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Abstract Medical doctors are typically required to segment medical images by

means of computational tools, which suffer from parameters that are empirically

selected through a cumbersome and time-consuming process. This chapter presents

a framework for automated parameterization of region-based active contour regu-

larization and data fidelity terms, which aims to relieve medical doctors from this

process, as well as to enhance objectivity and reproducibility. Leaned on an

observed isomorphism between the eigenvalues of structure tensors and active

contour parameters, the presented framework automatically adjusts active contour

parameters so as to reflect the orientation coherence in edge regions by means of the

“orientation entropy.” To this end, the active contour is repelled from randomly

oriented edge regions and is navigated towards structured ones, accelerating contour

convergence. Experiments are conducted on abdominal imaging domains, which

include colon and lung images. The experimental evaluation demonstrates that the

presented framework is capable of speeding up contour convergence, whereas it

achieves high-quality segmentation results, albeit in an unsupervised fashion.

Introduction

Medical image segmentation is an essential instrument in computer-aided

diagnosis, being potentially crucial for localization of pathologies, study of

anatomical structures, computer-integrated surgery, and treatment planning.

In particular, abdominal image segmentation allows medical doctors (MDs) to

investigate abdominal organs, as visualized by noninvasive imaging modalities.

As part of their clinical diagnosis, MDs are typically required to examine and
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interpret abdominal images obtained by CT scans, in order to extract vital informa-

tion on abdominal organs, which is associated with their anatomy and pathology.

Although such images may contain detailed information, they are often plagued

by noise, artifacts, as well as heterogeneity, which yield to inhomogeneous

background.

Medical image segmentation has to be a robust and reproducible process without

human intervention, so as to substantially support diagnosis and clinical evaluation.

However, most segmentation methods are highly parametric, and human interven-

tion is often inevitable. In this regard, automatic medical image segmentation

techniques are in demand, so as to ease MDs’ workload and bolster the objectivity

of the segmentation results.

Region-based active contour models are widely applied for medical image

segmentation due to their inherent noise-filtering mechanism and their topological

adaptability. Moreover, they are robust to weak edges and intensity inhomogeneity

[1–4]. Researchers have developed various region-based active contour variations

for abdominal image segmentation. Dhalila et al. [5] propose a semiautomatic active

contour variation for the segmentation of the abdominal region of the human body.

In the first phase, user intervention is a prerequisite for manual segmentation of a

certain number of slices, whereas in the second phase, segmentation is automatic.

Jiang et al. [6] propose an approach based on active contour for segmentation of the

liver region in abdominal CT images. The active contour model is combined with

threshold and morphology-based techniques in order to extract the initial contour

and segment the liver slice by slice. Plajer et al. [7] present an active contour

algorithm for lung tumor segmentation in 3D-CT image data. The algorithm is

based on a mixed internal–external force as well as on a cluster function.

The development of such powerful computational tools contributes to the early

diagnosis of the pathology in abdominal organs. However, the vast majority of

these tools are dominated by parameters, and although these parameters have a

major impact on the segmentation quality, they are empirically determined through

the tedious and time-consuming process of trial and error. Parameters are often

selected on the basis of a limited amount of experimental results and the visual

impression of the domain user, whereas they may be valid for a specific dataset.

To this end, the objectivity and reproducibility of the segmentation results are

highly questioned. Furthermore, empirical parameterization presumes certain

technical knowledge by the end user with respect to the algorithm’s intrinsic

mechanisms. Nevertheless, this is not the case in the context of medical imaging

where the end user is usually a MD.

