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Abstract  

In this paper, a novel computer-based approach is proposed for malignancy risk assessment of thyroid nodules in ultrasound 

images. The proposed approach is based on boundary features and is motivated by the correlation which has been addressed in 

medical literature between nodule boundary irregularity and malignancy risk. In addition, local echogenicity variance is utilized so 

as to incorporate information associated with local echogenicity distribution within nodule boundary neighborhood. Such 

information is valuable for the discrimination of high-risk nodules with blurred boundaries from medium risk nodules with regular 

boundaries. Analysis of variance is performed, indicating that each boundary feature under study provides statistically significant 

information for the discrimination of thyroid nodules in ultrasound images, in terms of malignancy risk. k-nearest neighbor and 

support vector machine classifiers are employed for the classification tasks, utilizing feature vectors derived from all combinations 

of features under study. The classification results are evaluated with the use of the receiver operating characteristic. It is derived 

that the proposed approach is capable of discriminating between medium-risk and high-risk nodules, obtaining an area under 

curve, which reaches 0.95. 
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1 Introduction 

 

The results of clinical research demonstrate that the presence of blurred or irregular thyroid nodule boundaries on 

ultrasound (US) images correlate with malignancy risk [1],[2]. In this light, the quantification of nodule boundary 

irregularity by boundary-based features could be valuable for malignancy risk assessment, contributing to the 

objectification of medical decisions. Such boundary-based features could be combined with intensity and textural 

information within an integrated computer-aided-diagnosis (CAD) tool.  

Previous attempts on CAD categorization of thyroid nodules on US images include evaluation of parameters from 

the gray level histogram of thyroid US images [3],[4], intensity features extracted by the utilization of Radon transform 

[5], textural features extracted from gray level spatial-dependence matrices [6],[7], and the application of discriminant 
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analysis [3],[6]. 

1.1 Medical background 

 

Thyroid nodules are lumps within the thyroid gland, with a considerable clinical importance because of the risk of 

malignancy, involving occurrences of papillary, follicular, medullary and anaplastic carcinomas. The prevalence of 

thyroid nodules increases with age, extending to more than 50% of the world’s population, whereas 50% of people 

with solitary nodules detected by experienced physicians have additional nodules detected when examined further by 

ultrasonography [8]-[11]. The US grading of nodules proposed by Tomimori et al [1], classifies nodules in four grades 

associated with an increasing risk for malignancy:  

1) Grade I: small round and anechoic area, suggestive of a thyroid cyst. 

2) Grade II: isoechoic or hyperechoic solid nodules with or without cystic change and coarse calcification, suggestive 

of adenomatous goiter. Isoechoic solid nodule or complex nodule, are suggestive of follicular adenoma. 

3) Grade III: i) hypoechoic solid nodule with regular boundary may represent a follicular neoplasm, ii) cystic nodule 

with solid component may represent a papillary carcinoma. These nodule types shall be referred as medium-risk 

nodules within the text.  

4) Grade IV: hypoechoic solid nodule with an irregular boundary and with the presence of calcifications is considered 

suspicious for malignancy and highly suggestive of thyroid carcinoma. These nodule types shall be referred as high-

risk nodules within the text. 

Figure 1 illustrates four thyroid US images containing nodules associated with Grades I-IV. 

  
(a) (b) 

  
(c) (d) 

Fig. 1. Thyroid US images containing nodules associated with: (a) grade I, (b) grade II, (c) grade III, and (d) grade IV, 

according to the US grading proposed by Tomimori et al [1]. 
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1.2 Boundary features 

 

Chain Coding (CC), introduced by Freeman [12], is a common boundary representation approach. Various 

applications using CC representation have been reported up to date [13]-[15], however, to the best of our knowledge, 

CC or CC-derived boundary features have not been considered for the definition of boundary features of US findings. 

This could be attributed to the consideration that, since every small deviation along the boundary is encoded, CC is 

expected to be extremely sensitive to US speckle noise.  

