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Abstract - Ultrasonography is an invaluable and widely used medical imaging tool. 

Nevertheless, automatic texture analysis on ultrasound images remains a challenging 

issue. This work presents and investigates a texture representation scheme on thyroid 

ultrasound images for the detection of hypoechoic and isoechoic thyroid nodules, 

which present the highest malignancy risk. The proposed scheme is based on the 

Contourlet Transform (CT) and incorporates a thresholding approach for the selection 

of the most significant CT coefficients. Then a variety of statistical texture features 

are evaluated and the optimal subsets are extracted through a selection process. A 

Gaussian kernel Support Vector Machine (SVM) classifier is applied along the 

Sequential Floating Forward Selection (SFFS) algorithm, in order to investigate the 

most representative set of CT features. For this experimental evaluation, two image 

datasets have been utilized: one consisting of hypoechoic nodules and normal thyroid 

tissue and another of isoechoic nodules and normal thyroid tissue. Comparative 

experiments show that the proposed methodology is more efficient than previous 

thyroid ultrasound representation methods proposed in the literature. The maximum 

classification accuracy reached 95% for hypoechoic dataset, and 92% for isoechoic 

dataset. Such results provide evidence that CT based texture features can be 

successfully applied for the classification of different types of texture in ultrasound 

thyroid images. 

 

 

1   Introduction 

 

Ultrasonography is a diagnostic imaging technique used to visualize 

subcutaneous body structures and internal organs for possible pathology or lesions 

[1]. Modern medical ultrasonography presents a unique set of advantages including 

real-time data acquisition, low cost, absence of any side effects and high resolution 

imaging. Thus, ultrasonography has become an invaluable tool for non invasive 

medical examinations, and is considered one of the most accurate methods for the 

diagnosis and follow up of different pathologies in a variety of tissues and organs 

including breast, prostate and thyroid gland. 

The thyroid gland is one of the largest endocrine glands in the body. It is 

located in the lower part of the neck, below the Adam's apple, and has the shape of a 

butterfly. The purpose of the thyroid gland is the production of thyroid hormones, 

which have an effect on nearly all tissues of the body where they control cellular 

activity. Therefore, the function of the thyroid is to regulate the body's metabolism.  

Due to the thyroid’s location, ultrasonography has become the most widely 

utilized imaging method for the diagnosis of various thyroid disorders [1]. One of the 

most common disorders of the thyroid gland is the occurrence of thyroid nodules. 
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They usually cause no symptoms and they can hardly be detected through typical 

clinical examination. Even though thyroid nodules can be as small as 3 millimetres in 

diameter [2], they can lead to carcinomas, follicular adenomas, benign thyroid 

diseases and other pathological disorders [3]. Despite the fact that some nodules can 

be detected through palpation, almost half (46%) of the nodules detected by 

ultrasonography did escape detection by clinical examination [4]. Such statistics 

indicate the significance of ultrasonography for accomplishing a more early and 

accurate detection of thyroid nodules.  

Echogenicity and texture are the main two sonographic features that the 

radiologic community considers valuable for the detection and malignancy risk 

assessment of thyroid nodules [3]. The echogenicity of thyroid nodules can indicate 

their malignancy risk and help the diagnosis of various thyroid disorders [5]. 

Depending on their echogenicity, thyroid nodules can be divided into three categories: 

hypoechoic, isoechoic, and hyperechoic. Hypoechoic and isoechoic nodules (Figure 

1) are associated with the highest malignancy risk, while isoechoic nodules are more 

difficult to be detected by the physician through US examination [5]. 

Currently, a challenge for the image analysis community is the application of 

automated or semi-automated computational methods on ultrasound images, for the 

computer aided diagnosis (CAD) of different types of diseases. Towards this direction 

there have been studies for the automatic evaluation of thyroid ultrasound textures 

employing various second or higher order statistical texture features. Smutek et al. [6] 

proposed the combination of Haralick’s co-occurrence features [7] and Muzzolini’s 

 
(a) 

.. ..  
(b) (c) 

 

Figure 1. (a) Ultrasound image of a normal thyroid gland. (b) Thyroid ultrasound image with one 

hypoechoic nodule (c) Thyroid ultrasound image with one isoechoic nodule. 
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spatial features [8] for the discrimination between inflamed and normal thyroid tissue. 

