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In this paper we propose a novel Support Vector Machines-based architecture for medical
diagnosis using multi-class gene expression data. It consists of a pre-processing unit and

N −1 sequentially ordered blocks capable of classifying N classes in a cascading manner.
Each block embodies both a gene selection and a classification module. It offers the
flexibility of constructing block-specific gene expression spaces and hypersurfaces for
the discrimination of the different classes. The proposed architecture was applied for

medical diagnostic tasks including prostate and lung cancer diagnosis. Its performance
was evaluated by using a leave-one-out cross validation approach which avoids the bias
introduced by the gene selection process. The results show that it provides high accuracy

which in most cases exceeds the accuracy achieved by the popular one-vs-one and one-
vs-all SVM combination schemes and Nearest-Neighbor classifiers. The cascading SVMs
can be successfully applied as a medical diagnostic tool.
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1. Introduction

The breakthrough of DNA microarray technology in the last decade has motivated

computer scientists to focus on biological problems such as the identification of the

functional roles of the genes, the way they are organized, their interactions and the

way their expression is affected by various diseases1.

Microarrays consist of hundreds to thousands of individual cDNA or oligonu-

cleotide sequences, often called probes, printed as spots usually on a glass microscope

slide support. The spots are organized in an orderly and consistent way, as their loca-

tion is used to identify particular genes or partial gene sequences. A mobile cDNA or

mRNA target of a test subject hybridizes as it base-pairs with the probes. A special

laser scanner along with an image analysis software are used for the measurement

of the spots’ intensities and the quantification of the gene expression levels2,3. The

gene expression measurements acquired from a microarray comprise a large feature

vector. The repetition of microarray experiments using identical cDNA probes but

1
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different targets, results in multiple feature vectors that form the so-called gene ex-

pression matrix, so that each of its rows corresponds to a particular gene or a partial

gene sequence and each of its columns corresponds to a particular experiment.

Gene expression data analysis in the context of supervised classification can be

applied to support medical diagnosis by providing diagnostic confirmation or clari-

fication of unusual cases4. Relevant approaches to the diagnosis of various diseases

include the utilization of linear discriminant analysis, k-nearest neighbors, parzen

windows, decision trees, neural networks and Support Vector Machines (SVM)5−8.

The studies of Brown et al.7 and Furey et al.9 advocate that SVMs are advantageous

over other classification methods, as they are remarkably robust, their performance

is not easily affected by sparse or noisy data, they resist overfitting and the “curse of

dimensionality”. However, SVMs have been originally designed as binary classifiers

and their application for multi-class data discrimination imposes either reformula-

tion of the SVM equations for multiple classes or the combination of multiple SVM

classifiers into ensembles.

State of the art multi-class SVM schemes that have been applied for med-

ical diagnosis using gene expression data include Multicategory SVMs10, one-vs-

one11, one-vs-all12, Directed Acyclic Graph (DAG)13, Weston and Watkin’s14, and

Crammer and Singer’s15. These schemes present comparable performance in gene

classification10,11,16. They utilize a common, constant set of genes as input in each

SVM node, assuming that the various diseases correspond to separable clusters in

the same gene space. Moreover, the dimensionality of this common gene space should

be controlled through a gene selection process to ease the classification process, as:

a) the number of the available samples is disproportionally small compared to the

large number of gene expression measurements examined in a microarray exper-

iment and b) only a small percentage of genes is differentially expressed for the

various cancer types or subtypes, compared to the total number of genes involved

in the experiment1. However, both the selection of a common gene space and the

classification task become more difficult as the number of classes increases and more

samples are consequently needed17. As only a small number of samples per class

is usually available in most genomic-based diagnostic problems, the efficiency of

the selection/classification task could be improved if the solution of the multi-class

problem is considered as a superposition of partial two-class problem solutions. Pre-

liminary studies have shown that such an approach can actually improve the overall

accuracy of a gene expression classification system18,19 and could possibly lead to

higher classification accuracy than the accuracy provided by the standard SVM

combination schemes. Therefore, a novel scheme needs to be developed for further

investigation of this hypothesis.

In this paper we propose the combination of SVMs in a cascading architecture,

which embodies gene selection in its structure as an attempt to meet this need.