The recent development of noise-robust methods for the delineation of nodules in thyroid US images encourages 

the application of CC-derived boundary features, such as CC histogram itself [16] and compactness (CMP), on US 

findings. Compactness (CMP) is a typical measure of the space-filling nature of a boundary. A high CMP value is 

associated with an irregular boundary, since it indicates a large perimeter enclosing a small area. Typically, benign 

masses are expected to have lower values of CMP as compared to malignant tumors [17]. Kallergi [18] suggests 

CMP as a discriminative boundary feature for assessing malignancy risk of breast nodules.  

Other boundary features applied in medical image analysis include the normalized radial length (NRG) [19], the 

area ratio [20], the fractal dimension (FD) [21],[31], the roughness index, the spiculation index, and the fractional 

concavity [23]. In addition, the extraction of boundary features by analyzing spectral domain, as it is the case with 

Fourier descriptor or wavelet descriptor, has been proved to provide noise-robust boundary representation in various 

applications [31]. An extensive review on boundary features can be found in [25]. 

The main limitation of the aforementioned features, with the exception of NRG, is that they are exclusively derived 

from the boundary of a finding, as produced by segmentation or manual delineation. Therefore, they do not encode 

local echogenicity information within the boundary neighborhood. Intuitively, such information could be connected to 

blurred nodule boundaries, reportedly associated with thyroid malignancy risk. The NRG, which is a measure of the 

average orientation of the gray level gradients along the boundary, provides such local intensity information; however, 

the calculations of image gradients involved are susceptive to US speckle noise. A noise-robust locally calculated 

image feature defined so as to encode this local intensity information would effectively indicate the existence of high-

risk nodules, covering a “middle ground” between region-based and pure boundary features.  

The focus of this paper is to investigate CAD approaches for the discrimination between medium-risk and high-risk 

nodules in US images. Local echogenicity variance (LEV) is defined and utilized, aiming to the enhancement of the 

classification performance in cases of US image datasets, which include high-risk nodules characterized by blurred 

boundaries. Moreover, according to the US grading of Tomimori et al [1], some high-risk nodules can be 

discriminated from medium-risk nodules by the irregularity of their boundaries. This indicates that boundary features, 

although not sufficient, could be useful within the context of a nodule classification scheme. Based on the results of 
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previous research which support the utilization of CMP and FD as boundary features [18],[21],[22] this paper 

investigates their discriminative capability. The utilization of CMP aims to encode large-scale irregularity information 

as it is the existence of lobes, whereas FD is utilized so as to quantify small-scale irregularity. The discriminative 

capability of each boundary feature is statistically analyzed by means of analysis of variance (ANOVA). The k-nearest 

neighbor classifier (k-NN) is used so as to facilitate direct comparisons between various boundary feature 

combinations by means of receiver operating characteristic (ROC) curves. The classification performance is further 

optimized by the use of support vector machine (SVM) classifiers. It should be noted that the proposed computer-

based approach is the first utilizing nodule boundary features for thyroid malignancy risk assessment. 

The rest of this paper is organized in four sections. Section 2 presents the boundary features utilized by the 

proposed approach, followed by LEV. The results of the application of the proposed approach for malignancy risk 

estimation of thyroid nodules in US images are apposed in Section 3, and the conclusions of this study are 

summarized in Section 4. 

 

2 Materials and Methods 

 

The proposed computer-based approach utilizes CMP and FD which are pure boundary features, involving 

calculations based on the shape of the nodule boundary. CMP captures large-scale irregularity information as it is the 

existence of lobes, whereas FD captures small-scale irregularity information. In addition, LEV is introduced and 

utilized by the proposed approach so as to enhance the capability of discriminating nodules characterized by blurred 

boundaries.  