Previous Work

Several region-based active contour variations have been developed in order to

tackle with empirical parameterization. Ma and Yu [8] attempt to balance region-

based forces by means of mathematical morphology without separately adjusting
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each individual parameter. McIntosh and Hamarneh [9] adapt regularization

weights across a set of images. Although one weight value may be optimal for

some regions in an image, it may not be optimal for all regions. Erdem and Tari [10]

and Kokkinos et al. [11] focus on edge consistency and texture cues by utilizing

data-driven local cues. However, certain technical knowledge by the domain user is

still required. Pluemptiwiriyaweg et al. [12] and Tsai et al. [13] dynamically update

active contour parameters during contour evolution. Nonetheless, possible errone-

ous behavior of the contour in the early stages of evolution, with effects on

convergence, has not been considered. Furthermore, parameters are not spatially

adaptive, failing to capture local image content. Keuper et al. [14] and Liu et al. [15]

propose a method for dynamic adjustment of active contour parameters, applicable

on the detection of cell nuclei and lip boundaries, respectively. Both methods

require a priori knowledge considering the shape of the target region. Iakovidis

et al. [16] and Hsu et al. [17] introduce a framework for optimization of active

contour parameters based on genetic algorithms. However, these heuristic

approaches converge slowly in locally optimal solutions. Allili et al. [18] present

an approach for estimating hyper-parameters capable of balancing the contribution

of boundary and region-based terms. In their approach, empirical parameter tuning

is still involved. Yushkevich et al. [19] develop an application for level-set seg-

mentation of anatomical structures. Although their GUI is friendly to non-expert

users, parameter settings are still empirically determined. Dong et al. [20] present

an algorithm to capture brain aneurysms from the vascular tree, by varying the

regularization term based on the surface curvature of a pre-segmented vessel.

However, the regularization weight does not rely on image content. On the con-

trary, it depends on the shape of the target region, thus limiting the applicability of

the method on different target shapes.

This chapter presents a framework for automated parameterization of

region-based active contours, which is applicable on medical image segmentation.

The presented framework is inspired by the observation of an isomorphism between

the eigenvalues of structure tensors and the active contour regularization and data

fidelity parameters. The latter are capable of describing the orientation coherence of

edge regions similarly to the former by means of the measure called orientation

entropy (OE). This measure obtains low values in structured regions, which contain

edges with low orientation variability, and high values in unstructured regions,

which contain edges of multiple orientations. Accordingly, OE is capable to adjust

forces driving the contour away from unstructured edge regions and guide it

towards more structured ones, which are naturally associated with the boundaries

of medical objects. Hence, iterations dedicated to false local minima are bypassed,

speeding up contour convergence.

The presented framework aims to:

(a) Relieve MDs from the cumbersome and time-consuming process of empirical

parameterization

(b) Cope well with the large variability of the shape of target regions in abdominal

images
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(c) Remain insensitive to noise, artifacts, and heterogeneity

(d) Provide objectivity and reproducibility

Parameter-Adjustment Framework

The presented parameter-adjustment framework exploits the attractive properties

of structure tensor eigenvalues.

Structure Tensors

Structure tensors [21] have been extensively utilized in image analysis for various

tasks such as anisotropic filtering [22] and motion detection [23].

In Weickert’s diffusion model [24], the structure tensor D is a symmetric,

semi-positive 2 � 2 matrix (also called “second-moment matrix”), capable of

describing the orientation coherence of an edge region and is defined as

D ¼ v1 v2ð Þ λ1 0

0 λ2

� �
v1 v2ð ÞT ¼ dx dyð Þ Ixx Ixy

Iyx Iyy

� �
dx dyð ÞT (1)

where I is the input image, v1, v2 are orthonormal eigenvectors, and λ1, λ2 are the
corresponding eigenvalues given by

λ1,2 ¼ 1

2
Ixx þ Iyy �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ixx � Iyy
� �2 þ 4I2xy

q� �
(2)

where the + sign belongs to λ1. The eigenvectors and eigenvalues of the structure

tensor reflect the local orientation of edge regions. The eigenvectors form the

orthogonal basis so that the variance of the projection on one of the tensor’s

axes is maximal and the projection on one of the remaining axes is minimal [25].

The eigenvalues describe the orientation coherence along the corresponding

eigenvectors. It is worth to be noted that λ1 is the principal eigenvalue and is

longitudinal with respect to the principal axis of the tensor ellipsoid, whereas

λ2 is the minor eigenvalue and is vertical with respect to the same principal axis.

Figure 1 depicts an elliptical representation of a 2D structure tensor.

