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Sens. Spec. Prec.
Haar (33) 76.92 9631 73.17 94.07 87.50 94.66 76.56 93.47
Haar (99) 7179 9799 8235 94.96 8571 92.88 70.59 91.69

Sens.

D4 (33 Mirror) 6842 97.66 78.79 9436 9474 89.29 64.29 90.21

D4 (99 Mirror) 71.05 9732 77.14 9436 7544 9357 70.49 90.50

C6 (33 Mirror) 57.89 9431 5641 9021 6491 92.86 64.91 88.13

C6 (99 Mirror)  73.68 93.98 6087 91.69 6342 92.14 63.93 88.13
Table 4: Classification performance for liver and kidney

Sens. Prec.  Acc.
Haar (33) 50.00 98.75 66.67 96.44
Haar (99) 50.00 95.64 3636 93.47
D4 (33 Mirror)  37.50 99.07 66.67 96.14
D4 (99 Mirror) 25.00 98.13 40.00 94.66
C6 (33 Mirror) 3125 9626 29.41 93.18
€6 (99 Mirror) 3125 96.57 3125 93.47 _
Table 5: Classification performance for spleen
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Abstract

occurrence in clinical practice and it is assoczatec;’
In this paper we propose a nove
n ultrasound (US) images. The

Nodular thyroid disease is a frequent .
with increased risk of thyroid cancer and hyperﬁmcnon. .
wothod for computer-aided detection of thyroid nodulels i Ot tss it ccount
wrcposed method is based on a level-set image segmentalion approac ’ o waine
[th;‘fﬁZomogeneitJ/ of the US images. This novel method was experimenta dy @:;l . gchlfeve‘s
US images acquired from 35 patients. The results show that the proposed m

i 1 ster convergence
more accurate delineation of the thyroid nodules in the US images and fa g

than other relevant methods.

1. Introduction

Nodular thyroid disease is extremely common and of ¢
malignancy and hyperfunction. TheA risk of developing a pa'lpa
ranges between 5 and 10%, whll_e. 50% of people w1t]f:i !
experienced physicians have additional nodules detected whe
ultrasonography [1]. . . .

Thyroid ultrasonography is a non-invasive .dlag
information on the structure and the character]s.tlc_s o nodu
short acquisition time, absence of ionizing radiations and .senslt?u
and number of thyroid nodules. However ultrasqund (US) 1magts{ cd N dditionally. image
and speckle noise, which could make th'e dlagllogtlc task har ea'method for compnter.
interpretation, as performed by the experts, is subje.ctlve. The_refolre_, e inherent  noise
aided thyroid nodule detection should take into . conmdqatlothese mages. based on
characteristics of the US images and be capable. of mterpretmg CEoation of {he ol
explicit image features. Such a method could contnbv?lt'e to the objectilica
diagnosis and consequently to a reduction Qf false dec1s'10ns" .

Active contour models first appeared in the late elghtx_es [2]\ B s towards the
approach in image segmentation is based on the deform‘atlon of 1n1’t1ti0[l s realized by the
boundaries of the image regions to be segmented. 1he deform_a o natied ot the
minimization of an energy functional desigr}ed so'that its -local ml{lS o0 ot two components,
target boundaries. The energy functional in its basic form 1s comprl " dependent and forces
the first controls the smoothness of the contour and the second is 1mags bonndary based and
the contour towards the boundary. This active contour approach 1 1 (e oo of noisy
utilizes local filtering techniques such as edge detection operatogi-e o d should
images, such as US images, many unwant.ed edges may appear . Gaussiar; e Sach
consequently be smoothed by the application of a strong' 1sotropi}eref0re bontour leakage

filtering introduces the risk of smoothing the target bou.rxdar{es and trac 31 Moreover, the
effects may appear resulting in diminution of the delineation accuracy 12J.

oncern because of the rlsk of
ble thyroid nodule in a lifetime
solitary nodules detected by
n examined further by

nostic test, which provid;s immcdlatf:
f thyroid nodules. It comb1‘n§s low co'st,
ty in ascertaining the size
ontain echo perturbations

he classic active contour
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parametric formulation of the classic active contour approach, docs not allow for changes in
the topology of the evolving contour, such as splitting and merging. Therefore,
complementary procedures have to be considered to enable adaptability to the required
topological changes [4].

