

TABLE OF CONTENTS

PRE-CONFERENCE SCHEDULE	4
TECHNICAL PROGRAM SCHEDULE	6
FLOOR PLAN	9
Invitation from the Chairmen	11
TECHNICAL PROGRAM OVERVIEW	13
ICIP 2004 ORGANISING COMMITTEE	17
TECHNICAL PROGRAM COMMITTEE	19
Sponsors & Exhibitors	26
WELCOME TO SINGAPORE	28
CONFERENCE VENUE	31
CONFERENCE REGISTRATION	33
VISA REQUIREMENTS	35
INTERNET ACCESS	35
HOTEL INFORMATION	36
Social Activities	37
 MEETING ANNOUNCEMENTS	40
FUTURE CONFERENCES	41
TUTORIALS	42
PLENARY SESSIONS	60
SPECIAL SESSIONS	65
 PRESENTATION GUIDELINES	66
TECHNICAL PROGRAM	69
AUTHOR INDEX	220

Tuesday, October 26^{th} , 2004	C-3		Tuesday, October 26^{th} , 2004
ADAPTIVE MOTION ESTIMATION ALGO- NATHM BASED ON EVOLUTION STRATEGIES		TA-P and T	4: Feature Extraction and Analysis: Color Vexture
Hein Mao Zhigang, Harbin Institute of Technology Mi-		Locatio Chair:	Vinod Chandran, Queensland University of Technology
FIRE FRAME INTERPOLATION METHOD FIRE HOLD-TYPE DISPLAYS		TTA	10:10 - 11:30
Lishima, Goh Itoh, Multimedia Laboratory, Corporate Develop Center, Toshiba Corp., Japan		TA- P4.1	MODAL WAVELET PACKET SUBBANDS Roberto Cossu, Ian Jermyn, Josiane Zerubia, INRIA, France
A NOVEL FLATTED HEXAGON SEARCH PAT- TERN FOR FAST BLOCK MOTION ESTIMA- TUN		TA- P4.2	COMPARISON OF LINEAR SPECTRAL RE- CONSTRUCTION METHODS FOR MULTISPEC- TRAL COLOUR IMAGING
Engineering, National Kaohsiung University of Ap- Engineering, Taiwan			David Connah, Jon Hardeberg, Gjøvik University College, Norway; Stephen Westland, Leeds University, England
A TWO STAGE VARIABLE BLOCK SIZE MO- TION SEARCH ALGORITHM FOR H.264 EN- TIDER		TA- P4.3	OBJECT TRACKING BY ADAPTIVE FEATURE EXTRACTION Bohyung Han, Larry Davis, University of Maryland-College
ta areniki Shimizu, Akio Yoneyama, Hiromasa Yanagihara, Azareli Nakajima, <i>KDDI R&D Laboratories Inc., Japan</i>		TA-	Park, USA COLOR TEXTURAL FEATURES UNDER VARY-
FAST FULL SEARCH BLOCK MOTION ESTI- MATION FOR H.264/AVC WITH MULTILEVEL STITCESSIVE ELIMINATION ALGORITHM TODAR Toivonen, Janne Heikkilä, University of Oulu, Fin-		F 4.4	Dimitrios Iakovidis, Univ. of Athens, Greece; Dimitrios Maroulis, Univ. of t Athens, Greece; Stavros Karkanis, Tech- nological Inst. of Lamia, Greece
EXIZY NON-RIGID MOTION ESTIMATION RO- EXIST TO ROTATION		TA- P4.5	ADVANCES IN TEXTURE ANALYSIS: ENERGY DOMINANT COMPONENT & MULTIPLE HY- POTHESIS TESTING Iasonas Kokkinos, Georgios Evangelopoulos, Petros Mara-
Luis Weruaga Pricto, Austrian Academy of Sciences,			gos, National Technical University of Athens, Greece
	E	TA- P4.6	A FAST PROCEDURE FOR THE COMPUTA- TION OF SIMILARITIES BETWEEN GAUSSIAN HMMS
		TA-	MULTISCALE ASYMMETRY SIGNATURES
		P4.7	FOR TEXTURE ANALYSIS Gert Van de Wouwer, Visielab, University of Antwerp, Belgium; Barbara Weyn, Dirk Van Dyck, University of Antwerp, Belgium
			BREAK

134

....