Providing that an image region contains either edges of approximately the same

orientation, or edges of multiple orientations, it can be identified by means of a

structure tensor as a structured or unstructured edge region, respectively. The

boundaries of medical objects are naturally associated with structured edge regions,

whereas unstructured edge regions are associated with noise, artifacts, and/or

background clutter. In this light, structure tensors are capable of providing maps

of target and nontarget edge regions in the context of a medical imaging application.
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Region-Based Active Contours

The energy functional of the region-based active contours that is minimized can be

written as follows:

Etotal ¼ wreg � Ereg þ wdf � Edf (3)

where Ereg and Edf are the regularization and data fidelity energy terms,

respectively, whereas wreg and wdf are the corresponding weighting parameters.

Energy terms are scalar functions, which most often discard any information

associated with the orientation coherence of edge regions. However, forces guiding

contour evolution are vectors which are affected by the orientation coherence

of edges.

Regularization forces are tangent with respect to the principal axis of the

contour, whereas data fidelity forces are vertical, attracting the contour towards

target edges. Providing that the contour is initialized as an ellipsoid, the regulariza-

tion weight wreg is longitudinal with respect to the principal axis of the contour,

whereas the data fidelity weight wdf is vertical with respect to the same principal

axis. Figure 2 depicts an elliptical representation of an active contour.

It can be noted that the regularization weight wreg corresponds to the same

direction as the principal eigenvalue λ1, whereas the data fidelity weight wdf

corresponds to the same direction as the minor eigenvalue λ2. This isomorphism

associates the regularization and data fidelity parameters with the eigenvalues of the

structure tensor.

Fig. 1 Elliptical

representation of a 2D

structure tensor

Fig. 2 Elliptical

representation of active

contour
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Orientation Estimation

Inspired by the aforementioned observation, regularization and data fidelity

parameters of region-based active contours are automated in order to reflect the

orientation coherence of edge regions, in a similar fashion to Weickert’s diffusion

model [24]. The orientation coherence is estimated by means of the orientation

entropy (OE). The latter is calculated on directional subbands in each scale of the

contourlet transform (CTr) [26], which, apart from intensity, also represents tex-

tural information. This approach provides an inherent filtering mechanism, capable

of filtering out randomly oriented edges associated with noise, artifacts, and/or

background clutter. Moreover, CTr is directly implemented in the discrete domain,

as opposed to similar transforms, such as curvelets [27].

The Contourlet Transform

CTr is an anisotropic directional image representation scheme, which effectively

quantifies diffusion over contour segments with varying elongated shapes and

directions. Aiming at a sparse image representation, it employs a double iterated

filter bank, which captures point discontinuities by means of the Laplacian pyramid

(LP) and obtains linear structures by linking these discontinuities with a directional

filter bank (DFB). The final result is an image expansion that uses basic contour

segments. Figure 3 illustrates a CTr iterated filter bank.

The downsampled low-pass and band-pass versions of the image contain lower

and higher frequencies, respectively. It is evident that the band-pass image contains

detailed information of point discontinuities which are associated with target edges.

Furthermore, DFB is implemented by an l-level binary tree which leads to 2l

Fig. 3 CTr iterated filter bank. LP provides a downsampled low-pass version and a band-pass

version of the image. Consequently, a DFB is applied to each band-pass image
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subbands. In the first stage, a two-channel quincunx filter bank [28] with fan filters

divides the 2D spectrum into vertical and horizontal directions.

In the second stage, a shearing operator reorders the samples. As a result,

different directional frequencies are captured at each decomposition level. The

number of iterations depends mainly on the size of the input image. The total

number of directional subbands Ktotal is calculated as

Ktotal ¼
XJ
j¼1

Kj (4)

where Kj is a subband DFB applied at the jth level (j ¼ 1, 2, . . ., J).
Figure 4 depicts the CTr filter bank applied on a sample grid of a lung CT scan,

decomposed to the finest and second finest scales which are partitioned into four

directional subbands. Each q � q image grid is fed into the CTr filter bank through

an iterative procedure. This grid must be appropriately selected in order to preserve

the orientation of the main structures of the target region. The band-pass directional

subbands represent the local image structure. It should be mentioned that the

presented framework is not confined in using CTr and could also embed alternative

multi-scale or multi-directional approaches for image representation.