Active contours have been employed in various medical US image analysis applications
either in parametric or in level set form. Parametric active contour applications include the
detection of hepatic tumors [5], the detection of lumen and media-adventitia border in
sequential intravascular ultrasound (IVUS) frames [6] and the evaluation of margins for
malignant breast tumor excision through mammotomes [7]. Level set active contour
applications include the automatic quantification of the ventricular function [8] and the
segmentation of prostate [9] and cardiac US images [10]. To the best of our knowledge there
has not been proposed any information technology approach to thyroid nodule detection in
US images.

Active Contours Without Edges (ACWE) [3] has been proposed as a noise-robust image
segmentation method. It is capable of detecting objects even with smooth boundaries due to
its region-based approach in which the functional is a combination of domain and boundary
integrals. Moreover, following the level set formulation, originally proposed in [11], it is
capable of detecting two or more objects in the image as it provides adaptability to
topological changes e.g. contour splitting. A limitation of this model is that it presumes
homogeneity for object and background areas. This presumption is violated in thyroid US
images due to the intensity inhomogeneity of the thyroid tissue texture and the presence of
calcifications appearing in the form of bright spots. A modification that takes into account
image inhomogeneity could lead to more accurate object detection.

In this paper, we propose a novel level set active contour model, for thyroid nodule
detection in US images that takes into account image inhomogeneity by utilizing a variable
background approach for the enhancement of the nodule detection accuracy while achieving
faster contour convergence.

The rest of this paper is organized in three sections. Section 2 includes a brief description
of the Active Contour Without Edges model and the presentation of the proposed Variable
Background Active Contour model. The experimental results from the application of the
proposed model on thyroid ultrasound images are apposed in Section 3. Finally, Section 4
summatizes the conclusions of this study.

2. Variable Background Active Contour Model

2.1. Active Contour Without Edges

The ACWE model as posed in [3] has the form of a minimization problem: Let Q be
a bounded open subset of R* and 9Q its boundary. We seek for inf F(c*,¢™,C),

F(c",¢™,Cy= u- Length(C)

+ A [luy e p) =" [ dxdy o
inside(C)

+ 4 JlugGey)—c [ dvdy
outside(C)

where u,:Q — R is the input image, C(s):[0,1]] - R* a piecewise parameterized curve,
¢* and ¢~ are unknown constants representing the average value of u, inside and

outside the curve and parameters 4 >0 and 4',1 >0 are weights for the regularizing

a special case of the
has been proved in
As in the minimum

This formulation describes

= s, respectively. leser)
ternn and the fiting, terms, 1es| o ainimizers

ition problem, for which the

i ta.
i S 131 for more general da ni
O e a:odrr?sp[onc]ls to the “equilibrium” of the regularizing and

top. It should be noted that, as implied by (}),
. f approximately piecewise

nrnimal part
|12 for s on
py problem, the minimizer
. he contour to 8 ‘
he image is formed by two regions ©

cner
iting terms that force t
(his model assumes that t

conslant intensities.
In the level set method [11], CcQ

function ¢:Q — R, such that
C={(x,»)eQ:4(x,7)=0}, o
inside(C)={(x,¥)€ G:p(x, ) >0},
outside(C) = {(x, )€ ¢(x, ) < 0}

is represented by the zero level set of a Lipschitz

1si i hich are
Using the one dimensional Dirac measure 5 and the Heaviside function H, w
sin -
defined respectively by
d 1, ifz=20 3)
5(Z)=EZ~H(Z) H(z)= 0. if <0

* - can be expressed as
where z€ R, the constants ¢ and ¢~ ca p

g (v, VH (9, )y “
+ _Q o
<O T Th e ey

[ito (o, )1 = HG, )by “

. 0
O H Gy

Q

i ciated
imizi with respect to ¢, the associa
e Tor pose, slightly regularized

By keeping ¢’ and ¢ fixed, and min
larized Heaviside function

i is deduced. For this pur
ler-Langrange equation fqr ¢ 1s A - th
l\?::Jr:irons o% W and & are considered. The applied C”(€2) regu

H,is derived from

1 2 zZ (6)
H_= 3 a+ ;arctan(g))

ta function &, is derived from 5, =dH [dz-

whereas the corresponding regularized deltO netion 0 e e mations - fe

imations converge

As £ — 0, both approxima conv : .
algorithm to compute 2 global minimizer, as descrlbe?q in 1[3‘3

gPara\meterizing the descent direction by an artificial tim

o, x,¥) (with ¢(0,x,») = &, (x, ) defining the initial contour) 1s
7x’ 27

¢ 120, the equation in

9 _ di Y—“i)—,l*(uo—c*)z+/1‘(u(,—6‘)2]=0
> 5 ()u W(\V P

N
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where ¢e (0,00), (x, y)e L.