In a later study on automatic malignancy risk assessment of thyroid nodules, Tsantis 

et al. [9] explored an exhaustive selection scheme using three types of texture 

representation approaches, namely Grey Level Histograms (GLH) [10], Co-

occurrence Matrices (CM) [7] and Run Length Matrices (RLM) [11]. The optimal 

feature set resulted by this selection was a combination of GLH and CM texture 

features. An approach for quantitative characterization of the thyroid tissue has been 

presented by Skouroliakou et al. [12]. In this study four types of texture features have 

been computed from CMs, contrast, correlation, energy and homogeneity. Then a 

primary component analysis has been used to select the optimal set of these features. 

Another approach based on Radon Transform features have been proposed by 

Savelonas et al. [13] for the characterization of thyroid tissue. A more recent study 

[14] proposed the combination of Fuzzy Local Binary Patterns (FLBP) [15] and 

Fuzzy Grey-Level Histograms [16] (FGLH) for the representation of ultrasound 

texture and echogenicity of the thyroid gland.  

For any CAD approach a key issue remains the texture representation method 

utilized. Especially in the case of ultrasound imaging, the presence of speckle noise 

[17] makes texture representation an even more difficult and challenging task. Among 

texture representation approaches proposed in literature, signal processing based 

approaches have drawn much attention due to several key characteristics including 

solid theoretical background, multi-scale properties and noise tolerance [18][19]. This 

resulted in the introduction of a variety of effective texture representation methods, 

including the Discrete Wavelet Transform (DWT) and the Contourlet Transform (CT) 

[20][21]. Although the Discrete Wavelet Transform has been successfully applied for 

a wide range of image analysis problems, for two dimensions it tends to ignore the 

smoothness along contours [20]. In addition, the DWT provides only limited 

directional information which is an important aspect of multidimensional signals [21]. 

These limitations have been partially addressed by the CT which can efficiently 

approximate a smooth contour at multiple resolutions. Additionally in the frequency 

domain, the CT offers a multiscale and directional decomposition, providing 

anisotropy and directionality, features missing from the DWT [20][21][22]. The CT 

has good approximation property for smooth contours [21] contained in natural 

images and is capable of capturing the directional edges of the image at different 

scales.  

The CT has been successfully applied in a variety of texture analysis 

applications, including Synthetic Aperture Radar (SAR) and natural image 

classification [23], content-based image retrieval [24], image denoising [25], 

despeckling of images [26], image compression [27], iris recognition [28], etc. 

Recently, CT based methods have been proposed for the analysis and processing of 

different types of medical images. Qiao and Haiyun proposed an algorithm based on 

CT for image segmentation [29]. Their experiments on computed tomography images 

of the vertebra showed that the use of CT provided better results than DWT based 

approaches. In another study, Al-Azzawi et al. utilized the CT for medical image 

fusion [30]. Experiments on computed tomography and MRI images showed that the 

fusion results of their method contained more detail information and the information 

distortion was very small. Concerning ultrasound medical images, a CT based 

approach by Song et al. [31] has been proposed for image despeckling. Experimental 

evaluation of this approach resulted in improved performance on suppressing speckle 

noise compared to other methods and in increase of the preserved details of the 
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images. The success of these methods provides evidence for the efficiency of the CT 

for image analysis and processing. 

Τhe aim of this study is to investigate the performance of a Contourlet 

Transform based schema and to compare it with other approaches proposed in 

literature for the representation and identification between normal and pathological 

ultrasound textures of the thyroid gland. A hard thresholding scheme has been applied 

for the selection of the most significant set of CT coefficients. From this set, a variety 

of statistical features have been calculated and then evaluated through a supervised 

classification schema on real thyroid ultrasound images. For the classification stage, 

the Support Vector Machine (SVM) approach has been applied and combined with 

the Sequential Floating Forward Selection (SFFS) algorithm, for the extraction of the 

most representative set of CT features. 

The rest of this paper is organized in three sections. Section 2 presents the 

proposed methodology including the CT and the above mentioned feature extraction 

and selection schema. In section 3, this methodology is evaluated and compared with 

other approaches through an experimental study on real thyroid ultrasound images. 

