be a non-linear mapping from the input space 

to the feature space . The SVM 
algorithm is capable of finding a hyperplane defined by 
the equation 

nI ℜ⊆ mF ℜ⊆

 wΦ(x) + b = 0 (6) 

so that the margin of separation is maximized.  It is easy 
to prove [8][9] that for the maximal margin hyperplane, 

  (7) )(
1
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N

i
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=
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where the variables λi are Lagrange multipliers that can 
be estimated by maximizing the quantity 

 ∑∑∑
= ==

−=
N

i
j

N

j
ijiji

N

i
iD xxKyyL

1 11

),(
2
1 λλλ  (8) 

with respect to λi, where the following constraints should 

be satisfied:  and , for i = 1, 2, …, 

N, and a given value c.  is called kernel 

function and it is defined as the inner product  

∑
=

=
N

i
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),( ji xxK

 .  (9) )()(),( jiji xxxxK ΦΦ= Τ

Linear, polynomial, Radial Basis Function (RBF) are the 
most common functions used as SVM kernels. The one-
against-one strategy is used for the classification of 
multiple classes [9]. 
 

4. RESULTS 
 
The aim of the experimentation apposed in this paper is 
the evaluation of the recognition performance of the new 
feature set using SVMs. The color images used were 
digitized at 3x8=24bit and the window size used for 
feature extraction was 32x32 pixels. The windows' 
sliding step was chosen to be one pixel, so as to produce 
detailed output images. Concerning the choice of the 
SVM kernel, preliminary experiments showed that the 
2nd-order polynomial kernel , is 

more suitable for the classification of the CWC features 
than the linear, 3

( ) ( 21, +⋅=Κ jiji xxxx )
rd-order polynomial or RBF kernel, since 

it can achieve high generalization performance at a 
relatively low computational cost. The classification 
performance is estimated in terms of Mean Classification 
Error (MCE %). 

The results are organized in two parts. In the first 
part, standard textures from Vistex database and mosaics 
are used for the evaluation of the performance of the 
CWC features for texture recognition. In the second part, 
an assessment of their performance under varying 
illumination is attempted. 
 
4.1. Texture recognition using Vistex images 
 
The texture recognition performance of the proposed 
methodology was measured using 32 color texture images 
from the Vistex database [10]. The texture images were 

1506



128x128 pixels size and were grouped into two test 
mosaics of 16 images each as illustrated in Fig. 1. The 
mosaics were 512x512 pixels size. 

  
Fig. 1. 16-Texture test mosaics 

For each group, the SVM was trained with the 16 
texture images independently. The trained SVM was used 
to recognize the different textures in the corresponding 
16-texture mosaic images. The same procedure was 
repeated in different color spaces that have been used in 
various texture recognition applications in the literature. 
The MCE achieved in RGB was 17.58±0.85%, in K-L 
(linear approx.) was 14.07±0.77%, in YIQ 15.10±0.84%, 
in YES 15.08±0.62%, in HSV 13.80±1.19%, in HLS 
15.10±1.15% and in L*a*b* 17.24±0.70% [4][15][16]. 
The results are summarized in Fig. 2 and they are 
compared to the results achieved by using the gray-level 
cooccurrence features on the wavelet domain 
(21.39±2.10%).  
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Fig. 2. Classification results in different color spaces. 

According to these results it is obvious that color 
features perform better than grayscale features. The 
lowest MCE was achieved in the K-L and in the HSV 
space. It should be noted that the SVM was not trained 
with the areas between the different textures of the 
texture mosaics. The percentage of these "unknown" to 
the system areas reaches 6.25% of the test images. In the 
less realistic case of using 6% of the test images for 
training, which is commonly used in the literature [17], 
the classification performance increases by 12.22% - 
15.76% depending on the color space used. The images 
illustrated in Fig. 3, validate the fact that the SVM failed 
to recognize the "unknown" areas and prove that the 
classification accuracy of the "known" textures is high.  

  
Fig. 3. Classification results using HSV (left pair) and K-

L (right pair) CWC features. 
 
4.2. Texture recognition under varying illumination 
 
The images used in the experiments for the evaluation of 
the texture recognition performance under varying 
illumination were taken from a database containing 20 
objects acquired in different orientations and views under 
11 different light sources [11]. Out of these objects we 
have selected 4, containing strong textural patterns as 
illustrated in Fig. 4. Each object corresponded to a 
different texture class. The folds of the objects and the 
shades made the recognition task harder but more 
realistic. The images were sized at 128x128 pixels and 
equalized. 

  
Fig.4. Sample images “coffee”, “shirt1”, “shirt2”, 

“shorts”. 
The SVM was trained with 4 images of the objects 

acquired under the same illumination conditions. The rest 
of the images of the objects that were corresponding to 
different illuminations were used for testing. The same 
procedure was repeated for all the 11 different 
illumination conditions and in different color spaces. In 
addition to the color spaces used in the previous 
experiment, we have also included rgb (normalized RGB) 
and l1l2l3 as they are invariant to illumination changes 
[18]. The classification results are summarized in the 
diagram illustrated in Fig.5.  

The CWC features perform equivalently in RGB 
(18.08±2.47%), YES (17.57±6.72%), HSV 
(18.12±1.81%), HLS (17.09±2.30%), rgb (16.26±4.31%) 
and l1l2l3 (16.15±1.91%) color spaces. The performance 
of the gray-level features (32.23±5.93%) was 
significantly inferior to the performance of the CWC 
features. 

0
5

10
15
20
25
30
35
40

Gray RGB K-L YIQ YES HSV HLS L*a*b* rgb l1l2l3

Color Space

M
C

E 
(%

)

 
Fig.5. Classification performance under varying 
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illumination in different color spaces. 

The lowest MCE was achieved in L*a*b* (9.79±1.95%), 
K-L (11.54±2.51%) and YIQ (12.02±5.87%) spaces. The 
variance in the case of K-L and L*a*b* is lower that in the 
case of YIQ. Figure 6, illustrates indicative classification 
results for the “shirt1” image corresponding to different 
illumination conditions. 

Fig.6. Classification results for the “shirt1” image using 
K-L (2rd row). 

 
5. CONCLUSIONS 

 
In this paper we introduced a new set of features for color 
texture representation, named CWC. We attempted to 
evaluate their recognition performance under varying 
illumination using SVMs. Different color spaces were 
considered for the evaluation. The results show that the 
linear K-L transformation of the RGB color space can be 
used effectively for the representation of texture using the 
CWC features even when the illumination varies. K-L 
model consists of statistically uncorrelated axes and 
requires less computational effort than non-linear 
transformations of the RGB. From the experimentation it 
can be concluded that the CWC features in the K-L color 
space lead to high recognition performance and could be 
used in real texture analysis applications involving image 
acquisition under different light sources.  
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