In a practical implementation, a quantitative criterion should force the algorithm o
stop when the changes of ¢ fall bellow a threshold for a fixed number of iterations.
When this criterion is satisfied it is assumed that the minimizer is found and the
corresponding equilibrium has been reached.

2.2. Variable Background Active Contour

The proposed model, named Variable Background Active Contour (VBAC) follows Eq.
(1) where ¢~ is derived from Eq. (8):

[0 o )0~ H @, p)) 3, (30, )iy

c(g)=2 —_— (8)
[~ H @G ) E (0, (5, DA,y

and the difference term A(x, y) is given by:
ACy) = H(g(x,9) - a) = H(p(x,5)), a>0 ®

Note that fr () restricts the integrals in a region of interest, which for the purposes of our
study coincides with the thyroid giand. The constant a, determines the background area
considered. The introduction of A(x,y) rteduces the effects of background area

H(p(x,y)—a) = H(g(x, y)=1 for the inhomogeneous areas in the image. Therefore,
A(x, y) # 0 is satisfied in a limited image subset, which excludes inhomogeneous areas.

3. Results

Thyroid ultrasound examinations were performed on 35 patents using a digital ultrasound
system HDI 3000 ATL with a 5-12 MHz linear transducer. The acquired digital images had a
resolution of 256x256 pixels and 256 gray-level depth. We developed a special purpose
software suite in Microsoft Visual C-— for the implementation of the ACWE and the VBAC
models. Both of these models were applied for thyroid nodule detection in the US images
using A" =5, 1" =5, #=650 and a=10"". For the purposes of our study we adopted the

and especially those that are suspect of malignancy [14].

Three expert radiologists manually delineated the thyroid nodules to enable comparisons
with the active contour models, For each US image, “ground truth” delineation is obtained,
following the rule that each pixel is considered as part of the nodule when it is included in at
least two out of three experts’” delincations [15]. As a measure of similarity between a
delineated area 4 and the “ground truth” delineated area G, we have considered the overlap
value [16]:

i ANG
AuUG

(10)
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i TA4% 1 srms of the Coefficient of Variation
11 fer observer varation was estimated 7.4% i terms (?1 Itht ) M ;
1eoatde ' A ‘ u )
Ve LOO (5 / my), where o; and wy; are the standard deviation and the mean value of
At , i)

e i d the ACWE model
| ‘l;(‘I\lclv:xi)lrinlncnts showed that the proposed VBAC model an

: =i —1i = 6.232.3%. Both

mverged Lo overlap values with an average difference qf 41 = lységr]ag%‘;hiues obtained were

‘ll‘lndﬁ‘lﬂbl'cﬂllllcd in a maximum overlap 01“;"9.1"/0.2&13v %lnﬁgtllso respectively, whereas the
S he : :

Lo 2.1% for the VBAC and t - Wi VBAC modetl
{}\ ) N )ﬁiﬂn?mea‘;\ overlap values were 88.8% and 82.6%. Morflovel K}l:};l:f: eACWE model,
u)llL‘,.»l)( . eice was reached in 10% less algorithm iterations t a;l twexecUtion p
(1 1; »L,lQIil;/trfnslate d in approximately 8.5% speedup in terms of abso utemdiOlogist e VBAC
) ”IL"] re 1 illustrates an example US image delineated by an e";%egc o ed the hypo

BT i be observed that the surr :
‘ odels respectively. It can be >s delineation. The
mld t'h‘erﬁ)ngeEnI;;re accurately than the ACWE compargd to the elzi;psetg ; . Ei:n Fig. 2. This
:Ytli;)ll;p values achieved per iteration for the imagetOf Fl}%i'gilc?reoi/erlap value (94.6%) in
o a :

g s that the VBAC model converges ; ximum overlap
“EL‘:SXSESSZISY 10° less iterations than the ACWE model which leads to a ma
app

value of 80.9%.