Finally, conclusions and future perspectives of this study are presented in section 4. 

 

 

2   Methodology  

 

 

2.1 The Contourlet Transform 

 

The CT is a directional multiresolution image representation scheme proposed 

by Do and Vetterli [20], which is effective in representing smooth contours in 

different directions of an image, thus providing directionality and anisotropy [20][24]. 

The method utilizes a double filter bank, in order to obtain a sparse expansion of 

typical images containing smooth contours. In this filter bank (Figure 2), first the 

Laplacian Pyramid (LP) is used to detect the point discontinuities of the image and 

then a Directional Filter Bank (DFB) to link point discontinuities into linear 

structures. This scheme results in an image expansion that uses basic elements like 

contour segments and thus it is named Contourlet Transform. The separation of 

directional and multiscale decomposition stages provides a fast and flexible transform 

with computational complexity O(N) for N-pixel images when using Finite Impulse 

Response (FIR) filters [21]. 

 

 

2.1.1 The Laplacian Pyramid 

 
The LP, introduced in [32], provides the means to obtain multiscale 

decomposition. In each decomposition level it creates a downsampled lowpass version 

of the original image and a bandpass image. A coarse image with the lower 

frequencies and a more detailed image with the supplementary high frequencies 

containing the point discontinuities are obtained. This scheme can be iterated 

continuously in the lowpass image and is restricted only from the size of the original 

image due to the downsampling. 
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Figure 2. The contourlet filter bank. In each level, the Laplacian Pyramid provides a downsampled 

lowpass and a bandpass version of the image. The bandpass image is then fed into the Directional Filter 

Bank. This scheme is iterated in the lowpass image [21]. 

 

 

 

2.1.2 Directional Filter Bank 

 
The DFB, proposed in [33], is a 2-D directional filter bank that can achieve 

perfect reconstruction [21]. The original DFB is efficiently implemented via an l-level 

binary tree leading to 2
l
 subbands with wedge-shaped frequency partitioning. 

However, in the CT, a new method is applied [21] which avoids modulating the input 

image and uses a simpler rule for expanding the decomposition tree [34]. The 

simplified DFB used for the CT consists of two stages. The first stage is a two-

channel quincunx filter bank [35] with fan filters that divides the 2-D spectrum into 

vertical and horizontal directions. The second stage is a shearing operator that just 

reorders the samples. By adding a shearing operator and its inverse before and after a 

two-channel filter bank, a different directional frequency partition is obtained, while 

maintaining the ability to perfectly reconstruct the original image. 

 

 

 

2.1.3 Pyramidal Directional Filter Bank 

 

By combining the LP and the DFB, a double filter bank named Pyramidal 

Directional Filter Bank (PDFB) [36] is obtained. Bandpass images from the LP 

decomposition are fed into a DFB in order to capture the directional information. This 

scheme can be iterated on the coarse image and is restricted only by the size of the 

original image. The combined result is the contourlet filter bank, which is a double 

iterated filter bank that decomposes images into directional subbands at multiple 

scales. The CT coefficients have a similarity with wavelet coefficients since most of 

them are almost zero and only few of them, located near the edge of the objects, have 

large magnitudes [37]. Figure 3 shows an example of decomposition using the CT. 
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Figure 3. CT decomposition of “Lena” image. Decomposed using 3 levels of LP decomposition with 8, 

4 and 4 directions respectively from finer to coarser scale. 

 

 

 

2.2 Feature extraction 

 

Due to the iterated lowpass filtering the most relevant texture information has 

been separated, thus the texture information is mainly contained in the directional 

subbands of each scale. As a result, the lowpass image is not taken into consideration 

when calculating the texture feature vector. A set of statistical texture features 

proposed in literature [38][39] are evaluated in this study. This set is presented in 

Table 1. Mean energy, standard deviation and information entropy have been utilized 

for the contourlet domain in [23] and [40]. 