 

2.1 Feature extraction 

 

The core idea of CC involves the movement along a digital curve or along a sequence of border pixels based on n-

connectivities. The direction of each movement is encoded by means of a numbering scheme {i|i=0, 1,...n}, which  

denotes an angle of 360×i/n, clockwise or counter-clockwise, from the positive x-axis, as shown in Fig.2. Thus, CC 

can be viewed as a connected sequence of straight-line segments with specified lengths and directions.  
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Fig. 2. Directions of 4-directional and 8-directional CC. 

 

The CC can be normalized with respect to the starting point by a straightforward procedure: it is treated as a 

circular sequence of direction numbers and the starting point is redefined so that the resulting sequence of numbers 

forms an integer of minimum magnitude. Normalization with respect to rotation can be obtained by using the first 

difference of the CC instead of the code itself. This difference is obtained by counting the number of direction 

changes that separate two adjacent elements of the code. For instance, the first difference of the 4-direction chain 

code 10103322 is 3133030. The code can be treated as a circular sequence by computing the first element of the 

difference using the transition between the last and first components of the chain. Accordingly, the result in this 

example is 33133030 [26]. The histogram describing the frequency of occurrence of each CC element could be used 

as a boundary feature, as proposed by Iivarinen and Visa [16]. The chain code histogram (CCH) is computed as: 

nnkp k /)( =  (1) 

where kn  is the number of chain code values k  in a CC and n  is the number of links in a CC. The CCH reflects the 

probabilities of different directions present in a boundary. Moreover, since a CC is a complete representation of a 

curve, it can be used to calculate boundary features of an object, such as perimeter, area and CMP. 

CMP is a dimensionless quantity providing a measure of contour complexity, whereas it is independent of 

translation, rotation, and scale. For this study, the following definition of CMP is adopted: 

A

P
CMP

2

=  (2) 

where P is the perimeter and A is the area of the object, calculated with the use of CC. According to eq. (2), CMP has 

a minimum value of 4π and increases for elongated shapes or shapes with rough contours. As CMP is derived from P 

and A, which are global boundary features, it encodes large-scale irregularity information, as the existence of lobes or 

protrusions.    
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2.2 Fractal dimension 

 

Fractals are self-similar structures characterized by a non-integer dimension. Their geometrical complexity can be 

quantified by means of the fractal dimension (FD). FD is an elegant well-defined multi-scale measure that has been 

shown to possess a strong correlation with human's intuitive notion of roughness and has been widely applied to 

different problems in image processing and pattern recognition [27]. It can be computed utilizing limiting processes, 

such as the box counting algorithm, which is based on partitioning the shape image into square boxes of size L×L and 

counting the number of boxes (n(L)) containing a portion of the shape. The FD is calculated as the absolute value of 

the slope of the line obtained from the linear regression of the (log(L), log(n(L))) curve, by varying the box size L (Fig. 

3). However, FD computation using real, discrete data, such as images, is not obvious. Much of the literature 

regarding fractal analysis has been concerned with the estimation of FD given a discrete data set [22]. 

FD is capable of encoding small-scale irregularity information associated with nodule boundaries. Microlobulated or 

highly spiculated contours of malignant tumors are expected to demonstrate fractal behavior, which should be absent 

in the case of benign masses [21],[22]. Rangayyan and Nguyen [21] computed FD from the one-dimensional 

signature of a given mass, defined as the Euclidean distance of each contour point from the centroid of the contour. 
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Fig. 3. Illustration of the box counting method. 

 

2.3 Local echogenicity variance 

 

The US grading of thyroid nodules introduced by Tomimori et al [1] suggests that both medium-risk and high-risk 

nodules are associated with hypoechogenicity. However, high-risk nodules are also associated with blurred, i.e. 

poorly-defined, or irregular boundaries. Figure 4 illustrates examples of medium-risk nodules (Fig. 4a), high-risk 
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nodules (Fig. 4b) with blurred boundaries and high-risk nodules with irregular boundaries (Fig. 4c). Figure 5 illustrates 

the respective delineations obtained by the application of the variable background active contour (VBAC) model [28]. 