135

Table of Contents

Volume II

Tuesday, October 26th, 2004

SESSION TA-S1: Content-based Analysis of Multi-modal High Dimensional Medical Images

A STATE SPACE APPROACH TO NOISE REDUCTION OF 3D FLUORESCENT MICROSCOPY IMAGES . . 1153 Raimund Ober, Xuming Lai, University of Texas at Dallas, USA; Zhiping Lin, Nanyang Technological University, Singapore; and Sally Ward, University of Texas Southwestern Medical Center, USA

AUTOMATIC EXTRACTION OF SEMANTIC CONCEPTS IN MEDICAL IMAGES	1157
Mira Park and Kotagiri Ramamohanarao, The University of Melbourne, Australia	

SESSION TA-S2: Image Forensics

ON INFORMATION HIDING WITH INCOMPLETE INFORMATION ABOUT STEGANALYSIS	1161
STEGANALYSIS OF QUANTIZATION INDEX MODULATION DATA HIDING	1165
A MODEL FOR IMAGE SPLICING Tian-Tsong Ng and Shih-Fu Chang, Department of Electrical Engineering, Columbia University, New York, USA	1169
A STOCHASTIC QIM ALGORITHM FOR ROBUST, UNDETECTABLE IMAGE WATERMARKING Pierre Moulin and Alexia Briassouli, University of Illinois, USA	1173

SESSION TA-L1: Feature-based Image Segmentation

CORRIDOR SCISSORS: A SEMI-AUTOMATIC SEGMENTATION TOOL EMPLOYING MINIMUM-COST	
CIRCULAR PATHS	1177
Dirk Farin, Technische Universiteit Eindhoven, The Netherlands; Magnus Pfeffer, University Mannheim, Ger-	
many; Peter De With, Technische Universiteit Eindhoven, The Netherlands; and Wolfgang Effelsberg, University	
Mannheim, Germany	

SKCS - SEPARABLE KERNEL FAMILY WITH COMPACT SUPPORT	1181
Ezzedine Ben Braiek, ESSTT, Tunisia; and Mohamed Cheriet, ETS, Canada	

COLOR TEXTURAL FEATURES UNDER VARYING ILLUMINATION1Dimitrios Iakovidis, Univ. of Athens, Greece; Dimitrios Maroulis, Univ. of t Athens, Greece; and Stavros Karkanis,1Technological Inst. of Lamia, Greece1	1505
ADVANCES IN TEXTURE ANALYSIS: ENERGY DOMINANT COMPONENT & MULTIPLE HYPOTHESIS	1509
Iasonas Kokkinos, Georgios Evangelopoulos and Petros Maragos, National Technical University of Athens, Greece	1507
A FAST PROCEDURE FOR THE COMPUTATION OF SIMILARITIES BETWEEN GAUSSIAN HMMS 1 Ling Chen and Hong Man, Stevens Institute of Technology, USA	1513
MULTISCALE ASYMMETRY SIGNATURES FOR TEXTURE ANALYSIS	1517
A NEW SVM KERNEL FOR TEXTURE CLASSIFICATION	1521
A MEASURE FOR SPATIAL DEPENDENCE IN NATURAL STOCHASTIC TEXTURES	1525
SEQUENTIAL UPDATING ALGORITHM FOR EXTRACTING THE BASIS OF THE KARHUNEN-LOEVETRANSFORMATIONYanyun Qu, Department of Computer Science of Xiamen University, China; Nanning Zheng, Zejian Yuan, Institute of Artificial Intelligence and Robotics of Xi'an Jiaotiong University, China; and Cuihua Li, Department of Computer Science of Xiamen University, China	1529
A NEW PALETTE HISTOGRAM SIMILARITY MEASURE FOR MPEG-7 DOMINANT COLOR DESCRIPTOR	1533
TEXTURE SIMILARITY EVALUATION USING ORDINAL CO-OCCURRENCE 1 Mari Partio, Bogdan Cramariuc and Moncef Gabbouj, Tampere University of Technology, Finland	1537
A COMPARISON OF THE OCTAVE-BAND DIRECTIONAL FILTER BANK AND GABOR FILTERS FOR TEXTURE CLASSIFICATION	1541
ROTATION INVARIANT TEXTURE CLASSIFICATION USING DIRECTIONAL FILTER BANK AND SUPPORT VECTOR MACHINE Hong Man, Ling Chen and Rong Duan, Stevens Institute of Technology, USA	1545