In the context of the presented framework, OE is calculated for each subband

image Ijk as follows:

OEjk ¼ �
XNjk

n¼1

XMjk

m¼1

pjk m; nð Þ � logpjk m; nð Þ (5)

pjk m; nð Þ ¼
��Ijk m; nð Þ��2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNjk

n¼1

XMjk

m¼1

Ijk m; nð Þ� 	2
vuut

(6)

Fig. 4 CTr filter bank on a sample grid of a lung CT scan decomposed to two levels of LP and four

band-pass directional subbands
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where OEjk is the OE of the subband image Ijk in the kth direction and the jth
level of decomposition,Mjk is the row size, andNjk is the column size of the subband

image. OE obtains high and low values in cases of unstructured, nontarget and

structured, target edge regions, respectively. Figure 5a depicts a schematic repre-

sentation of several elliptical structure tensors consisting of single and multiple

orientations, whereas Fig. 5b depicts the OE behavior on each structure tensor

of Fig. 5a.

Automated Parameter Adjustment

Regularization and data fidelity parameters are automatically adjusted according to

the following equations:

wauto
reg / 1=wdfð Þ � N �M, wauto

df ¼ argIjkmax OEjk Ijk
� �� �

(7)

The core idea is to guide the active contour towards structured, target edge

regions in the early stages of evolution by appropriately amplifying data fidelity

forces in randomly oriented, high-entropy regions. As a result the contour will be

repelled and iterations dedicated to erroneous local minima will be bypassed,

speeding up contour convergence towards target edges. Equation (7) is an interpre-

tation of orientation entropy values adaptive to the orientation of data fidelity

forces. Apart from separately adjusting each parameter, the presented framework

also achieves a balanced trade-off between regularization and data fidelity

parameters. It should also be noticed that the automated parameterization is spa-

tially adaptive, so as to reflect local variations over the image.

Figure 6 illustrates the improvement in contour evolution achieved by the

presented framework as compared to the typical contour evolution obtained by

empirical parameterization. Figure 6a depicts a synthetic image containing a target

Fig. 5 Schematic representation of (a) elliptical structure tensors and (b) OE behavior on each

structure tensor
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region over an inhomogeneous background, resembling a typical medical image

case, whereas Fig. 6b depicts a sketch of orientation variability of the synthetic

image. Red arrows correspond to structured, target edge regions, whereas black

ones indicate unstructured, nontarget ones.

In the case of empirical parameterization, the contour will be trapped in false

local minima associated with background clutter in the early stages of evolution

(Fig. 6c). Since region-based forces (short white arrows) are uniformly weighted

irrespectively of OE, the contour will be kept away from target edge regions for

more iterations (Fig. 6d).

In the case of automated parameterization, OE is considered. For as long

as the contour lies in unstructured edge regions associated with background

clutter, OE obtains high values and the data fidelity parameter is increased. Thus,

region-based forces (long white arrows) are appropriately amplified, repelling the

contour away from such regions and navigating it towards more structured ones

(Fig. 6e). Once the contour approximates the vicinity of structured edge regions,

OE obtains low values and the data fidelity parameter is decreased. Hence, region-

based forces (short white arrows) are appropriately reduced in order to facilitate

convergence (Fig. 6f). To this end, contour convergence is achieved in less

iterations.

Fig. 6 Contour evolution of the presented framework vs. empirical parameterization, (a) syn-

thetic image, (b) sketch of orientation variability, (c, d) evolution of empirical parameterization,

and (e, f) evolution of the presented framework
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Results

The presented framework is embedded into the Chan–Vese model [29] by replacing

the optimal fixed parameters with the automatically adjusted parameters, in order to

evaluate the segmentation performance of the automated vs. the empirically fine-

tuned version. The Chan–Vese model determines the level set evolution by solving

the following equation:

∂ϕ
∂t

¼ wfixed
reg � δ ϕ x; yð Þð Þ � div ∇ϕ

∇ϕj j
� �

� wfixed
df I x; yð Þ � c1ð Þ2

þ wfixed
df I x; yð Þ � c2ð Þ2 (8)

where ϕ is the level set function, I the observed image, c1, c2 the average intensities

inside and outside of the contour, respectively, wfixed
reg the fixed regularization

parameter, and wfixed
df the fixed data fidelity parameter. For the empirical case, the

optimal parameters are set according to the original paper [29]. For the presented

framework, the regularization and data fidelity parameters are automatically calcu-

lated according to (7).