 

 
Table 1. List of the statistical measures used. Ijk is the subband image of the kth direction in the jth 

level. Mjk is the row size and Njk the column size of the subband image Ijk. 
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The energy is one of the most effective features used in textural feature extraction. In 

this work, the mean energy (Eq. 1) of each subband image is calculated. Standard 

deviation provides a means to capture the scale of the diversity of the image and is 

defined in (Eq. 2), whereas information entropy represents the complexity of the 

texture information and is defined in (Eq. 4). Contrast (Eq. 6) measures the amount of 

local variations present in the image, while homogeneity (Eq. 7) relates to the 

texture’s contrast. Then, the feature vector of the subband image of the kth direction 

in the jth level is defined as: 

 

fjk = ( MEjk, SDjk, IEjk, COjk, HOjk) (8) 

 

A CT decomposition is referred as being J level when the image is decomposed using 

a J level LP decomposition with a Kj subband DFB applied at the jth level, ( j = 

1,2,…,J ). For a J level CT, the total number of directional subbands Ktotal is 

calculated as: 

 

∑
=

=
J

j

jtotal KK
1

 (9) 

 

After calculating the feature vector of each subband image, these vectors are 

rearranged and combined to form the complete feature vector F = {  MEi, SDi, IEi, 

COi, HOi }, i = 1,2,…, Ktotal of the input image as shown on (Eq. 10): 

 

}{
totaltotaltotaltotaltotal KKKKK HOHOCOCOIEIESDSDMEMEF ,...,,,...,,,...,,,...,,,..., 11111=  (10) 

 

where MEi, SDi, IEi, COi and HOi refer to the respective statistical measure of the ith 

directional subband of the CT decomposition. At this feature vector, the number of 

elements increases exponentially with the level of DFB decomposition. The 

computational complexity for calculating these features is O(N) for N the number of 

the CT coefficients. 
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2.3 Coefficients thresholding 

 

Random noise is not likely to generate significant CT coefficients [21]. As a 

result, the application of an approach based on keeping the most significant CT 

coefficients is expected to provide better performance for many applications. A 

common method for selecting the most significant CT coefficients is to keep the M 

most significant coefficients while reducing all the others to zero [21]. In this study, 

instead of arbitrary choosing the M most significant coefficients, a hard thresholding 

approach (Eq. 11) is utilized to eliminate the non-significant coefficients. For each 

subband image the mean absolute value of its coefficients was used as the threshold 

value Τ (Eq. 12). Then the new coefficients are calculated as: 
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where Ijk is the subband image of the kth direction in the jth level, Mjk is the row size 

and Njk the column size of the subband image Ijk. 

 Another advantage of reducing the CT coefficients number is the acceleration 

of feature calculation. If only the non-zero coefficients are used while keeping Mjk and 

Njk (Table 1) the same, the number of operations needed is considerably reduced 

without affecting the features values.  

 

2.4 Feature selection 

 

Feature selection approaches offer more than one significant advantages, 

including reduction of computational complexity, improved generalization ability and 

robustness against outliers. A widely adopted algorithm for feature selection is the 

Sequential Floating Forward Selection (SFFS) algorithm [41] which has been used in 

a broad range of applications [42]. The idea behind the SFFS algorithm consists of 

consecutive forward selection steps, followed by a number of backward steps as long 

as the resulting subsets are better than the previously evaluated ones at the same level. 

Due to its behaviour, the method has the ability to correct wrong decisions made in 

the previous steps in order to approximate the optimal solution as accurate as possible. 

This results in one of the key advantages of the SFFS algorithm: its tolerance to 

deviations from monotonic behaviour of the feature selection criterion function [41]. 

However, in order to achieve this near optimality, the need of computational time is 

greatly increased, especially in the case of data of greater complexity and 

dimensionality. 

Thyroid ultrasound images suffer from the presence of speckle noise [17] 

resulting in noisy features. Additionally, the feature vectors created in this work 

contain correlated features due to the multiscale decomposition using the CT. 
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Directional subbands at each scale correlate with each other. The use of a feature 

selection method is needed in order to eliminate noisy and highly correlated features, 

as well as reduce the computational resources needed. 