©
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4. Conclusion

We have proposed a Variable Background Active Contour model and applied it for the
detection of thyroid nodules in ultrasound images. In thig model, the background is a variable
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Abstract

In this paper, we extend the application of four texture feature extraction methods
proposed for the detection of colorectal lesions, into the discrimination of gastric polyps in
endoscopic video. Support Vector Machines have been utilized for the texture classification
task. The polyp discrimination performance of the surveyed schemes is compared by means of
Receiver Operating Characteristics (ROC). The results advocate the feasibility of a
computer-based system for polyp detection in video gastroscopy that exploits the textural
characteristics of the gastric mucosa in conjunction with its color appearance.

1. Introduction

Gastric cancer is the second most common cancer-related cause of death in the world [1].
Its symptoms are rarely alarming until late stages, and as a result they are usually ignored by
the patients. Furthermore, over 40% of gastric malignancies appear as polyps. However, over
the past 20 years, there has been a significant increase in survival rates, which is mainly due
to the earlier detection of cancer precursors through screening and thorough symptom
investigation. Standard video gastroscopy remains the most efficient minimally invasive
procedure to detect even small-size lesions that allows biopsy and in many cases polyp
resection [1]. A reliable system that would be capable of supporting the detection of gastric
polyps could increase the endoscopist’s ability to accurately locate them, and could contribute
to the reduction of the duration of the endoscopic procedure, which discomforts the patients.
Moreover, such a system would minimize the expert’s subjectivity introduced in the
evaluation of the clinical characteristics of the examined tissue.

Computer-based approaches that have been proposed in the literature for the discrimination
of abnormal conditions of the gastric tract include the employment of edge detection methods
for the detection of gastric ulcers [2] and the diagnosis of gastric carcinoma via classification
of epidemiological data [3]. To the best of our knowledge, there has been no previous study
regarding computer-based discrimination of gastric polyps in endoscopic video yet.

In this work, we investigate the appropriateness of four texture feature extraction methods
proposed in the recent literature for the discrimination of colorectal lesions in endoscopic
images or video, for the discrimination of gastric polyps. Namely, the surveyed schemes are
the Color Wavelet Covariance [4], the Texture Spectrum Histogram [5][6], the Texture
Spectrum and Color Histogram Statistics [7], and the Local Binary Pattern [8]. The
classification task is assigned to Support Vector Machines (SVMs), as these have proven
robust, resistant to the “curse of dimensionality” and suitable for texture classification [9].

The rest of this paper is organized in three sections. Section 2 describes the feature
extraction methods used. In section 3, we appose the experimental results on the performance
of the feature extraction methods for the discrimination of polyps from normal. Finally, the
conclusions of this study are summarized in Section 4.
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2. Feature Extraction Methods

2.1. Texture Spectrum Histogram

The Texture Spectrum (TS) method has been proposed by Wang and He [10] and it is
based on texture units which characterize the local texture information for a given pixel and
its neighborhood. This scheme analyzes an image in the following way:

a) A 3x3 neighborhood of pixels is thresholded into three levels (0, 1 and 2) using the value
gf the center pixel. Representing the intensity value of the central pixel as ¥, and the
intensity value of each neighboring pixel as V;, the texture unit is defined as: TU = {E,,
E,,..., Eg}, where

0 i V<V,

E =31 if V,=V, 1)

20 V>,

for i=1,2, ..., 8. Each element of the 7U has one of three possible values; therefore the
combination of all the eight elements results in 3*= 6561 possible TU's in total.

b) The values £; in the thresholded neighborhood are multiplied by certain weights assigned
to the corresponding pixels and are summed to obtain a single texture unit number Ny
for the corresponding pattern, using the following equation:

E,x3" @)

c) The above procedure is applied to all 3x3 neighborhoods, thus forming the texture
spectrum distribution.