SESSION TA-P5: Watermarking III

PREDICTION-ERROR BASED REVERSIBLE WATERMARKING	1549
Diljith Thodi and Jeffrey Rodriguez, The University of Arizona, USA	
AN IMAGE NORMALIZATION BASED WATERMARKING SCHEME ROBUST TO GENERAL AFFINE	
TRANSFORMATION	1553
Hwan Il Kang, Myongji University, South Korea; and Edward Delp, Purdue University, USA	

COLOR TEXTURAL FEATURES UNDER VARYING ILLUMINATION

D.K. Iakovidis⁽¹⁾, D.E. Maroulis⁽¹⁾, S.A. Karkanis⁽²⁾

⁽¹⁾ Real-Time Systems & Image Analysis Group, Dept. of Informatics and Telecommunication, University of Athens, Panepistimiopolis, Illisia, 15784 Athens, Greece (rtsimage@di.uoa.gr)

⁽²⁾ Dept. of Informatics and Computer Technology, Technological Educational Institute of Lamia,

3rd Kilometer, Old National Road, 35100 Lamia, Greece (sk@teilam.gr)

ABSTRACT

In this paper we present a new feature extraction methodology for color texture recognition. It is based on the covariance of 2nd-order statistical features in the wavelet domain of the color channels of the images and it is named as Color Wavelet Covariance (CWC). The experimentation showed that the CWC features could be used effectively for texture representation even when illumination varies. The use of the linear K-L (Karhunen-Loeve) transformation of the RGB color space for the extraction of the CWC features resulted in a performance that was comparable to the one achieved with more non-linear color transformations. complex The recognition accuracy tested with texture mosaics reached an average of 86%. Using images acquired under varying illumination the performance of the CWC features on the K-L space reached an average of 88%.

1. INTRODUCTION

Texture characterizes any visible surface and this is the major reason that texture analysis methodologies are incorporated into the construction of image analysis systems. During the last years an amount of scientific effort has been directed to the use of color in the texture representation approaches. Recent work includes perceptual approaches [1], the use of chromaticity moments [2], and the derivation of textural information from luminance channel along with pure chrominance features, as well as the processing of each color channel separately by applying gray-level texture analysis techniques [3]. Other approaches exploit the interdependence of the existent textural information within the different channels of a color image, usually captured by means of correlation. Van de Wouwer et al [4] achieved high classification rates using correlation signatures estimated from the wavelet coefficients of color images. Paschos [5] proposed a set of discriminative and robust chromatic correlation features using directional histograms. Vandebroucke et al [6] exploited the correlation of 1st order statistical features between the

different color channels for unsupervised soccer image segmentation and Al-Rawi et al [7] proposed Zernike moments of correlation and covariance functions for illumination invariant color texture recognition.

Under a similar framework we propose a new feature extraction methodology named as *Color Wavelet Covariance* (*CWC*) that exploits the covariance of 2nd-order textural measures in the wavelet domain of the color channels of the images. We evaluate the performance of these features for color texture recognition in various color spaces and we investigate their performance under varying illumination. The classification task has been assigned to a Support Vector Machine (SVM) classifier, as SVMs have shown remarkably robust performance, even with sparse and noisy data, and they resist to the overfitting and to the "curse of dimensionality" [8][9].

The rest of this paper is organized in four sections. Section 2, includes the description of the proposed methodology for the extraction of color textural features. A short description of the classification model, with the use of SVMs, follows in section 3. In section 4, we appose the results of the application of the proposed methodology for color texture recognition using images from Vistex database [10] and images of objects acquired in different illumination conditions [11]. The conclusions of this study are summarized in the last section.