To the best of our knowledge cascading SVM architectures have not been applied

for medical diagnosis using multi-class gene expression data. The proposed scheme

aims at the enhancement of the diagnostic accuracy provided by the standard SVM
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combination schemes. It allows for the most discriminatory genes to be considered

as inputs at each level of the cascading sequence by applying a gene selection cri-

terion. Moreover the proposed architecture supports different kernel functions at

each level, offering the flexibility of constructing level-specific hypersurfaces for the

discrimination of the different classes.

The proposed architecture is applied for both prostate and lung cancer diagnosis

using multi-class gene expression data20,21. The results show that it provides low

classification error rates which are comparable and in most cases lower than the

rates obtained by the popular one-vs-one and one-vs-all SVM combination schemes

especially when a small number of genes is involved.

The rest of this paper is organized in three sections. In section 2 we describe

the proposed architecture. In section 3 we appose the experimental results of the

proposed approach on publicly available datasets. In the last section we discuss the

results and summarize the conclusions of this study.

2. Architecture

The proposed architecture handles genomic-based medical diagnosis as a multi-class

classification problem. It is capable of classifying the input gene expression vectors

to their appropriate classes ωi, i = 1, 2, . . . N . Each class consists of gene expression

vectors acquired from patients suffering from the same disease or from a subtype of

a particular disease. It consists of a pre-processing unit and a number of cascading

blocks containing both selection and classification modules (Fig. 1).

Fig. 1. Cascading architecture design.

Let N be the number of classes involved in a medical diagnosis problem. The

pre-processing unit prepares the data to be inputted to the cascading blocks Bj , j =

1, 2, . . . N − 1 that follow. Each block contains a gene selection module Sj and a

classification module Cj . The Sj module uses the output of the pre-processing unit

as input. The Cj module is autonomously trained with a subset Xj of samples of

the full set X of the available training samples. Xj is defined as

Xj = {x ∈ (ωj ∪ Ωh)},Ωh =

N
⋃

p=j+1

ωp (1)
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The Sj module selects a subset of τj gene expression measurements which best

discriminates class ωi from Ωh and maximizes the classification performance of the

Cj module. Given a test vector x, the Cj module is fed with τj gene expression

measurements, and outputs 1 if x ∈ ωj or −1 if x /∈ ωj . If x /∈ ωj , the next

block Bj+1 will be activated to classify the test vector using the corresponding τj+1

gene expression measurements. Otherwise the classification task terminates and x is

assigned to the class ωj . The last block BN−1 decides whether x ∈ ωN−1 or x ∈ ωN .

2.1. Pre-processing unit

The pre-processing unit is assigned to the management of missing values as well as to

the normalization of the gene expression levels. Poor quality in the preparation of the

cDNA targets contributes to low quality gene expression measurements as it affects

the mean values and the standard deviation of the spots’ intensities, their size and

their contrast with the local background areas23. These low quality measurements

are usually discarded as they lead to missing values.

A straightforward approach dealing with samples containing missing values

would be to ignore these samples24. Unfortunately, however microarray datasets

consist of a very limited number of samples and it would be a luxury to drop

available data. A number of methods have been reported in the literature for

coping with missing gene expression measurements. Most of these methods sug-

gest that the missing values should be replaced by others deriving from the rest

of the available data set. These include simple approaches such as the replace-

ment of the missing values with the row-average of the gene expression matrix or

more sophisticated imputation methods based on k-nearest neighbors25, singular

value decomposition25, and Bayesian principal components analysis26. Acuna and

Rodriguez27 studied the effect of various missing values imputation methods, in-

cluding row-average, k-nearest neighbors and median imputation, with respect to

the classification accuracy and concluded that they result in comparable perfor-

mance. In this paper we have adopted the row-average method as it combines both

low-complexity and effectiveness25 in the prediction of missing values.