It can be observed that in cases of high-risk nodules characterized by irregular boundaries, the derived delineations 

are actually irregular (Fig. 5c). Such nodule cases are expected to be differentiable from medium-risk nodules by the 

utilization of pure boundary features. However, in the cases of high-risk nodules characterized by blurred boundaries, 

the derived delineations are as smooth (Fig. 5b) as the delineations of medium-risk nodules (Fig. 5a). Accordingly, 

their discrimination cannot be solely based on boundary features quantifying boundary irregularity.     

Aiming to incorporate information associated with local echogenicity distribution within nodule boundary 

neighborhood and enhance the accuracy of the proposed nodule classification approach, we employ local 

echogenicity variance (LEV) calculated within a stripe centered on the available delineation of each nodule. This stripe 

contains all pixels within a small distance from the delineation, so as to capture local intensity variations and cover a 

“middle ground” between region-based and pure boundary features. LEV values are lower within neighborhoods of 

blurred nodule boundaries, as opposed to the high LEV values obtained in cases of boundaries well defined by abrupt 

echogenicity changes. The utilization of LEV facilitates the discrimination of high-risk nodules characterized by blurred 

boundaries from medium-risk nodules.  

 

   
(a) (b) (c)  

Fig. 4. Nodule examples associated with: (a) medium risk, (b) high risk characterized by blurred boundaries, and (c) 

high risk characterized by irregular boundaries. 
 

   
(a) (b) (c)  

Fig. 5. Delineations of nodules illustrated in Fig. 4, obtained by the application of the VBAC model.           

 

Thyroid US examinations were performed on 387 patients between October 2003 and September 2006 for 

evaluation of suspected thyroid nodular disease, using a digital US imaging system HDI 3000 ATL with a 5-12 MHz 

256 grey-level depth, linear transducer in the radiology department of Euromedica diagnostic center in Greece. Time 
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gain compensation setting had a linear increasing gain compared to the depth. Instrument settings were set 

accordingly to the built-in ‘SmallPartTest’ Philips protocol, magnification was set to 1:1, and dynamic range was set to 

150 dB/C4. The criteria for referral were suspicion of the presence of one or more thyroid nodules by physical exam 

or the presence of an “incidental” nodule discovered by an imaging technique. A total of 173 longitudinal digital 

images of hypoechoic thyroid nodule cases were acquired by retrospectively reviewing the records of patients. The 

study is limited to cases of hypoechoic nodules, since hypoechogenicity is associated with medium-risk and high-risk 

thyroid nodules [1]. The VBAC model [28] is applied for the delineation of the thyroid nodules. The VBAC model 

constants used in the experiments were chosen as: 5=+λ , 5=−λ , 650=µ  and 1310−=a , as suggested by Maroulis et 

al [28]. The width of the stripe associated with the calculation of LEV is set to 7 pixels. 

3 Results 

 
Three expert physicians characterized the boundary of each hypoechoic nodule used in the experiments as regular 

(grade III), blurred or irregular (grade IV), following the classification of Tomimori et al. “Ground truth” 

characterizations are produced according to a majority rule so as to ameliorate the subjectivity induced by each 

expert. Malignancy risk estimation based on nodules’ appearance in US is acceptable in medical practice [1],[9]. 

However, the results of this work cannot directly be compared to works such as [6], where the “ground truth” is 

derived by histological findings. The derived US image dataset is comprised of 96 cases of medium-risk nodules, 41 

cases of high-risk nodules with blurred boundaries and 34 cases of high-risk nodules with irregular boundaries. A 

special purpose software suite in Microsoft Visual C++ was developed and executed on a 3.2 GHz Intel Pentium IV 

workstation for feature extraction and k-NN classification. The implementation of the SVMs was based on the publicly 

available libSVM library [29]. 

The experimental results are organized in two main parts: the first part is investigating the statistical significance of 

the boundary features under study for the discrimination of medium risk nodules from high-risk nodules with irregular 

or blurred boundaries. The second part is dedicated to the evaluation of the classification performance of all 

combinations of the boundary features under study. 

