
  

  

Abstract— This work introduces a novel method for the 
detection and segmentation of protein spots in 2D-gel images. A 
multi-thresholding approach is utilized for the detection of 
protein spots, while a custom grow-cult algorithm combined 
with region growing and morphological operators is used for 
the segmentation process. The experimental evaluation against 
four state-of-the-art 2D-gel image segmentation algorithms 
demonstrates the superiority of the proposed approach and 
indicates that it constitutes an advantageous and reliable 
solution for 2D-gel image analysis. 

I. INTRODUCTION 

The field of proteomics has gained a lot of attention in the 
past years and has been increasingly utilized for large scale 
study of proteins in cells [1], in order to assist the evaluation 
of new drugs, the creation of new biomarkers and the 
exploration of biological events [2]. The Two-Dimensional 
Gel Electrophoresis (2D-gel) technique is a powerful 
proteomics technique that has the ability to separate 
thousands of proteins on polyacrylamide gels in order to 
facilitate protein identification [3]. Results are visualized into 
a digital image that can be further analyzed. The aim of 2D-
gel image analysis is the quantification of the expression 
level of each protein in order to extract biological 
conclusions. This is achieved by detecting the pixels 
belonging to protein spots through an image segmentation 
process. 2D-gel images are processed in sets of samples from 
the same experiment and segmentation is applied either on 
each original image or after aligning the images of the set in 
order to match the corresponding protein spots. Alignment 
can be applied after or prior to detecting and segmenting the 
protein spots [4]. Spot detection and segmentation on 2D-gel 
images can be a very challenging task due to the 
characteristics of these images, which may contain thousands 
of spots with varying intensity, size and shape. Moreover, 
adjacent spots often overlap with each other and the overall 
quality of these images is affected by artifacts, 
inhomogeneous background and high levels of noise [5]. 

Many commercial software programs for 2D-gel image 
analysis are available, achieving different levels of success 
[4]: e.g. Melanie 7 [6], PDQuest [7], Delta2D [8], DeCyder 
2D [9], and ImageMaster 2D [10]. Their most important 
drawback is their dependence on manual parameter tuning 
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that can lead to subjective results due to user intervention. 
Except for the available software, many methods have also 
been proposed in the literature for 2D-gel image analysis. 
Approaches were based on spot shape [11], local minima 
detection on a denoised average image [12], watershed [13] 
on an average image [14] and on individual images [15], 
morphological operations [16], active contours [17], 2D 
histograms and 3D spot morphology [18], and 
multidirectional texture and spatial intensity information [19]. 

Nevertheless, the results of both the software programs 
and the proposed methods may suffer from: 1) segmentation 
of overlapping spots as a single spot, 2) splitting a single spot 
into more, 3) failure to detect some spots, 4) detection of 
artifacts as spots and 5) inaccurate spot boundaries. All these 
problems affect the extracted protein expression levels and 
can lead to erroneous biological conclusions. Extensive 
manual editing of the results is needed in order to address 
these problems, a process that is time-consuming and leads to 
subjective and non-reproducible results and to limited 
throughput of the analysis process.  

In this work, a novel approach for detecting and 
segmenting protein spots on 2D-gel images is presented. A 
multi-thresholding scheme is locally applied on the image in 
order to detect the protein spots, while a custom grow-cut 
algorithm [20], combined with a region growing scheme and 
morphological operators, is utilized for the segmentation 
process. The proposed approach is evaluated against three 
commercial software programs: Melanie 7 [6], PDQuest [7] 
and Delta2D [8], and against the recently proposed approach 
“Scimo” [15]. Experimental evaluation on a real and a 
synthetic 2D-gel image dataset, containing a total of 
approximately ~10000 protein spots, demonstrated the 
effectiveness of the proposed method for both detection and 
segmentation.  

The rest of this paper is organized in three sections. The 
proposed approach is described in Section 2, whereas the 
experimental evaluation is presented in Section 3. Finally, 
conclusions are drawn in Section 4. 

II. METHODOLOGY 

A. Spot detection 
For the detection of spot centers, the image 𝐼 is split into 

overlapping windows 𝑊𝑖 of size 𝑑x𝑑, and tiled windows 𝑊𝑖
′ 

of size of size 𝑑′x𝑑′, as shown in Fig. 1(a), with d determined 
as 𝑑 = 𝑑′+2⌈𝑑′/8⌉ and 𝑖 = 1,...,𝑁. The number N of tiled 
windows is calculated as 𝑁 = ⌈Image Width 𝑑′⁄ ⌉ ∙
⌈Image Height 𝑑′⁄ ⌉. Then, the multiple Otsu thresholding 
technique [21] is used in order to automatically obtain 
𝑇𝑖,𝑗 , 𝑗=1,...,𝑙,...,ℎ,...,𝑀 thresholds for each 𝑊𝑖. The pixels 
inside 𝑊𝑖

′ with intensity values below 𝑇𝑖,𝑙  are classified as 
background (𝐵𝑖) pixels and above 𝑇𝑖 ,ℎ  are classified as 
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foreground (𝐹𝑖) pixels. Intensities between the two thresholds 
indicate pixels that may belong to either category, as shown 
in Fig. 1(b).  