In the sequel, the data are normalized to conform to zero mean and unitary

variance using the following equation:

g′kl =
gkl − µl

σl

(2)

where g′kl corresponds to the normalized gene expression level gkl located in the

k-th row (gene) and l-th column (sample) of the gene expression matrix, and µl,

σl represent the mean and the standard deviation of the gene expression levels

estimated over the l-th column. This normalization facilitates making the gene

expression levels of the different DNA microarrays comparable23.
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2.2. Gene selection modules

The gene selection module is devoted to the selection of differentially expressed genes

at each level of the cascading architecture. Guyon et al.28 suggested a grouping of

the gene selection methods into three main categories, namely ranking, wrapper and

embedded methods. Ranking methods are usually used because of their simplicity,

scalability, and good empirical success. They select subsets of variables indepen-

dently of the chosen classifier. A standard statistical test for detecting significant

changes between repeated measurements of a variable in two groups used in microar-

ray data analysis is the t-test and several other of its variations1. Wrappers utilize

the classifier of interest as a black box to score subsets of variables according to their

predictive power. The complexity of most wrapper approaches such as Sequential

Backward Selection (SBS), Sequential Forward Floating Search (SFFS) and Adap-

tive SFFS (ASFFS) is prohibiting for large-scale gene selection problems29. However,

recent studies suggest that wrapper approaches based on genetic algorithms could

efficiently handle large-scale gene selection30. Embedded methods perform variable

selection in the process of training and are usually specific to given classifiers. A

state of the art embedded approach that has been applied for the identification of

differentially expressed genes in microarray experiments is Recursive Feature Elim-

ination (RFE)31.

The gene selection module of the proposed architecture could implement any of

the afore mentioned gene selection methods. In order to keep the overall complexity

into reasonable levels we have considered Welch’s t-test32 as an efficient gene ranking

criterion. Welch’s t-test is a statistical test that assumes unequal variances among

classes and it can be applied to problems involving a small number of samples33. It

is similar to the signal-to-noise ratio, one of the most widely used statistics for gene

expression research which first appeared in the seminal paper of Golub et al.4 but

has the comparative advantage of noticing the number of the available samples per

class.

The steps of the gene selection process that is followed in each selection module

Sj are:

(i) Each gene g is ranked based on the t-statistic Z(g):

Z(g) =
µj

g − µh
g

√

(σj
g)2

nj
+

(σh
g )2

nh

(3)

where (µj
g, σ

j
g) and (µh

g , σh
g ) correspond to the mean and standard deviation of

the expression levels of the gene g for the training samples that belong to ωj

and Ωh classes respectively. The number of samples belonging to each of the

above classes is denoted by nj and nh.

(ii) The genes are ordered in descending order according to the absolute value of

their Z(g) statistic.

(iii) The τj top-ranked genes are selected4,12,24 as they lead to a large between-class
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distance and a small within-class variance. Alternatevely an improvement in

the diagnostic accuracy could be obtained if a combination of m of τj genes

(m < τj) is found by permutating the τj genes and selecting the first m.

However, this approach leads to a disproportional increase of the complexity

compared to the possible marginal increase in the performance.

Trunk34 showed that the number τ of the selected features in a classification

problem cannot be arbitrarily increased when the parameters of class-conditional

densities such as mean values and variances are estimated from a finite number

of training samples. This is the case of the microarray datasets which comprise

of a very limited number of samples. It is generally accepted that the number of

inputs in a classification system should be at the most one tenth of the available

training samples in order to avoid the curse of dimensionality29,35. Although SVMs

are quite resistant to the curse of dimensionality it has been noted36 that they are

not completely insensitive to it and feature selection could indeed improve their

classification performance. Furthermore, the use of a limited number of genes as

features will result in the identification of reliable gene-markers for diseases.

2.3. Classification modules

The classification modules of the proposed architecture are based on SVMs. SVMs

are machine-learning algorithms derived by Vapnik37 in the framework of struc-

tural risk minimization, which aim at building parsimonious models, in the sense of

statistical learning theory. This algorithm can be summarized as follows:

Consider an input space I of vectors xi, i = 1, 2, . . . v, belonging to two classes,

labeled as yi ∈ {−1, 1}. Let Φ be a non-linear mapping from the input space I ⊆ ℜn

to the feature space F ⊆ ℜm. The SVM is capable of finding a hyperplane defined

by the equation

wT Φ(x) + w0 = 0 (4)

so that the margin of separation between the two classes is maximized. It is easy to

prove37,38 that for the maximal margin hyperplane,

w =

v
∑

i=1

λiyiΦ(xi) (5)

while w0 is estimated by the Karush-Kuhn-Tucker (KKT) complementarity

condition38. The λi variables are Lagrange multipliers that can be estimated by

maximizing the Lagrangian

LD =
v

∑

i=1

λi −
1

2

v
∑

i=1

v
∑

j=1

λiλjyiyjK(xi, xj) (6)

with respect to λi. The vectors xi for which 0 ≤ λi ≤ c, are called support vectors

and c is a positive cost parameter. As the c value increases a higher penalty for

errors is assigned.



