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Abstract: In this work we compare two spatial and two wavelet-domain feature extraction 
methods that have been proposed in the recent literature for color-texture classification. The 
corresponding color-texture features, namely the Opponent-Color Local Binary Pattern 
distributions, the Chromaticity Moments, the Wavelet Correlation Signatures and the Color 
Wavelet Covariance features, are extracted in RGB, I1I2I3, HSV and CIE-Lab color spaces. 
The classification task is realized by Support Vector Machines. Experiments are performed 
on two standard datasets comprising of 54 and 68 textures from the Vistex and the Outex 
databases respectively. The results show that in most cases color enhances texture 
classification. Both spatial and wavelet features can lead to an accurate representation of 
color-textures. The appropriateness of a color-texture feature extraction method has to be 
determined by considering the trade-off between the accuracy and the feature space 
dimensionality needs, as these are imposed by a prospective application. 
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1 INTRODUCTION 

Color texture analysis is a major field of development for 
new methods concerning various vision applications. 

Although texture perception is not directly associated with 
color perception, a variety of color-texture feature extraction 
methods have been proposed in the literature. Recent 
approaches to color-texture analysis focus on the 
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exploitation of both intra- and inter-channel information, 
such as the estimation of chromatic correlation features 
(Paschos, 1998), wavelet correlation signatures (WCS) (Van 
De Wouwer et al., 1999), features quantifying the 
correlation of Gabor features between the image color 
channels (Jain and Healey, 1998), correlation estimates of 
Zernike moments between different image color channels 
(Wang and Healey, 1998; Al-Rawi and Yang, 2001) 
distributions of Opponent Color Local Binary Pattern 
(OCLBP) features (Mäenpää, 2003) and  Color Wavelet 
Covariance (CWC) features (Iakovidis et al., 2004). 

The effectiveness of the wavelet transform for texture 
representation, has been pointed out in many studies 
(Iakovidis et al., 2004; Unser and Eden, 1989; Randen and 
Husøy, 1999). Nevertheless, many researchers still persist in 
supporting the use of spatial-domain features (Paschos, 
1998; Mäenpää, 2003; Paschos, 2000). The issue of which 
approach is the best for the classification of color textures 
has not been thoroughly investigated in the literature. 
Comparative studies have focused on issues such as the 
enhancement introduced by the inclusion of color in texture 
analysis (Drimbarean and Whelan, 2001), the effect of using 
perceptually uniform color spaces for color texture 
representation (Paschos, 2001) and whether color and 
texture information should be considered jointly or 
separately (Mäenpää and Pietikäinen, 2004). 

In this paper, we compare recent spatial and wavelet-
domain color-texture feature extraction methods under the 
experimental framework described in (Ojala et al., 2002), 
using both Vistex and Outex textures. These include the 
extraction of OC-LBP, CM, WCS and CWC features. The 
classification task has been assigned to Support Vector 
Machines (SVM) as these have proved to be robust, 
resistant to the “curse of dimensionality”. Moreover, SVMs 
are less empirical as regards the determination of their 
parameters compared to standard neural networks and they 
have proved to provide better generalization performance 
than other traditional classifiers in many applications, 
including the classification of textures (Li et al., 2003).  

The rest of this paper is organized in three sections. 
Section 2 includes a brief description of the feature 
extraction methods compared. The experimental framework 
and results are presented in Section 3. Finally, Section 4 
summarizes the conclusions of this study. 

2 FEATURE EXTRACTION METHODS 

2.1 Opponent-Color Local Binary Pattern distributions 

The Local Binary Pattern (LBP) method has been proposed 
by Ojala and Pietikainen (1998), as a two-level version of 
the texture spectrum method which uses three levels (0, 1 
and 2) for the representation of local texture patterns. The 
local binary pattern of a 3×3-pixel neighborhood is 
estimated as follows: 
1. The original 3×3 neighborhood is thresholded to two 

levels (0 and 1) using the value of the center pixel. 

2. The values of the pixels in the thresholded 
neighborhood are multiplied by certain weights 
assigned to the corresponding pixels. 

3. The values of the eight pixels are summed to obtain a 
single value for the corresponding pattern. 

The LBP feature vectors are formed by the histogram bins 
of the LBP values distribution in an image region. LBP is 
usually combined with a contrast measure which is defined 
as the difference between the average intensity of “1” pixels 
and the average intensity of “0” pixels (LBP/C features). 