Experiments are conducted on three datasets consisting of abdominal imaging

modalities such as colon and lung images. Additional experiments are conducted on

one dataset containing mammographic images in order to evaluate the presented

framework on a different imaging modality comprising abnormalities of various

sizes and shapes. All imaging modalities were investigated by MD experts who

provided ground truth images.

The first dataset consists of 32 endoscopy frame images containing polyps

provided by the Gastroenterology Section, Department of Pathophysiology, Medi-

cal School, University of Athens, Greece, and partially by the Section for Minimal

Invasive Surgery, University of Tübingen, Germany. The endoscopic data was

acquired from sixty-six different patients with an Olympus CF-100 HL endoscope.

All frame images consist of small-size adenomatous polyps which are not easily

detectable and are more likely to become malignant.

The second dataset consists of 30 axial CT scans of the lung parenchyma

obtained by the lung image dataset consortium image collection (LIDC-IDRI)

[30]. The aim of segmentation is to separate the lung parenchyma from the

surrounding anatomy, which is typically impeded by airways or other “airway-

like” structures in the right and left lung. The segmentation result is used for the

computation of emphysema measures.

The third dataset consists of 26 CT scans of the thorax obtained by the NSCLC

Radiogenomics collection [30]. The segmentation result is used for the evaluation

of the condition of the lungs and for further physiological measurements.

The fourth dataset consists of 50 mammographic images containing

abnormalities randomly obtained by the Mini-MIAS dataset [31]. The background

tissue is characterized as (a) fatty, (b) fatty glandular, and (c) dense glandular,
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whereas the abnormality is classified as (a) well defined/circumscribed and (b) ill

defined. In terms of its severity, the abnormality is defined as either benign or

malignant. Figures 7, 8, 9, and 10 depict segmentation results obtained by the

automated version using the presented framework as well as by the empirical

version in the same iteration that the automated version has converged.

Fig. 7 (a–c) Endoscopy images containing polyps, (a1–c1) ground truth images, (a2–c2)

segmentations obtained by the empirically fine-tuned version, in the same iteration that the

automated version has converged, and (a3–c3) segmentation results of the automated version
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Considering Figs. 7, 8, 9, and 10 and by comparing sub-images (a2)–(c2) to

(a3)–(c3), it is evident that contour convergence is delayed in the empirically

fine-tuned version. However, in the automated version, contour convergence is

accelerated since the former is capable of distinguishing randomly oriented,

Fig. 8 (a–c) Lung CT scans, (a1–c1) ground truth images, (a2–c2) segmentations obtained by the

empirically fine-tuned version, in the same iteration that the automated version has converged, and

(a3–c3) segmentation results of the automated version
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high-entropy edges from target ones, as explained in Fig. 6. Region-based forces

which guide contour evolution are appropriately amplified in unstructured, nontar-

get edge regions driving the contour away. Hence, iterations dedicated to false local

minima, associated with such regions, are avoided.

Fig. 9 (a–c) Thorax CT scans, (a1–c1) ground truth images, (a2–c2) segmentations obtained by the

empirically fine-tuned version, in the same iteration that the automated version has converged, and

(a3–c3) segmentation results of the automated version

Towards Self-Parameterized Active Contours for Medical Image Segmentation. . . 455



Quantitative Evaluation

The experimental results are quantitatively evaluated by means of the region

overlap measure, known as the tanimoto coefficient (TC) [32], which is defined by:

TC ¼ N A \ Bð Þ
N A [ Bð Þ (9)

Fig. 10 (a–c) Mammographic images containing abnormalities, (a1–c1) ground truth images,