June 1, 2005 16:38 WSPC/INSTRUCTION FILE
Cascading˙CameraReady

Cascading SVMs as a Tool for Medical Diagnosis using Multi-class Gene Expression Data 7

The function K(xi, xj) known as kernel function, is defined as the inner product

K(xi, xj) = ΦT (xi)Φ(xj) (7)

and should satisfy Mercer’s condition37.

Most commonly used kernel functions are the linear, the polynomial (of second

and third order) and the Radial Basis Functions (RBF) as presented in Table 1.

where p is the order of the polynomial kernel and γ is a strictly positive constant.

Table 1. SVM Kernels.

Linear K(xi, xj) = xi · xj

Polynomial K(xi, xj) = (γ · xi · xj + 1)p

RBF K(xi, xj) = e
−‖xi−xj‖2

γ

The linear kernel is less complex than polynomial and RBF kernels. The RBF kernel

usually has better boundary response as it allows for extrapolation, and most high-

dimensional data sets can be approximated by Gaussian-like distributions similar

to those used by RBF networks38. The separating hyperplane can be finally derived

by the following equation:
∑

∀i:0<λi<c

λidiK(xi, x) + w0 = 0 (8)

The implementation of SVMs was based on the publicly available LibSVM

library39 which was modified to meet the needs of the proposed architecture.

2.4. Modes of operation

The proposed architecture supports two modes of operation: the training and the

test mode. During the training mode the following parameters are automatically

tuned by grid search39:

(i) The kernel function of each classification module.

(ii) The cost c and the γ parameters of each classification module.

(iii) The number of genes τj to be selected by the Sj selection module.

The parameters that maximize the overall accuracy of the system as well as the

selected genes and the support vectors of each block are stored. Other SVM com-

bination senarios such as the one-vs-one and one-vs-all use the same kernel for all

of its classifiers, while the proposed cascading scheme has the advantage of using

a different kernel function per classification unit. In the test mode this informa-

tion is retrieved and the architecture is capable of classifying uncharacterized gene

expression data for medical diagnosis.
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3. Results

We performed two sets of experiments to evaluate the capabilities of the proposed

architecture for medical diagnosis. The first set aims at prostate cancer diagnosis

while the second aims at lung cancer diagnosis. The datasets used in the exper-

iments are publicly available in the Stanford Microarray Database40. It is worth

noting that these particular datasets have not been utilized for supervised genomic-

based diagnosis. The results achieved with the proposed architecture are compared

with the results obtained using a) standard k-Nearest Neighbor (kNN) classifica-

tion approaches and b) the popular one-vs-one and one-vs-all SVMs combination

scenarios, in conjunction with the modified Welch’s t-test that supports multiple

classes:

Z(g) =

N
∑

j

N
∑

h6=j

µj
g − µh

g
√

(σj
g)2

nj
+

(σh
g )2

nh

(9)

where N is the total number of classes involved, (µj
g, σ

j
g) and (µh

g , σh
g ) correspond

to the mean and standard deviation of the expression levels of the gene g for the

training samples that belong to ωj and Ωh classes respectively. The number of

samples belonging to each of the these classes is denoted by nj and nh respectively.

The one-vs-one scheme consists of N(N − 1)/2 SVM classifiers, each one of

which is trained from samples of two classes. The outputs of these classifiers are

combined using a “Max Wins” voting strategy which decides upon the class that

an uncharacterized input vector x belongs to11. The one-vs-all scheme utilizes N

classifiers, where the ith SVM is trained with all the samples of the ωi against

all the others. The one-vs-all scheme has in general comparable performance to the

one-vs-one scheme but due to its higher complexity requires longer training times11.