2. COLOR WAVELET COVARIANCE FEATURES

In the proposed feature extraction methodology we assume that a color image *I*, is decomposed into three color channels C_i , where i = 1, 2, 3. Each channel is raster scanned with a fixed size sliding square window. On each window a *K*-level 2D-Discrete Wavelet Transform (DWT) is applied. The Daubechies wavelet bases were used due to their orthonormal properties, which are important for the preservation of the textural structure along the different scales of the transform [10]. This transform results in a new representation of the original window, which consists of

$$B = 3K + 1 \tag{1}$$

sub-windows, corresponding to different wavelet bands.

Each band is denoted as $B_j(k)$, where k is the current level of the transform and j = 0, 1, 2, 3 for k = K, or j = 1, 2, 3 for k < K. $B_0(k)$ corresponds to the low frequency band.

The textural information contained in each window is captured with the use of cooccurrence matrices. Cooccurrence matrices encode the gray level spatial dependence based on the estimation of the 2nd order joint conditional probability density function f(i, j, d, a), which is computed by counting all pairs of pixels at distance d having gray levels *i* and *j* at a given direction *a*. The angular displacement of d = 1 is included in the range of the *a*-values $\{0, \pi/4, \pi/2, 3\pi/4\}$.

The proposed approach for the estimation of color textural features takes advantage of the covariance between statistical measures of the cooccurrence matrix corresponding to each color channel of the image. To investigate the performance of this approach we have considered four Haralick's measures, namely the angular second moment (f_1) , the correlation (f_2) , the inverse difference moment (f_3) and the entropy (f_4) . These four features provide high discrimination accuracy which can only be marginally increased by adding more features in the feature vector [13][14].

The features f_1 - f_4 are estimated over each subwindow $B_j(k), j \neq 0, k = 1, 2, ..., K$, of the color channels $C_i, i = 1, 2, 3$ of the image and they are noted as:

$$F_{C_i}^{B_j(k)}(a),$$
 (4)
 $j \neq 0, \ k = 1, 2, ..., K,$

where $F \in \{f_1, f_2, f_3, f_4\}$ and *a* corresponds to the angle considered in the estimation of the cooccurrence matrices, $a \in \{0, \pi/4, \pi/2, 3\pi/4\}$. We define *Color Wavelet Covariance of a feature F* (*CWC or CWC_F*), $F \in \{f_1, f_2, f_3, f_4\}$ at wavelet band $B_j(k), j \neq 0, k = 1, 2, ..., K$, between two color channels C_l and C_m as:

$$CWC^{B_{j}(k)}(C_{l}, C_{m}) = Cov\left(F_{C_{l}}^{B_{j}(k)}, F_{C_{m}}^{B_{j}(k)}\right)$$
 (5)

estimated over the different angles *a*. For K=1, the corresponding feature vectors consist of 72 CWC features ((3 variances + 3 covariances) x 4 cooccurrence matrices x 3 wavelet bands).

The use of these features can lead to a reduced feature space compared to the original feature space defined by Eq.(4).

3. SUPPORT VECTOR MACHINES FOR PATTERN CLASSIFICATION

Let Φ be a non-linear mapping from the input space $I \subseteq \Re^n$ to the feature space $F \subseteq \Re^m$. The SVM algorithm is capable of finding a hyperplane defined by the equation

$$w\Phi(x) + b = 0 \tag{6}$$

so that the *margin of separation* is maximized. It is easy to prove [8][9] that for the *maximal margin* hyperplane,

$$w = \sum_{i=1}^{N} \lambda_i y_i \Phi^{\mathrm{T}}(x_i)$$
⁽⁷⁾

where the variables λ_i are Lagrange multipliers that can be estimated by maximizing the quantity

$$L_{D} = \sum_{i=1}^{N} \lambda_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_{i} \lambda_{j} y_{i} y_{j} K(x_{i}, x_{j})$$
(8)

with respect to λ_i , where the following constraints should be satisfied: $\sum_{i=1}^{N} \lambda_i y_i = 0$ and $0 \le \lambda_i \le c$, for i = 1, 2, ...,

N, and a given value *c*. $K(x_i, x_j)$ is called kernel function and it is defined as the inner product

$$K(x_i, x_j) = \Phi^{\mathrm{T}}(x_i)\Phi(x_j).$$
(9)

Linear, polynomial, Radial Basis Function (RBF) are the most common functions used as SVM kernels. The *one-against-one* strategy is used for the classification of multiple classes [9].