 

 

2.5 Classification method 

 

For the experimental evaluation of the texture representation methodology the 

SVM classification scheme was utilized. Among the wide variety of existing 

classifiers, support vector machines (SVMs) [43] are commonly believed to be a good 

choice because of their generalization ability in high-dimensional spaces such as the 

ones created by texture patterns. They were originally developed for two-class 

problems but they can be extended to support multiclass problems. For several pattern 

recognition applications, SVMs have been shown to provide better generalization 

performance than traditional techniques. Their good characteristics are based on the 

strong connection they have to the underlying statistical learning theory. Due to the 

usual ineffectiveness of linear classifiers to solve general pattern recognition 

problems, methods that support nonlinear decision surfaces are needed. 

 

3   Experimental evaluation 

 

The performance of the proposed texture representation schema has been 

evaluated through supervised classification experiments via sets of real US thyroid 

images. These sets consist of medical ultrasound images of the thyroid gland. A total 

of 72 thyroid ultrasound images were obtained from examinations performed on 43 

patients, using a Philips HDI 5000 sonographic imaging system, with a spatial 

resolution of 470×470 pixels and amplitude resolution of 8 bits. During these 

examinations the parameters of the sonograph were kept constant. Dynamic range of 

pixel intensities can be quite narrow in ultrasound images and their distributions may 

vary significantly. To deal with this problem, a pre-processing stage consisting of an 

image normalization method has been applied. The pixel values of each ultrasound 

image were redistributed proportionately in order to cover the entire range of display 

brightness [44]. After the diagnosis by expert physicians, two sets of ultrasound 

images where created taking into consideration the type of thyroid nodules. The first 

set included thyroid glands with hypoechoic nodules and the second glands with 

isoechoic thyroid nodules. From each of these ultrasound images, an equal number of 

healthy and nodular sample blocks have been selected. The number of sample blocks 

was determined by the total number of non overlapping 32x32 pixel blocks that could 

be extracted from the nodular area. Blocks of this size were the largest that could be 

obtained due to the small size of the thyroid nodules examined. Following this 

process, 200 sample blocks were selected for each image set, 100 with normal thyroid 

tissue and 100 with nodular thyroid tissue (Figure 4).  

The size of the sample blocks (32x32 pixels) restricted the number of 

decomposition levels to three for the LP and to six for the DFB. The first LP 

decomposition level supports up to six levels of DFB decomposition, decreased by 

one for every extra LP decomposition level. The filters applied for the LP were the 

Burt [32], 5-3 and 9-7 [21][45] and for the DFB the 5-3 and 9-7 filters. All possible 

combinations of filters and decomposition levels were tested. The classification task 

was implemented by means of the SVM classifier. The kernel function used for the 

SVM classifier was the Gaussian kernel function [46] and as proposed in [47], the 
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SVM parameters considered were in the range of 2
-5

 to 2
15

 for the cost parameter c 

and 2
−15

 to 2
3
 for the parameter γ. The nonlinear SVM was selected due to its better 

generalization ability compared to linear SVMs. The SVM classifier utilized at the 

experimental evaluation of this study is the LIBSVM [47].  

 

  

 

  

(a)  (b) 

  

 

  
(c)  (d) 

 

Figure 4. Sample images from the experimental datasets. (a) Normal thyroid tissue from image dataset 

with hypoechoic thyroid nodules, (b) nodular thyroid tissue from image dataset with hypoechoic 

thyroid nodules, (c) normal thyroid tissue from image dataset with isoechoic thyroid nodules and (d) 

nodular thyroid tissue from image dataset with isoechoic thyroid nodules. 

 

 

 

Classification accuracies were estimated by 10-fold cross validation [49]. At 

each fold of the 10-fold cross validation the SFFS algorithm is applied on the training 

set in order to select the optimal feature set. The accuracy obtained by the SVM is 

used as the criterion function for the SFFS. Then, the features selected by the SFFS 

algorithm are considered for the classification of the testing phase. Classification 

accuracy is obtained for each fold of the 10-fold cross validation procedure and the 

overall accuracy is calculated as the mean accuracy of all 10 folds.  