During the training mode for the SVM-based classification schemes (Cascading,

one-vs-one and one-vs-all) the kernel functions that were tested are the linear, the

2nd and 3rd order polynomial and the RBF. The ranges of the training parame-

Fig. 2. Leave-One-Out Cross Validation approaches.
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ters considered were 2−5 to 215 for the cost parameter c and 2−15 to 23 for the

γ parameter as these have been proposed by Chang et al.39. The best parameters

that maximize the performance for the cascading, the one-vs-one and the one-vs-all

schemes were determined using grid search. The order of the blocks in the cascade

model was determined based on the histopathological subclassification of carcino-

mas 20,21. As regards the kNN classifiers three different k-values were tested (1,3

and 5) and the Eucledian distance was used to determine the “nearest” neighbors.

The classification performance for all of the compared classifiers was estimated in

terms of classification error by using the Leave-One-Out Cross Validation (LOOCV)

method 24 as the number of the available samples for both prostate and lung cancer

datasets was limited. The LOOCV has been widely used for the evaluation of gene

expression classification systems41,42. Most studies exclude gene selection from the

LOOCV procedure (Fig. 2a). Recently, Ambroise et al.22 showed that LOOCV

should be used with the caution not to be separated from the gene selection process,

as this leads to biased and overestimated results. So, in our experiments the gene

selection process has been included within the LOOCV procedure in order to avoid

the selection bias (Fig. 2b). Thus in every iteration of the LOOCV a new subset

of genes was selected. It is worth noting that the error estimated, using both of

these approaches, will be approximately the same if the number of training samples

is adequate. In the case of microarray datasets, where the number of samples is

limited, these two methods will result in different accuracies.

The significance of the presented classification results was assessed by permuta-

tion testing43. If the null hypothesis that no systematic differences in gene expression

profiles exist between the classes is rejected, the results are considered significant,

otherwise it can be assumed that the assignment of gene expression profiles to class

labels is purely coincidental. A total of 2000 permutations was generated for each

experiment to ensure that the estimate of the achieved significance level varies by

less than 10% from a true achieved significance level of 0.05.

3.1. Prostate cancer diagnosis

Prostate cancer displays a broad range of clinical behavior from relatively indolent

to aggressive metastatic disease44. Lapointe et al. published a dataset of prostate

cancer gene expressions on which they applied unsupervised hierarchical clustering

in order to distinguish tumors from normal samples20. The prostate cancer dataset

is comprised of 112 samples spanning three classes, namely normal prostate tissue

(41 samples), primary prostate tumors (62 samples) and lymph node metastases (9

samples). Each sample consists of 44016 gene expression measurements.

The cascading architecture built for the discrimination of these three classes

consists of two blocks. The first block was assigned to decide whether an unknown

input vector x is normal or cancerous. If it is classified as cancerous, the second

block is activated and decides whether the cancer is primary or metastatic. A range

of one to 11 genes was considered in the gene selection process based on the criterion
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Fig. 3. Classification results for the prostate cancer dataset using a) kNN, b) one-vs-one and c)

one-vs-all.

described in section 2.2. The classification performance, for the range of the selected

genes, of the proposed architecture is compared with the performance of the 1-

NN, 3-NN and 5-NN classifiers (Fig. 3a), the one-vs-one (Fig. 3b) and the one-

vs-all SVM combination schemes (Fig. 3c). The presented results for the proposed
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Table 2. Classification results (%) using the prostate cancer dataset in detail.

Classifier / Genes 1 2 3 4 5 6 7 8 9 10 11

Cascading 6.3 8.9 10.7 9.8 8.9 8.9 6.3 7.1 7.1 6.3 7.1

1-NN 61.6 62.5 59.8 60.7 61.6 59.8 61.6 63.4 63.4 64.3 64.3
3-NN 68.8 62.5 63.4 64.3 65.2 66.1 65.2 65.2 65.2 64.3 63.4
5-NN 61.6 63.4 64.3 63.4 65.2 65.2 66.1 64.3 65.2 64.3 63.4

One-vs-one Linear 11.6 13.4 14.3 9.8 10.7 11.6 10.7 7.1 8.9 8.0 8.9
One-vs-one Pol-2 11.6 13.4 11.6 9.8 8.9 9.8 9.8 8.0 8.0 7.1 8.9

One-vs-one Pol-3 11.6 13.4 11.6 10.7 9.8 9.8 10.7 8.9 8.9 6.3 8.0
One-vs-one RBF 11.6 13.4 11.6 9.8 9.8 8.9 9.8 8.0 7.1 7.1 8.9