4. RESULTS

The aim of the experimentation apposed in this paper is the evaluation of the recognition performance of the new feature set using SVMs. The color images used were digitized at 3x8=24bit and the window size used for feature extraction was 32x32 pixels. The windows' sliding step was chosen to be one pixel, so as to produce detailed output images. Concerning the choice of the SVM kernel, preliminary experiments showed that the 2nd-order polynomial kernel $K(x_i, x_j) = (x_i \cdot x_j + 1)^2$, is more suitable for the classification of the CWC features than the linear, 3rd-order polynomial or RBF kernel, since it can achieve high generalization performance at a relatively low computational cost. The classification performance is estimated in terms of Mean Classification Error (MCE %).

The results are organized in two parts. In the first part, standard textures from Vistex database and mosaics are used for the evaluation of the performance of the CWC features for texture recognition. In the second part, an assessment of their performance under varying illumination is attempted.

4.1. Texture recognition using Vistex images

The texture recognition performance of the proposed methodology was measured using 32 color texture images from the Vistex database [10]. The texture images were

128x128 pixels size and were grouped into two test mosaics of 16 images each as illustrated in Fig. 1. The mosaics were 512x512 pixels size.

Fig. 1. 16-Texture test mosaics

For each group, the SVM was trained with the 16 texture images independently. The trained SVM was used to recognize the different textures in the corresponding 16-texture mosaic images. The same procedure was repeated in different color spaces that have been used in various texture recognition applications in the literature. The MCE achieved in RGB was 17.58±0.85%, in K-L (linear approx.) was 14.07±0.77%, in YIQ 15.10±0.84%, in YES 15.08±0.62%, in HSV 13.80±1.19%, in HLS $15.10\pm1.15\%$ and in $L^*a^*b^*$ 17.24 $\pm0.70\%$ [4][15][16]. The results are summarized in Fig. 2 and they are compared to the results achieved by using the gray-level cooccurrence features on the wavelet domain (21.39±2.10%).

Fig. 2. Classification results in different color spaces.

According to these results it is obvious that color features perform better than grayscale features. The lowest MCE was achieved in the K-L and in the HSV space. It should be noted that the SVM was not trained with the areas between the different textures of the texture mosaics. The percentage of these "unknown" to the system areas reaches 6.25% of the test images. In the less realistic case of using 6% of the test images for training, which is commonly used in the literature [17], the classification performance increases by 12.22% - 15.76% depending on the color space used. The images illustrated in Fig. 3, validate the fact that the SVM failed to recognize the "unknown" areas and prove that the classification accuracy of the "known" textures is high.

L (right pair) CWC features.

4.2. Texture recognition under varying illumination

The images used in the experiments for the evaluation of the texture recognition performance under varying illumination were taken from a database containing 20 objects acquired in different orientations and views under 11 different light sources [11]. Out of these objects we have selected 4, containing strong textural patterns as illustrated in Fig. 4. Each object corresponded to a different texture class. The folds of the objects and the shades made the recognition task harder but more realistic. The images were sized at 128x128 pixels and equalized.

Fig.4. Sample images "coffee", "shirt1", "shirt2", "shorts".

The SVM was trained with 4 images of the objects acquired under the same illumination conditions. The rest of the images of the objects that were corresponding to different illuminations were used for testing. The same procedure was repeated for all the 11 different illumination conditions and in different color spaces. In addition to the color spaces used in the previous experiment, we have also included rgb (normalized RGB) and $l_1l_2l_3$ as they are invariant to illumination changes [18]. The classification results are summarized in the diagram illustrated in Fig.5.

The CWC features perform equivalently in RGB $(18.08\pm2.47\%)$, YES $(17.57\pm6.72\%)$, HSV $(18.12\pm1.81\%)$, HLS $(17.09\pm2.30\%)$, rgb $(16.26\pm4.31\%)$ and *l11213* $(16.15\pm1.91\%)$ color spaces. The performance of the gray-level features $(32.23\pm5.93\%)$ was significantly inferior to the performance of the CWC features.

Fig.5. Classification performance under varying

illumination in different color spaces.