2.2. Texture Spectrum and Color Histogram Statistics

The Texture Spectrum and Color Histogram Statistics (TSCHS) method has been proposed
by Tjoa and Krishnan [7] and utilizes statistical measures in order to provide an abstract
representation of the texture spectrum histogram, applied on various image components C,
such as intensity, hue and saturation. Once the histogram has been created, six statistical
measures are utilized for its approximation, namely energy, mean, standard deviation, skew,
kurtosis and entropy. ‘

In addition, the output vector is complemented by separate color features, as
gastrointestinal tumors exhibit exploitable color information [11]. For each image component
C, certain lower L, and upper threshold L, values of the histogram of the regions of interest
are selected. The color features S are defined as follows:

B = LZ Hist (i) LZE Hist,.(i) (3)

=L

where Hist(7) is the histogram amplitude at level i of a particular color component C, and L
is the total number of levels considered.

2.3. Local Binary Pattern Histogram

The ‘Local Binary Pattern (LBP) method has been proposed by Ojala et al [12] as a two-level
version of the texture spectrum method which uses two levels for the representation of local
texture patterns. The LBP values are calculated as follows:

LR AR AN @)
Tl vz,

8 i N
LBP=Y E;x2" )

=l

The feature vectors are formed by the histogram bins of the LBP values distribution in an
image region. The LBP method utilizes 2% = 256 possible texture units instead of the 6561
units utilized in the TS method, leading to a more efficient representation of texture.

2.4. Color Wavelet Covariance

The Color Wavelet Covariance (CWC) features have originally been proposed as
covariance estimates of the 2™ order statistical information inherent in the Discrete Wavelet
Transform (DWT) of the color components of an image [4]. In this paper, instead of the
standard DWT we employ the Discrete Wavelet Frame Transform (DWFT) which tends to
decrease the variability of the estimated texture features and it results in a texture
characterization invariant under translation [13].

The estimation of the CWC features requires that K-level DWFT is applied to each color
component of the image. The 2™ order statistical information of the wavelet coefficients is
captured by means of co-occurrence matrices. Let MY (@) be a co-occurrence matrix
estimated over a detail image Bi(k),j=1,2,3,k=1,2, ... K level of DWFT, of the color
component C;, i = 1, 2, 3, for a direction g€ {0, n/4, /2, 3m/4}. Four representative statistical
features are estimated over each detail image, namely the angular second moment, the
correlation, the inverse difference moment and the entropy. The Color Wavelet Covariance of
a Feature F, between the detail images Bj(k) of the color components Cand C,,[=1,2,3,m
=1, 2, 3 is estimated by the following equation:

B;(k)

CWCZJ,(C? = COV(FC‘;’"“, Pl )’ I<m (6)

3. Results

The experimental evaluation of the four feature extraction methods presented in this paper
aims to determine the most suitable feature set for the discrimination of gastric polyps from
normal tissues in gastroscopic videos. Only adenomatous polyps have been considered in our
study as the probability of them evolving into malignant tumors is higher than that of other
polyps [14]. The average size of the polyps examined was 14mm. The videos were acquired
with a standard gastroscope and were digitized at a 320x240-pixel resolution, which is
supported by most conventional video frame grabbing devices. From each frame a 128x128-
pixel region of interest was considered so as to capture only the useful part (dotted line in Fig.
1) of each gastroscopic video frame. We have focused on the use of low rather than high
resolution videos, aiming to investigate the feasibility of a low-cost computer-based medical
system, which combines both short processing times and bandwidth requirements, and thus it
is potentially applicable in telemedicine applications.

Expert gastroscopists selected 1000 representative video frames, containing mostly close-
up views of polyps and normal tissues, from which a total of 4000 non-overlapping sub-
images of 32x32-pixel size was extracted. In the 128x128-pixel irages it was quite difficult
to find regions larger than 32x32-pixels which contain only abnormal tissues. Moreover, as
most of the feature extraction methods used are based on statistics, the larger the population
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of pixels in the sub-image, the most informative the features are expected {o be. So, hall ol
the sub-images were acquired from image regions of verificd normal tissues while the rest
half were acquired from image regions of verified polyp tissues. Morcover, sub-images [tom
dark image regions or regions of strong light reflections have not been included in the dataset

because the textural characteristics of the corresponding tissues are either extenuated or
distorted.

%‘ Bﬁ'fl:
it

Figure 1. A raw video frame as acquired from the gastroscope

An example gastroscopic video frame sequence is presented in Fig. 2. The first three
images (a-c) illustrate a benign-appearing malignant gastric polyp captured in a close-up
view, whereas the larger part of the fourth image (d) illustrates normal gastric mucosa. The
square regions marked on the video frames indicate sample sub-images that correspond to
verified abnormal (a-¢) and normal gastric tissues (d).