Additionally, the performance of the proposed scheme has been investigated 

against other feature extraction approaches proposed in literature for texture 

representation of thyroid US images. These feature extraction approaches include the 

fusion of Muzzolini’s spatial features and grey-level CM features (CM-M), proposed 

by Smutek et al. [6], the mean value of the local GLH and the sum variance estimated 

from the CM (CM-MGL), proposed by Tsantis et al. [9] and the fusion of FLBP and 

FGLH features (FLBP-FGLH), investigated by Iakovidis et al. [48]. The Gaussian 

kernel SVM classifier has been also utilized in a 10-fold cross validation schema for 

the classification phase of these features. 

The experimental procedure was divided in two sets of experiments. In the 

first set, the image dataset consisting of the hypoechoic thyroid nodules and normal 

tissue has been used in a comparative experimental study between the proposed 

Contourlet-based feature extraction schema and the three approaches proposed in 
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literature. In the second set of experiments, the same experimental procedure is 

repeated for the image dataset with the isoechoic thyroid nodules. 

 

 

3.1 Experiments on hypoechoic thyroid nodules 

 

 Detailed results about the maximum classification accuracy, obtained using 

the aforementioned Controurlet-based feature extraction schema, are shown in Table 

2. Experiments where conducted using all subsets of texture features from Table 1, 

but the best results were obtained using only the mean energy, standard deviation and 

information entropy features. From Figure 5, it can be seen that the maximum 

classification accuracy achieved with no feature selection applied was 94,9%. This 

accuracy has been obtained via 9-7 filters for the LP and 5-3 filters for the DFB, with 

2 levels of LP decomposition, decomposed into 2 and 4 directional subbands 

respectively from finer to coarser scale, using the original CT coefficients. 

 The application of the SFFS selection algorithm led to improved classification 

results for every experimental setup. In this case, the maximum classification 

accuracy was 95% using only 13 out of 36 features. This accuracy has been obtained 

via 9-7 filters for the LP and 5-3 filters for the DFB, with 3 levels of LP 

decomposition, decomposed into 2, 8 and 2 directional subbands respectively from 

finer to coarser scale, using the thresholded CT coefficients. 

 The optimal results of the experimental evaluation on the image dataset with 

hypoechoic thyroid nodules are summarized in Figure 5. The proposed CT-based 

methodology provided the best performance compared to the other approaches 

evaluated. The fusion methodology FLBP-FGLH provided the second best 

classification accuracy (81,6%) with the CM-M and CM-MGL methods following. 

For the evaluation of the statistical significance of the pairwise differences between 

the classification accuracies obtained by 10-fold cross validation, a 1-way ANOVA 

[49] was applied. The results concerning the method that provided the highest 

accuracy in comparison with the other methods tested are summarized in Table 3, 

showing that the proposed methodology performs significantly better than the other 

three approaches, with p-value ≤ 0,043 and F-ratio ≥ 4,71. Moreover a performance 

comparison of the evaluated approaches on hypoechoic thyroid nodular and normal 

textures is clearly depicted by the corresponding ROC curves illustrated in Figure 6. 

 
Table 2. Maximum classification accuracy (%) achieved for the image dataset with hypoechoic thyroid 

nodules with each method at each LP decomposition level using the original and thresholded CT 

coefficients. 

 

Original CT coefficients Thresholded CT coefficients              Method 

 

LP level 
SVM SVM+SFFS SVM SVM+SFFS 

First 87,5 88,6 86,9 87,4 

Second 94,9 94,9 94,3 94,5 

Third 92,6 93,7 94,3 95 
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Figure 5. Maximum classification accuracy (%) per method for the image dataset with hypoechoic 

thyroid nodules. HT stands for “hard thresholding” and NT for “no thresholding”. 

 

 

 
Table 3. 1-Way ANOVA results for the image dataset with hypoechoic thyroid nodules. 

 

Approach 1 Approach 2 F-ratio p-value 

HT CT-SFFS CM-M 4,71 0,043 

HT CT-SFFS CM-MGL 5,23 0,034 

HT CT-SFFS FLBP-FGLH 4,92 0,039 
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Figure 6.  ROC curves obtained by four feature extraction approaches through SVM classification of 

hypoechoic thyroid nodular texture and normal thyroid tissue.  
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3.2 Experiments on isoechoic thyroid nodules 

 

The second set of experiments consisted of the same experimental setup, 

applied on the image dataset with the isoechoic thyroid nodules. The maximum 

classification results are summarized in Table 4. These results were obtained using a 

subset of the features presented in Table 1, consisting of the mean energy, standard 

deviation and information entropy. 