The lowest MCE was achieved in $L^*a^*b^*$ (9.79±1.95%), K-L (11.54±2.51%) and YIQ (12.02±5.87%) spaces. The variance in the case of K-L and $L^*a^*b^*$ is lower that in the case of YIQ. Figure 6, illustrates indicative classification results for the "shirt1" image corresponding to different illumination conditions.

Fig.6. Classification results for the "shirt1" image using K-L (2rd row).

5. CONCLUSIONS

In this paper we introduced a new set of features for color texture representation, named CWC. We attempted to evaluate their recognition performance under varying illumination using SVMs. Different color spaces were considered for the evaluation. The results show that the linear K-L transformation of the RGB color space can be used effectively for the representation of texture using the CWC features even when the illumination varies. K-L model consists of statistically uncorrelated axes and requires less computational effort than non-linear transformations of the RGB. From the experimentation it can be concluded that the CWC features in the K-L color space lead to high recognition performance and could be used in real texture analysis applications involving image acquisition under different light sources.

7. REFERENCES

[1] M. Mirmehdi and M. Petrou, "Segmentation of Color Textures," *IEEE Trans. Pattern Analysis and Machine Intelligence*, vol. 22, no. 2, pp. 142-159, 2000.

[2] G. Paschos, "Fast Color Texture Recognition Using Chromaticity Moments," *Pattern Recognition Letters*, vol. 21, pp. 847-841, 2001.

[3] A. Drimbarean, and P.F. Whelan, "Experiments in Colour Texture Analysis," *Pattern Recognition Letters*, vol. 22, pp. 1161-1167, 2001.

[4] G. Van de Wouwer, P. Scheunders, S. Livens, and D. Van Dyck, "Wavelet Correlation Signatures for Color Texture Characterization," *Pattern Recognition*, vol. 32, pp. 443-451, 1999.

[5] G. Paschos, "Chromatic Correlation Features for Texture Recognition," *Pattern Recognition Letters*, vol. 19, pp. 643-650, 1998.

[6] N. Vandenbroucke, L. Macaire, and J.-G. Postaire, "Unsupervised Color Texture Feature Extraction and Selection for Soccer Image Segmentation," in *Proc. IEEE ICIP*, Vancouver, Canada, vol. 2, pp. 800-803, 2000.

[7] M.Al-Rawi, and Y. Jie, "Illumination Invariant Recognition of Color Texture Using Correlation and Covariance Functions," in *Proc. EMMCVPR 2001*, LNCS 2134, pp. 216-231, 2001.

[8] V. Vapnik, *The Nature of Statistical Learning Theory*, Springer-Verlag, 1995.

[9] C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Kluwer Academic Publishers, Boston, 1998.

[10] Vistex, Color Image Database. http://www-hite.media.mit.edu/vismod/imagery/VisionTexture. MIT Media Lab, 2000.

[11] K. Barnard, L. Martin, B. Funt, and A. Coath, "A Data Set for Color Research," *Color Research and Application*, vol. 27, no. 3, pp. 147-151, 2002.

[12] Y. Meyer, *Wavelets: Algorithms and Applications*, SIAM, Philadelphia, 1993.

[13] R.M. Haralick, "Texture Measures for Carpet Wear Assessment," *IEEE Trans. Pattern Analysis and Machine Intelligence*, vol. 10, no. 1, pp. 92-104, 1988.

[14] S.A Karkanis, G.D Magoulas, D.K Iakovidis, D.A Karras, and D.E Maroulis, "Evaluation of Textural Feature Extraction Schemes for Neural Network-based Interpretation of Regions in Medical Images," in *Proc. ICIP 2001*, Thessaloniki, Greece, pp. 281-284, 2001.

[15] G. Wyszecki, and W.S. Styles, *Color Science: Concepts and Methods, Quantitative Data and Formulae*, John Wiley & Sons, New York, 1982.

[16] Y.I. Ohta, T. Kanade, and T. Sakai, "Color Information for Region Segmentation," in *Proc. CGIP*, *1980*, vol. 13, pp. 222-241.

[17] F. Farrokhnia, Multi-channel filtering techniques for texture segmentation and surface quality inspection. PhD thesis, Michigan State Univ., 1990.

[18] T. Gevers and A.W.M. Smeulders, "Color-based object recognition," *Pattern Recognition*, vol. 32, pp. 453-464, 1999.