The TS and LBP feature extraction methods were applied only on the intensity image
component. The TSCHS and the CWC schemes were applied on color spaces that have led to

optimum performance in earlier studies [4][7]. Namely, these color spaces are the HSI and the
1, LI; respectively.

(a) (b) (c) (d)

Figure 2. Gastroscopic video frame sequence. The squares indicate sample sub-images
corresponding to abnormal (a-c) or normal (d) tissues

Sample classification was realized using the Gaussian kernel-SVM. The Gaussian kernel

usually has better boundary response as it allows for extrapolation, and most high-
dimensional data sets can be approximated by Gaussian-like distributions similar to those
used by RBF networks [15]. In accordance with the recommendation in reference [16] 10-fold
cross validation was performed for the production of Receiver Operating Characteristics
(ROCs) and average Areas Under Characteristics (AUCs) were obtained. The resulting ROCs
are illustrated in Fig. 3. The estimated average AUC for each feature extraction method is

75.242.6% for the TS, 80.612.5% for the LBP, 87.5+2.1% for the TSCHS and 88.6+2.3% for
the CWC method.
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Figure 3. ROC curves obtained using various feature extraction methods

4. Conclusions

We have considered texture as a primary discriminative feature.of gastrig polyps. Fogr‘
texture features that have been proposed in the literature for the dlscrlmlnatlon of colonic
lesions were utilized for the discrimination of gastric polyps, and their performance WflS
compared by means of ROC analysis. The results show that. the development of ‘a_cofmpglt)clre—
based medical system using texture features for the detection of gas}nc polyps 1s eas‘x .
Moreover, color information, encoded either jointly or separately in the feature; vectolrs;
enhances gastric polyp discrimination. The performances of the spatial and of the wavele
domain color texture features employed are comparable.

5. Acknowledgments

This research was funded by the Operational Program for Education and Vocationa}
Training (EPEAEK II) under the framework of the project “Pythagoras - Support S/
University Research Groups” co-funded by 75% from the European Social Fund and by 25%
from national funds.

6. References

[11 A.M. Desai, M. Preck, P. G Nightingale, and J. W. Fielding, “Improving Outcomes in Gastric Cancer over
20 Years”, Gastric Cancer, Springer Verlang Tokyo Inc, 2004, pp. 196-203. i
i ij akai i ija, “A Digital Imaging Processing Method for
H. Kodama, F. Yano, S. P. Ninomija, Y. Sakai, and S. Nlpomua, ! . : oth
. Gastr?c Endoscope Picture”, in Proc. 21st Annual Hawaian International Confercnce on System Sciences,
1988, vol. 4, pp. 277-282. A » ' '
[3] H.A. Giivenir, N. Emeksiz, N. Ikizler, and N. Ormeci, “Diagnosis of Gastric Carcinoma by Classification on
Feature Projections,” Artificial Intelligence in Medicine, 2004, vol 31, pp. 231-240. -
i 1di i d M. Tzivras, “Computer Aided Tumor
S. A. Karkanis, D. K. lakovidis, D. E. Maroulis, D. A. Karras, an” 3 r Tum
“l Detection in Endoscopic Video using Color Wavelet Features”, IEEE Transactions on Information
Technology in Biomedicine, vol. 7, 2003, pp. 141-152.



HE0

(5]

(6]

(7
(8]
K|
(10]

{1
[2]

[13)
[14]
[15]

(16}

S. Karkanis, K. Galousi, and D. Maroulis, “Classification of cndoscopic imagies based on texture spectum”,
in Proc. Workshop on Machine Leamning in Medical Applications, Advance Course in Artificial Intelligence,
1999, pp. 63-69.

V. Kodogiannis, and H.S. Chowdrey, “Multi network classification scheme for computer-aided diagnosis in
clinical endoscopy”, in Proc. MEDSIP 2004 - Int. Conference on Advances in Medical Signal and
Information Processing, Malta, 2004, pp. 262-267.

M. P. Tjoa, and S. M. Krishnan, “Feature Extraction for the Analysis of Colon Status from the Endoscopic
Images”, Biomedical Engineering Online, 2003, pp. 2-9.