 

3.1 Statistical analysis  

 

Analysis of variance (ANOVA) is a general technique for evaluating the statistical significance of the difference of 

independent data groups with respect to a measured characteristic. ANOVA involves the so-called null hypothesis 

testing, where the null hypothesis is that the means among the groups are equal, under the assumption that the 

sampled populations are normally distributed [30]. 
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Table 1 illustrates the results of analysis of variance for CMP, FD and LEV for the discrimination of medium-risk 

nodules from high-risk nodules with blurred boundaries (experiment 1), as well as from high-risk nodules with 

irregular boundaries (experiment 2).  

A p-value of less than 0.05 was yielded for LEV in experiment 1, indicating a statistically significant difference of this 

feature when it comes to nodule cases of different boundary smoothness. This is in agreement with the definition of 

LEV as a boundary smoothness index. On the contrary, the results obtained for CMP and FD demonstrated that 

varying boundary smoothness does not significantly differentiate (p-value>>0.05) the value of these features. This can 

be attributed to the fact that both CMP and FD are defined as boundary irregularity indexes, whereas both nodule 

types of experiment 1 are characterized by relatively regular boundaries.  

The results of experiment 2 were predictably opposite, demonstrating statistically significant differences for CMP 

and FD (p-value<0.05), and not for LEV (p-value>>0.05). These results can be justified by similar arguments with 

experiment 1, considering that in the case of experiment 2 nodule classes are characterized by different boundary 

irregularity.  

The results of both experiments indicate that all features under study encode boundary information which can be 

valuable for the characterization of thyroid nodules in terms of malignancy risk. In addition, it can be observed that 

CMP is more discriminative than FD, obtaining a lower p-value in all experiments. This indicates that CMP-encoded 

large-scale nodule boundary irregularity, which is associated with lobes or protrusions, is more indicative of 

malignancy risk than small-scale boundary irregularity, which is more sensitive to US speckle and image resolution.         

 

Table 1 

p-values obtained for LEV, CMP and FD for experiments 1 and 2. 

 

Feature p-value (experiment 1) p-value (experiment 2) 

LEV 0.02 0.24 
CMP 0.29 0.01 
FD 0.34 0.03 

 

3.2 Classification  

 

The k-nearest neighbor (k-NN) is a well-known nonparametric classifier with essentially one free parameter, the 

number of neighbors k, which can be optimized by a leave-one-out estimate of the error rate k [31]. k-NN 

classification involves the computation of the distances between a test pattern and all patterns in the training set, 

whereas the associated decision rule is based on the minimum distance.  

The k-NN classifier, with k=5, is utilized for the comparison of the classification performance obtained by various 

combinations of CMP, FD and LEV. This classifier facilitates direct comparisons, as it does not depend on multiple 
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parameters. The value of k was selected considering the classification results obtained in preliminary experiments. It 

should be noted that high-risk nodules, either with blurred or irregular boundaries are classified as positive, whereas 

medium-risk nodules are classified as negative. In accordance with the recommendation of Brandley [32], 10-fold 

cross validation was performed for the generation of ROC curves. Table 2 illustrates the 3 highest values of area 

under curve (AUC) derived from combinations of CMP, FD and LEV. The highest AUC is obtained by the combined 

use of CMP, FD and LEV, indicating that each of these features provides complementary boundary information.  

 

Table 2 

The 3 highest values of AUC derived from combinations of CMP, FD and LEV. 

 

Feature  AUC 

CMP, FD, LEV 0.93 
CMP, LEV 0.91 
FD, LEV 0.89 

 

Figure 6 illustrates the ROC curve obtained by the k-NN classifier utilizing the combination of all boundary features. 