One-vs-all Linear 14.3 14.3 14.3 14.3 10.7 9.8 12.5 12.5 10.7 9.8 8.9
One-vs-all Pol-2 14.3 15.2 16.1 13.4 9.8 9.8 8.0 8.9 8.0 8.9 8.9

One-vs-all Pol-3 15.2 13.4 12.5 11.6 9.8 9.8 9.8 8.9 8.9 7.1 8.9
One-vs-all RBF 14.3 15.2 12.5 11.6 9.8 10.7 8.9 8.0 8.0 8.0 8.9

architecture are obtained using the optimal kernel function for each classification

unit as selected during training. The one-vs-one and one-vs-all approaches utilize

the same predefined kernel function for each classifier, so different error rates are

obtained using linear, 2nd and 3rd polynomial order and RBF kernels. Table 2

summarizes the exact classification error rates corresponding to Fig. 3.

The results for the prostate cancer dataset show that the SVM-based classifiers

outperform the kNN classifiers. The permutation testing for the proposed architec-

ture led to rejection of the null hypothesis with a p-value estimate less than 0.05.

In all cases, the proposed architecture results in lower or comparable classification

error rates with the one-vs-one and one-vs-all schemes. The minimum classification

error obtained for the prostate cancer dataset reached 6.3% in three cases using one,

seven or ten genes. The same classification error rate was obtained by one-vs-one

scheme using 3rd order polynomial kernel and ten genes. So, the proposed architec-

ture has an advantage over these schemes as it is capable of providing a better or

comparable performance using fewer genes. The upper classification error bound of

the cascading SVMs architecture is 10.7%, while this bound increases to 14.3% for

the one-vs-one and to 16.1% for the one-vs-all scheme.

3.2. Lung cancer dataset

There are four main histologic subtypes of lung cancer that are regularly distin-

guished by tumor morphology. These include Small-Cell Lung Carcinomas (SCLC),

Large-Cell Lung Carcinomas (LCLC), Squamous Carcinomas (SC) and Adeno-

Carcinomas (AC)45. Garber et al.21 published a dataset of lung cancer gene ex-

pressions of samples belonging to these subtypes. Their work was focused on unsu-

pervised subclassification of adenocarcinoma into subgroups that correlate with the

degree of tumor differentiation and patient survival. This dataset comprises of 65

samples spanning five classes as follows: 5 normal lung specimens, 4 SCLC, 4 LCLC,
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Fig. 4. Classification results for the lung cancer dataset using a) kNN, b) one-vs-one and c)
one-vs-all.

13 SC and 39 AC. Each sample consists of 24193 gene expression measurements.

A cascading architecture of four blocks was built for the discrimination of the five

classes. The first block handles the discrimination of normal and cancerous samples,

the second block separates the SCLC samples, the third block separates the LCLC

samples, and the last block makes the discrimination between SC and AC samples.

A range of one to six genes was considered in the gene selection process based on the

criterion described in section 2.2. Comparative classification results were obtained

using the proposed architecture, 1-NN, 3-NN and 5-NN classifiers (Fig. 4a), and
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Table 3. Classification results (%) using the lung cancer dataset
in detail.

Classifier / Genes 1 2 3 4 5 6

Cascading 33.9 30.8 29.2 21.5 20.0 15.4

1-NN 44.6 47.7 43.1 40.0 41.5 40.0
3-NN 36.9 41.5 43.1 40.0 40.0 43.1
5-NN 36.9 35.4 35.4 43.1 38.5 36.9

One-vs-one Linear 44.6 38.5 32.3 27.7 29.2 13.9

One-vs-one Pol-2 43.1 38.5 33.9 27.7 29.2 20.0
One-vs-one Pol-3 44.6 38.5 36.9 30.8 27.7 23.1
One-vs-one RBF 43.1 38.5 32.3 33.9 27.7 21.5

One-vs-all Linear 43.1 40.0 30.8 26.2 35.4 21.5

One-vs-all Pol-2 40.0 43.1 33.9 30.8 33.9 27.7

One-vs-all Pol-3 40.0 43.1 32.3 32.3 33.9 27.7

One-vs-all RBF 40.0 43.1 35.4 32.3 36.9 30.8

the one-vs-one (Fig. 4b) and one-vs-all SVM combination schemes using different

kernels (Fig. 4c). The corresponding classification errors are presented in detail in

Table 3.