M. M. Zheng, S. M. Krishnan, and M. P. Tjoa, “A fusion-based clinical decision support for disease
diagnosis from endoscopic images”, Computers in Biology and Medicine, 2005, vol. 35, pp. 259-274.

S. Li, I. T. Kwok, H. Zhu, and Y. Wang, “Texture Classification using the Support Vector Machines”,
Pattem Recognition, vol. 36, pp. 2883-2893, 2003.

L. Wang, and D.C. He, “Texture Classification Using Texture Spectrum”, Pattern Recognition, vol 23, 1990,
pp. 905-910.

H. Kato, and J. P. Barron, “Electronic Videoendoscopy”, Japan: Harwood Academic Publisher, 1993.

T. Ojala, and M. Pietikiinen, “Unsupervised Texture Segmentation using Feature Distributions”, Pattern
Recognition, 1998, vol. 32, pp. 477-486.

M. Unser, “Texture Classification and Segmentation Using Wavelet Frames”, IEEE Trans. on Image
Processing, vol. 4, no. 11, 1995,

S. H. Itzkowitz, Y. S. Kim, “Sleisinger & Fordtran's Gastrointestinal and Liver Disease”, 6th ed., vol. 2,
Philadelphia, WB Saunders Company, 1998.

C. Burges, “A Tutorial on Support Vector Machines for Pattern Recognition”, Kluwer Academic Publishers
1998.

A. P. Bradley, “The Use of The Area Under the ROC Curve in the Evaluation of Machine Learning
Algorithms”, Pattern Recognition, 1997, vol. 30, no. 7, pp. 1145-1159.



Dube, Koo 232

El-Darzi, E. .....

Eleonori, R. c.oovecevevevivicececenreceenn 3
Ellisman, M......c.ocoovveceiveniicieen 543
Escalona, O. ...o.ovovvivceriieive 309
Exarchos, T...c..cceveiiveeieenvcrecreenas 35
Faddy, M.........

Fasquel, J.-B.ocoooriiriin
Fensli, Rucovviveir e 407
Fernandez, J. ....cooooovviiiiiiieee 297
Finance, B. ..ccoevovonrenrieercevnes 220
Finkelstein, A

Finlay, D. oo 303
Fiore, S..ooceveiereenscvecvecnn 555
Flvnn, Moo 179
Fotiadis, D...ocvcoovviiieieveerececeeiienens 35
FOx, N oo 570
Frisoni, G. ooovveecierecececeseeseeenn 61
Frize, Ma.o oo e 103
FU, Ao o 329
Furst, J. oo, 265, 593
Galushka, M. ..o 353
Ganta, S
Gavaghan, D. ..........
Geddes, J. ..o
GEE, T
Giannopoulos, S....ocoovvvinninn.
Giardina, M. ...oocoevveececcee 347

Glatard, T. ..oooveveieeeececerraceea 537
Goldberg, S. ..o 128
GOMEZ, D oo 47
GOMEZ, P

Gonzalez-Mora, J........
Gonzalez-Vélez, H
Gonzélez-Vélez, V

Gorunescu, F. .o, 461
Gorunescu, M......cooovever e, 461
GOTUNESCU, S, oo 401
Groen, Do 511

600

Graybowskn, S. 21

Grzymala-Busse, J. ...

Guarracino, M. .....cooovvvevecieieen, 529

Gundersen, T.....ooooveevvevcenierin, 407
Gunnarson, E

Gupman, A

Guzzi, P..........

Hajnal, J. ooovieceer e 570
Harmer, Tooooviiiiceceiev 523
Harper, Ro.coovviiricineas 347, 506
Harris, M. oo 297
Hayes, M. ............ ... 437

" Hegarty, F. oo 165

Hemler, P. oo 259
Hericko, M. ..o 91
Hernandez, S.......cocovvivvvevicniie 47
Herndndez, V. ..ot 567
Heywood, M. ...occccoermmmncirinirnn. 97
Hill, Deooeeeee e, 570
HIppe, Z. oot 371
Hollywood, D.....coorererercrrreevene 76
Hooke, J. .o, 395
Hossein-Zadeh, G.-A. ...cooocoevevievin. 27
Houston, G. .....