An extension of the LBP method for color images, named 
OC-LBP, has been proposed by Mäenpää (2003) and 
involves the application of the LBP operator on each color 
channel separately. In addition, each pair of color channels 
is used in collecting opponent color patterns so that the 
center pixel for a neighborhood and the neighborhood itself 
are taken from different color channels. In total, 3 intra-
channel LBP histograms (one histogram for each color 
channel Ci, i = 1, 2, 3) and 6 inter-channel histograms are 
extracted and concatenated into a single distribution. 

2.2 Chromaticity moments 

The Chromaticity Moments (CMs) have been proposed by 
Paschos (2000) as a simple and computationally low-cost 
method for color texture classification. Let X, Y, Z 
quantities represent the XYZ color space channels. The 
chromaticity trace T(x, y) and its distribution D(x, y) for an 
image of Lx, Ly dimensions are defined as follows: 
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where 0 ≤ i ≤ Lx, 0 ≤ j ≤ LY, k = # of pixels producing (x, y). 
The functions T(x, y) and D(x, y) are characterized by a set 
of moments, which form the feature vector and are defined 
as follows: 
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where p=m+l=1, 2,… represents their order and XS, YS are 
the discrete dimensions of the x-y space. The discrete XS×YS 
space is produced by rescaling and discretization: x = 
⎣100x⎦, y = ⎣100y⎦. 

2.3. Wavelet Energy features 

The Discrete Wavelet Transform (DWT) of a gray-level 
image is realized by convolving the image with a low pass 
filter L and a high pass filter H, the output of which is then 
sub-sampled dyadically. This procedure produces a low-
resolution image B0(k) and detail images Bj(k), j = 1, 2, 3 at 
scale k. The repetition of this filtering procedure for k = 1, 
2,…K  results in a multi-scale representation of the image. 
By omitting the sub-sampling operation, a variation of the 
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DWT, the Discrete Wavelet Frame Transform (DWFT) is 
produced. DWFT is a redundant representation that leads to 
a texture description tolerant to translation (Unser and Eden, 
1989). The Wavelet Energy (WE) features are estimated by 
summing the squares of all bj,k coefficients of the output 
images Bj(k), j = 0, 1, 2, 3:  

  
(5)
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2.4. Wavelet Correlation Signatures 

The WCS have been proposed by Van De Wouwer et al. 
(1999) as extensions of the DWFT energy features that take 
into account the correlation of the wavelet coefficients 
between the image color channels. They are derived from 
the following equation: 
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where  and  are the coefficients of the detail images 
B
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j(k), j = 1, 2, 3, k = 1, 2, … K of the color channels Cl and 
Cm, l = 1, 2, 3, m = 1, 2, 3 respectively. 

2.5. Color Wavelet Covariance 

The Color Wavelet Covariance (CWC) features are 
covariance estimates of the 2nd order statistical information 
inherent in the DWFT of the color channels of an image 
(Iakovidis et al., 2004). The image color channels are 
transformed to the wavelet domain by the DWFT. The 2nd-
order statistical information of the wavelet coefficients is 
captured by means of co-occurrence matrices. Co-
occurrence matrices encode the gray-level spatial 
dependence based on the estimation of the 2nd-order joint 
conditional probability density function f(i, j, d, α), which is 
computed by counting all pairs of pixels at distance d 
having gray-levels i and j at a given direction α. The 
angular displacement of d = 1 is included in the range of the 
α-values {0, π/4, π/2, 3π/4}. 

Let MCi

B j (k )(a) be a cooccurrence matrix estimated over a 
detail image Bj(k), j = 1, 2, 3, k = 1, 2, … K, of the color 
channel Ci, i = 1, 2, 3, for a direction α∈{0, π/4, π/2, 3π/4}. 
Four representative statistical features are estimated over 
each detail image Bj(k), j = 1, 2, 3, k = 1, 2, … K, namely 
the angular second moment (f1), the correlation (f2), the 
inverse difference moment (f3) and the entropy (f4). The 
resulting set of features that correspond to the different 
color channels Ci is , where i = 1, 2, 3, j = 1, 2, 3, k 
= 1, 2, … K, F ∈ {f

( )aF kB
C

j

i

)(

1, f2, f3, f4} and α∈{0, π/4, π/2, 3π/4}. 
The Color Wavelet Covariance of a Feature F (CWC), 

between the detail images Bj(k), j = 1, 2, 3, k = 1, 2, … K of 
color channels Cl and Cm, l = 1, 2, 3, m = 1, 2, 3 is estimated 
as follows: 
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3 RESULTS 

The experimental evaluation of the four color-texture 
feature extraction methods was performed by using two 
standard publicly available color-texture datasets from the 
Outex database. The comparative study was based on the 
framework proposed in (Ojala et al., 2002).  