Figure 7 shows that the maximum classification accuracy achieved without 

any feature selection was 87,3%. The best result has been obtained via 5-3 filters for 

the LP and 5-3 filters for the DFB, with 3 levels of LP decomposition, decomposed 

into 4, 2 and 8 directional subbands respectively from finer to coarser scale, using the 

thresholded CT coefficients.  

As expected, the application of the SFFS selection algorithm led to improved 

classification results for every experimental setup. In this case, the maximum 

classification accuracy achieved was 92% using only 8 out of 48 features. This 

accuracy has been obtained via 5-3 filters for the LP and 9-7 filters for the DFB, with 

1 level of LP decomposition, decomposed into 16 directional subbands, using the 

thresholded CT coefficients.  

The results of the experimental evaluation on the image dataset with isoechoic 

thyroid nodules are summarized in Figure 7. The proposed methodology 

outperformed the fusion methods CM-M and CM-MGL and provided better results 

than the fusion methodology FLBP-FGLH which achieved 88,6% accuracy. The 1-

way ANOVA results are summarized in Table 5, showing that the method examined 

performs significantly better, with p-value ≤ 0,037 and F-ratio ≥ 5,05. Finally a 

schematic performance comparison of the evaluated approaches on isoechoic thyroid 

nodular and normal textures is also depicted by the corresponding ROC curves 

illustrated in Figure 8. 

 

 
Table 4. Maximum classification accuracy (%) achieved for the image dataset with isoechoic thyroid 

nodules with each method at each LP decomposition level using the original and thresholded CT 

coefficients. 

 

Original CT coefficients Thresholded CT coefficients              Method 

 

LP level 
SVM SVM+SFFS SVM SVM+SFFS 

First 84,8 90,1 82,3 92 

Second 85,4 90,5 85,4 89,3 

Third 84,8 89,8 87,3 88,8 
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Figure 7. Maximum classification accuracy (%) per method for the image dataset with isoechoic 

thyroid nodules. HT stands for “hard thresholding” and NT for “no thresholding”. 

 

 
Table 5. 1-Way ANOVA results for the image dataset with isoechoic thyroid nodules. 

 

Approach 1 Approach 2 F-ratio p-value 

HT CT-SFFS CM-M 6,71 0,018 

HT CT-SFFS CM-MGL 7,08 0,015 

HT CT-SFFS FLBP-FGLH 5,05 0,037 
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Figure 8.  ROC curves obtained by four feature extraction approaches through SVM classification of 

isoechoic thyroid nodular texture and normal thyroid tissue. 
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4   Conclusions 

 

In this study a schema for the texture representation of ultrasound images of 

thyroid tissue has been presented and investigated experimentally. This schema 

incorporates features based on the Contourlet Transform (CT) and different types of 

filter banks. The experimental evaluation through supervised classification on real 

ultrasound thyroid images led to high classification results. The proposed 

methodology provided better classification accuracy compared with state of the art 

methods. Furthermore, overall results (Figure 5 and 7) show that the application of the 

SFFS algorithm clearly improves the performance of the examined method and that a 

significantly smaller subset of CT features is necessary and sufficient to describe 

effectively the thyroid ultrasound texture. Through the feature selection phase the 

maximum classification accuracy reached 95% for the image dataset with the 

hypoechoic thyroid nodules and 92% for the image dataset with the isoechoic thyroid 

nodules, for a significantly smaller set of features. Detailed results (Tables 2 and 4) 

showed that the introduction of the hard thresholding scheme for selecting the most 

significant CT coefficients led in many occasions to slightly better results, indicating 

that the thresholding approach is quite promising and requires further investigation. 

These results are considered to provide evidence for the effectiveness of CT texture 

representation of ultrasound thyroid images. Future work could include experimental 

evaluation of the presented schema on ultrasound images of higher resolution, 

evaluation of different types of statistical features, different thresholding schemes for 

the selection of the most significant CT coefficients and the combination of this 

scheme with other feature extraction approaches. 
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