Hu, Hooce e
Huo, Yot
Takovidis, D...oocovvvivenieeieean,
Tkejiaku, Coovreece e
Jithesh, P.........

Johnston, J....oooovvvviiieeeeee
Johnstone, E. .....ooovevvvviniiienne 570
Jordan, R..ccc.oooovcvieriiieeeeie 395
Jovicich, Joovoiieierec 288
Jung, B. ........... 203, 226
Kane, B. .o 76
Karkanis, S.......ooeeiiirivenn 271,575
Kasturi, J. oo 153
Keane, T. oo 377

Kelly, N BRA
keoph, B B 320,341
KEET, Pl 64
Khan, N. oo
Knoll, A
KOKOL, P coveeerresnmerrisansinsenssssnnees 123
KONISIOHS, S.rveverereeeersmrerernmimssnssnsenses 35
Kononenko, L. e 443
Kontos, D veevveeeecerermiseniesseississansees 282
Korotkov, K. e 431,437
Krzmaric, M. eemssmmensmensens 123
Krol, Moo msseseses 128
Kumir, Nooooeeeenismmeesesonssssssees 341
KWOngE, Novorcimrisererrnaasenessomssnsss 147
Laccett, G. ooorerveermmiinesenersinnesasenes 529
Lafizza, Cooveneceveereemresrisesmssmnsssasees 109
Lawrie, S oorereeceriemremsaerenserssrseeess 570
Laxminarayan, P. . cocoroemens 323
Lazaro, C
Lee, Do
Lee, Koo rinsecnimiinisnnnns
Lemon, M
Liebman, M. ..o 395
LTy A eorereeeeriiesmsrmessssessnssmss s 543
| 5710 § (R PP
LAm, T oot
LA, Tl
LIOYA, Sevvriemmmsaseserisseismsnsmisesseeness
LONA, V. covoeceerermmiimsmesisesrisesnecoss
Lonardi, S..vovvieecerermrmiememeusissensseees
Lonergan, Moo
| 071 V- 00 OISR
LU, WorFec e
Luis-Garcia, M
Lundervold, A. oo 277
LUZ, S ooverereemconinrmmnnssnsssassisssensisssss 76
MACEK, J. oovreerecerrenmsmssesecmsesssnseses 315
Machens, Ho-G. oovorveriemneniismsisesenes 21
Maciel, Aot 159
Maeda, S. oo 517

Magiil, P 109
Mansour, E

Y ET T R S
Markhar, C. ceoeervenmnrsesienensenenss 165
Maroulis, D. ..........
Marshall, A. coovorrrrerrirrnes 491, 497
Martin, F. e 47
Martinez, R ooovevmiemensinsses e 41
MaSKETY, S ceevrrrernmeimmarnsismessinsssees 395
Mathews, A. v 425
Mayer, Hu oo 55
MAzZa, T cooereecaemamnremsams s 549
MCAIBSIEL, G overrermirrensiisiessissaines 485
McAULFTE, M. o 259
McClean, S..ooveeereriemmemesenees 467, 485
McCreedy, E. oo 259
McCullagh, P. cvecveee 347
McCurley, Mo 523
MCGIEnary, S.coeemsresssssmsessses 587
MCINEIMEY, T wovvnrieerirmmmemseissssenees 377
MeIntosh, A. e 570
MclIntyre, A
MCKEE, Sevoeoereecrinisrmsmemmmmassrsssoaseoss
McTear, M. cooeiinreninienns ... 506
Medjdoub, S. e 220
Megalooikonomou, V. ...ccc.ccwwwweeesees 282
Mell0, P.ooeroeiereeiismmmecsesissnssenseenses 503
Menezes, G. covermevvsrsemreereeessisssessensnns 76
Metrino, A 561
METIRO, C. coveerremeeresssrirssssssemeessess 47
Mertik, M. covoeorereeesensiemmerssie s 134
MELZIET, D oo emessmnssssnecsnes 479
Meyer, C. coverrveemmssseresssisessees 297
Mezghanti, M. ..oereensiennsssses 191
Micetic-Turk, D. o 123
Millard, P. coooevereineienecnienees 467,473
111 TS T IR 288
MITEO, M. oo rnoeemnnsssesssenensss 555
Molté, G 567

Momoh, K. oot 437

601