The first dataset originates from the VisTex database 
(Contrib_TC_00006) and consists of 54 texture images of 
512×512-pixel dimensions. Each image was split into 16 
non-overlapping 128×128 sub-images, forming a total of 
864 samples. Half of these samples were used for training 
and the rest were used for testing the classification 
performance of an SVM classifier. The Radial Basis 
Function (RBF) was employed as an SVM kernel. The RBF 
kernel usually performs better than other non-linear kernels, 
such as the polynomial or the sigmoid, because it usually 
has a better boundary response as it allows for extrapolation, 
and most high-dimensional data sets can be approximated 
by Gaussian-like distributions similar to those used by RBF 
networks. Moreover it involves only one parameter, which 
makes it easier to search for its optimal parameters in 
practice.  

The second dataset originates from the Outex database 
(Contrib_TC_00013) and it consists of 68 textures of 
746×438-pixel dimensions. From each texture 20, 128×128 
sub-images have been acquired. A total of 1360 samples 
was produced and split into a balanced training-testing 
dataset (Ojala et al., 2002). 

The OC-LBP distribution has not been quantized, as the 
SVMs are tolerant to the input space dimensionality 
(Vapnik, 1998). The CMs were computed up to the 3rd 
order because only a marginal improvement was observed 
by the incorporation of higher-order moments. As regards 
the wavelet-based methods, a 4-level DWFT was applied 
for the extraction of WCS and WE features, whereas a 1-
level DWFT was applied for CWC feature extraction. In the 
latter case the use of more wavelet decomposition levels 
would disproportionally increase the computational 
complexity and lead to only a marginal increase in 
classification accuracy. Four representative color spaces, 
namely the RGB, the I1I2I3, the HSV and the CIE-Lab have 
been considered for color-texture feature extraction. 
Chromaticity moments have only been extracted from RGB 
images as they inherently involve the RGB to XYZ color 
transformation (Paschos, 2000). 

The classification results obtained for each dataset are 
illustrated in Fig. 1 and 2 respectively. The three leftmost 
columns of these figures present the performance of the 
corresponding gray-level features (LBP, LBP/C, WE).  

All methods produce higher errors for the second dataset, 
as it is less diverse (Ojala et al., 2002). This also justifies the 
fact that the Vistex textures were classified almost perfectly 
even with the simple gray-level LBP/C features, resulting in 
only 0.7% classification error. Figure 2 shows that in most 
cases color-texture features perform better than gray-level 
features. Actually, this is not true only for the CMs, which 
are outperformed by all other features. However, one could 
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argue that it might be preferable to extract 13 gray-level 
wavelet energies than 72 wavelet-domain color-texture 
features (Fig. 3), as the latter provide slightly better 
performance than the former for the classification of the 
Outex textures. This cannot be generalized as for the Vistex 
textures the contribution of color significantly enhances the 
performance of the wavelet features.  
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Figure 1 Classification errors obtained for the Vistex textures 
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Figure 2   Classification errors obtained for the Outex textures 

Comparing the performance of the spatial OC-LBP and 
OC-LBP/C features with the performance of the wavelet 
color-texture features for both datasets, it could be 
concluded that the first lead to comparable or improved 
color texture classification accuracy regardless of the color 
space employed. This improvement comes with a 
disproportional increase of the dimensionality (Fig. 3). 
Moreover, the contrast feature marginally enhances the 
accuracy while by doubling the dimension of the OC-LBP 
feature vector.    

Different color spaces seem to affect differently the spatial 
and the wavelet-domain color-texture feature extraction 

approaches. More specifically, the OC-LBP features work 
well for both RGB and HSV spaces, while the wavelet 
features are positively affected by the I1I2I3 color space. The 
two wavelet-based approaches result in comparable 
classification performance. 
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Figure 3   Number of features feeding the SVMs for the various 
feature extraction methods compared 

4 CONCLUSION 

We attempted a comparative evaluation of spatial and 
wavelet-domain color-texture features in different color 
spaces. The results show that color-texture features could 
enhance texture classification, but there are cases for which 
gray-level features could work as well. A major conclusion 
of this study is that the appropriateness of a color-texture 
feature extraction method has to be determined by 
considering the tradeoff between the accuracy and the 
feature space dimensionality needs, as these are imposed by 
a prospective application. Moreover, the choice of the color 
space may affect the color texture classification 
performance in some degree. 
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