(a2–c2) segmentations obtained by the empirically fine-tuned version, in the same iteration that the

automated version has converged, and (a3–c3) segmentation results of the automated version
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where A is the region identified by the segmentation method under evaluation, B is

the ground truth region, and N() indicates the number of pixels of the enclosed

region. The automated version achieves an average TC value of 82.9 � 1.6 %,

which is comparable to the TC value of 80.7 � 1.8 % obtained by the empirically

fine-tuned version, with regards to all images tested. Nevertheless, the automated

version converges in 10–20 times less iterations. The empirically fine-tuned version

achieves a TC value of 52.4 � 11.3 %, in the same iteration that the automated
version has converged.

Table 1 shows, for each utilized dataset, the iterations that the automated version

has converged as well as TC values obtained by the empirical and automated

version, for these same iterations. Figure 11 compares the segmentation perfor-

mance of the automated vs. empirical parameterization for each utilized dataset

presented in Table 1.

The experimental results are also evaluated on the convergence rate of both

versions by means of the difference mean intensity value (DMI). DMI is calculated

between the inside and outside region terms of the contour according to the

following algorithm:

8 Iteration i

1. Calculate inside jI(x,y) � c1j2 and outside jI(x,y) � c2j2 region terms.

2. Normalize and quantize both terms in the range [0, 255].

3. Calculate mean values.

4. Calculate DMI.

Table 1 TC values obtained

by the empirical and

automated version, in

the iteration that the

latter has converged

Dataset Iterations

TC (%)

Empirical Automated

Endoscopy 6 51.4 � 3.8 82.3 � 1.4

Lung 33 49.1 � 2.2 81.8 � 0.3

Thorax 23 52.5 � 4.2 82.7 � 0.5

Mammogram 19 48.3 � 6.5 83.2 � 1.2

Fig. 11 TC for the

segmentations of

automated vs. empirical

parameterization presented

in Table 1
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During contour evolution, DMI is increased, and once contour converges to the

actual target boundaries, DMI obtains its highest value.

Table 2 shows for a sample of each utilized dataset DMI values obtained by the

empirical and automated version in the early stages of contour evolution.

It can be observed that DMI reaches higher values in the automated version in

the early stages of contour evolution, regardless of the medical imaging modality.

This convergence acceleration has been theoretically justified in Section “Parame-

ter-Adjustment Framework.”

Conclusion

Medical image segmentation plays a fundamental role in medical research since it

aids MDs’ clinical evaluation by providing vital information on abdominal organs.

Empirical parameterization in segmentation techniques is not accurate since the

segmentation results are dependent on the visual impression of a MD. Thus, it is

crucial to develop automated algorithms which are accurate and do not require any

user intervention.

In this chapter, a framework for automated adjustment of active contour

regularization and data fidelity parameters is presented and applied for medical

image segmentation. The presented framework is inspired from the properties of

structure tensors. The latter are appropriate descriptors of the orientation coherence

of edge regions. This information is accordingly incorporated into the active contour

parameters by means of OE. In this light, region-based forces are boosted on nontar-

get, unstructured regions, driving the contour away and guiding it towards the target,

structured ones. Thus, iterations dedicated to false local minima are avoided and

contour convergence is accelerated. More importantly, MDs are set free from the

laborious process of empirical parameterization, and objectivity is bolstered.

The presented framework is evaluated on abdominal imaging modalities, includ-

ing colon and lung images as well as on mammographic images, by comparing its

segmentation performance with the empirically fine-tuned version. The experimen-

tal results demonstrate that the automated version is capable of meliorating contour

evolution as well as maintaining a high segmentation quality, comparable to the one

obtained empirically. Furthermore, it copes well with the variability of target

regions and remains insensitive to noise, artifacts, and heterogeneity.

Table 2 DMI values

obtained by the empirical

and automated version, in

the early stages of contour

evolution

Dataset

DMI

Empirical Automated

Endoscopy 8.2 14.0

Lung 3.4 7.1

Thorax 5.8 8.3

Mammogram 28.2 30.8
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