The results show that the proposed architecture leads to lower classification error

rates compared to the other classifiers using one to five genes. The permutation

testing for the proposed architecture led to the rejection of the null hypothesis

with a p-value estimate less than 0.05. The one-vs-one SVM combination scheme

with linear kernel results in the lowest classification error for six input genes. The

minimum classification error rate obtained by the cascading SVMs architecture was

15.4% whereas the maximum reached 33.9%.

4. Conclusions

We presented a novel architecture based on cascading SVMs that can be used as a

reliable tool for medical diagnosis using multi-class gene expression data. It was ap-

plied for genomic-based diagnosis of prostate and lung cancer using multi-class gene

expression datasets. The proposed architecture consists of a pre-processing unit and

sequentially ordered blocks for the discrimination of multiple classes and it allows for

the most discriminatory genes to be considered as inputs at each block by applying

a gene selection criterion. This feature makes the proposed architecture particu-

lary suitable for medical diagnosis because it allows for different gene-markers to

be identified for each disease or subtype of a disease. For example, the most im-

portant gene identified for the discrimination of abnormal from normal samples in

the prostate dataset is Caveolin 1, which is a tumor suppressor gene candidate and

a negative regulator of the Ras-p42/44 MAP kinase cascade 46. Consequently, the

proposed architecture can lead to a classification model of low complexity which

encompasses relevant genomic-based diagnostic information within its structure.
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The order of the block sequence in a cascading classification model could be

determined a) by the available knowledge provided by the medical experts on the

particular diagnostic application24, e.g. in our study we considered the histopatho-

logical subclassification of carcinomas20,45, and b) by considering the complexity

and the overall classification accuracy of the model. Studies on cascading classi-

fiers 29,47 suggest that the classifiers should be ordered in ascending complexity.

That is, the less complex classifiers should be ordered before the more accurate

and complex ones. However, the proposed architecture consists only of SVM clas-

sifiers and embodies a search algorithm for the determination of their parameters,

which in turn affects their complexity, e.g. a large c parameter could lead to an

increase in the number of support vectors. Therefore, the ordering of the classifiers

in ascending complexity is not directly feasible. Alternatively, one could experiment

with all possible orders of the SVM classification blocks and decide upon the lowest

classification error rates and the least overall architecture complexity.

The results of this study lead to the following conclusions regarding the SVM

combination schemes:

(i) In most cases they perform better than kNN classifiers. The proposed archi-

tecture performs better than kNN classifiers in all cases.

(ii) The cascading SVM combination scheme provides low classification error rates

which are comparable and in most cases lower than the rates obtained by the

one-vs-one SVM combination scheme especially when a small number of genes

is involved.

(iii) The cascading SVM combination scheme provides lower classification error

rates in all cases compared to the one-vs-all SVM combination scheme.

(iv) The results validate the conclusions of Hsu et al. 11, which support that the

error rates obtained using the one-vs-one and the one-vs-all SVM combination

schemes are comparable to each other.

(v) The proposed architecture utilizes N − 1 classifiers whereas the one-vs-one

SVM combination scheme utilizes N(N − 1)/2 classifiers and the one-vs-all

SVM combination scheme utilizes N classifiers.

(vi) In the case of prostate cancer diagnosis the overall error obtained was lower

than in the case of lung cancer. This could be attributed to the fact that the

first dataset consists of more samples and fewer classes.

An issue that arises considering the sequential arrangement of the blocks in

the cascading architecture is that an error, which may occur on a first block, will

propagate to the next blocks. The impact of this “error propagation effect” to the

overall classification accuracy of the cascading architecture is negligible as a sample

is considered misclassified by the first time the error occurs. However, an increase

of the overall processing time performance could be observed, as more blocks would

be falsely enabled for the classification of the propagated samples.

The proposed cascading SVMs architecture has given promising results which,

in conjunction with the decreasing cost of microarrays, advocate to its direct clinical
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applicability. Within our future perspectives is the incorporation of more sophisti-

cated gene selection methods31 and SVM based methods for tackling the problem

of missing values48. Moreover, we consider the development of a complete stand-

alone microarray data analysis tool for medical diagnosis which will integrate image

processing and analysis methodologies 49 in addition to the cascading diagnostic

architecture under a user friendly graphical environment.
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