The 95% confidence interval for AUC, calculated following the approach described in [33], is [0.88, 0.96]. It can be 

derived that for specificity equal to 0.80, the obtained sensitivity is 0.94. The associated confusion matrix is illustrated 

in Table 3. 
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Figure 6. ROC curve obtained by k-NN utilizing the combination of all boundary features. 
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Table 3 

Confusion matrix obtained by k-NN utilizing the combination of all boundary features. 

  k-NN 

  medium-risk high-risk (blurred) high-risk (irregular) 

medium-risk 75 18 3 

high-risk (blurred) 4 37 0 expert 

high-risk (irregular) 0 0 34 

 
 
The classification performance of the proposed approach was further optimized by the use of the SVM classifier  [34]. 

SVM is formulated so as to satisfy an optimization criterion associated with the width of the margin between the 

classes, i.e. the empty area around the decision boundary defined by the distance to the nearest training patterns. 

These patterns, called support vectors, define the classification function, whereas their number is minimized by 

maximizing the margin [31].  

The value of the tolerance parameter C and the kernel type [34] providing the maximum classification accuracy, 

were experimentally determined as C=40 and the 3
rd

 order polynomial kernel respectively. 10-fold cross validation 

was also used in this case. Figure 7 illustrates the ROC curve obtained by the SVM classifier utilizing the combination 

of all boundary features. The AUC obtained is 0.95, which is 2% higher when compared to the AUC obtained by using 

k-NN, whereas the associated 95% confidence interval calculated following the approach described in [33], is [0.91, 

0.97]. In addition, it is derived that for specificity equal to 0.80, the obtained sensitivity is 0.98. The associated 

confusion matrix is illustrated in Table 4. It can be observed that the utilization of the SVM classifier reduced the 

number of high-risk nodules with blurred boundaries which were classified as medium-risk, when compared to the 

results obtained with the use of the k-NN classifier.   
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Figure 7. ROC curve obtained by SVM utilizing the combination of all boundary features. 

 

Table 4 

Confusion matrix obtained by SVM utilizing the combination of all boundary features. 

  SVM 

  medium-risk high-risk (blurred) high-risk (irregular) 

medium-risk 75 18 3 

high-risk (blurred) 1 40 0 expert 

high-risk (irregular) 0 0 34 

 
It should be noted that the utilized features do not describe shape variability in general, but the aspects of shape 

variability which correlate with nodule malignancy risk according to medical literature. This is in agreement with the 

results of additional experiments, which do not demonstrate a measurable improvement by embedding features such 

as concavity or axial symmetry [35] within the utilized feature set. This could be attributed to the fact that these 

features are correlated with compactness.  

 

4 CONCLUSIONS 

 In this paper, we introduced a novel computer-based approach for malignancy risk assessment of thyroid nodules 

in US images. The proposed approach is based on compactness (CMP) and fractal dimension (FD), as well as on 

local echogenicity variance (LEV), which is defined so as to incorporate information associated with local echogenicity 

distribution within nodule boundary neighborhood. Such information allows the discrimination of high-risk nodules with 

blurred boundaries from medium risk nodules with regular boundaries. ANOVA was performed to evaluate the 

statistical significance of the utilized features. In addition, k-NN and SVM classifiers where employed for the 
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classification tasks, utilizing feature vectors derived from all combinations of boundary features under study. 

The experimental evaluation on real thyroid US images lead to the following conclusions:  

1. CMP, FD, and LEV, all provide statistically significant information for the discrimination of thyroid nodules in 

US images in terms of malignancy risk. 

2. The optimal classification performance is obtained by the combined use of all boundary features under study, 

indicating that each of these features provides complementary boundary information. 

3. The utilization of the SVM classifier leads to higher classification performance, when compared to the one 

obtained with the use of k-NN.   

4. The proposed approach is capable of discriminating between medium-risk and high-risk nodules, contributing 

to the objectification of the diagnostic process. 

Future perspectives of this work include the derivation of textural information, as well as information extracted from 

video frame sequences of thyroid US, aiming at an integrated medical decision support system for the identification of 

thyroid nodules. 
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