The pixels classified as foreground that correspond to 
local intensity maxima constitute the candidate spot centers. 
An elimination process is then performed in order to select 
one spot center per spot. A local thresholding technique [22] 
is applied on a rectangular region of size a x a around each 
candidate spot center s. Then, s is excluded for the candidate 
spot centers if its Euclidean distance from the nearest pixel 
classified as background inside the a x a region is less than 𝑘, 
with 𝑘 being the minimum allowed distance. Then, the 
remaining spot center candidates with a pairwise Euclidean 
distance less than 𝑘 are merged. An example of the final spot 
centers for a window 𝑊𝑖

′ is shown in Fig. 1(c). 

B. Segmentation 
The first step of the segmentation process is the selection 

of pixels that are predefined as spot or background pixels. 
The pixels 𝑝 that belong to the sets 𝐵 and 𝐹 of the 
background and spot seeds respectively are determined as: 

   𝐵 = {𝑝: (𝑝 ∊ 𝑊𝑖
′) ˄ (p ∊ 𝑊𝑖) ˄ [𝐼(𝑝) <  𝑇𝑖,𝑙]} (1) 

 𝐹 = {𝑝: (𝑝 ∊ 𝑊𝑖
′) ˄ (p ∊ 𝑊𝑖) ˄ [𝐼(𝑝) > 𝑇𝑖,ℎ] (2) 

𝐼(𝑝) is the intensity 𝑝, 𝑖=1,...,𝑁 and ℎ = 2 · 𝑙. The automated 
selection of seed pixels enhances the reproducibility of the 
segmentation results by avoiding user intervention. Then, the 
grow-cut [20] segmentation algorithm is applied in order to 
distinguish between background and spot pixels. Each pixel 𝑝 
is represented by a triplet (𝑙𝑝,𝜃𝑝,𝐶𝑝), with 𝑙𝑝  being the class 
label of 𝑝, 𝜃𝑝 the measure of certainty that 𝑙𝑝 corresponds to 
𝑝 and 𝐶𝑝 is equal to the intensity of 𝑝 since 2D-gel images 
are grayscale. At the beginning, 𝑙𝑝 is set to “Background” (b) 
and “Spot” (f) for the background and spot seed pixels 
respectively and their 𝜃𝑝 is set to 1. The label of the rest 
pixels is set to “Undefined” and their 𝜃𝑝 to 0. Then, the 
following process is iterated until all pixels have been 
labeled: For each pixel 𝑝, 𝑔(𝑞𝑎𝑎 , 𝑝) is computed for its 
adjacent neighbors 𝑞𝑎𝑎, 𝑎𝑎=1,..,8. The modified 𝑔(𝑞𝑎𝑎 , 𝑝) 
(3) is used instead of the original grow-cut 𝑔 function [20] in 
order to take into consideration both the difference in 
intensity between 𝑝 and 𝑞, and the class 𝑞 belongs to. The 
original 𝑔 function failed to allow the correct labeling of 
pixels near the spot boundaries due to the minimal difference 
in their intensity values compared to the adjacent background 
pixels.  
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Then, 𝜆(𝑞𝑎𝑎) = 𝑔(𝑞𝑎𝑎 , 𝑝) ∙ 𝜃(𝑞𝑎𝑎) is computed for all 𝑞𝑎𝑎  

with 𝑙𝑞𝑎𝑎≠“Undefined”. If 𝜆(𝑞𝑎𝑎)>𝜃𝑝, then 𝑙𝑝 becomesequal 
to 𝑙𝑞𝑎𝑎 and 𝜃𝑝 becomes equal to 𝜆(𝑞𝑎𝑎). After enough 
iterations, the algorithm will converge and pixel labels will 
cease to change. Fig. 1(d) shows the region depicted in Fig. 
1(a) after grow-cut’s convergence.  

Then, for each region 𝑅𝑎 formed by pixels labeled as spot 
pixels by the grow-cut algorithm, the pixels that correspond 
to spot centers are labeled as belonging to a different region 
𝑅𝑎,𝑏, b=1,2,..., and the pixels that are not spot centers are 
labeled as belonging to an undefined region. The undefined 
pixels are then sorted into descending intensity order and are 
separated into z groups 𝐺𝐺𝑒 , 𝑒=1, … , 𝑧, each containing pixels 
of x distinct intensities. For each 𝐺𝐺𝑒  , pixels 𝑝 that are not 
assigned to a region, are assigned to the region of the 
majority of their neighbors, without considering neighbors 
with undefined region. This process is iterated until all pixels 
have been assigned to a region 𝑅𝑎,𝑏, as shown in Fig. 1(e). 
Then, the optimal thresholding technique [22] is applied to 
the intensity values of each region 𝑅𝑎,𝑏

′ , which is defined as 
𝑅𝑎,𝑏
′ = {𝑝: (𝑝 ∊ (𝑅𝑎,𝑏 ⊕ 𝐷))˄ (𝑝 ∉ (𝑅𝑎,𝑏′ ⊕ 𝐷))} where 

𝑅𝑎,𝑏⊕D denotes the application of the dilation 
morphological operation on 𝑅𝑎,𝑏, with the disk (𝐷) of radius 
𝑟 as the structuring element, in order to determine the 𝑅𝑎,𝑖

′  
which contains the pixels with “high” intensity values. The 
optimal thresholding technique is also applied to the gradient 
intensity values of each region 𝑅𝑎,𝑏

′  in order to determine 
𝑅𝑎,𝑜
′  which contains the pixels with “high” gradient intensity 

values. The final spot pixels for each region 𝑅𝑎,𝑏 are 
determined as the pixels: (𝑝 ∈ 𝑅𝑎,𝑜

′ )˅(𝑝 ∈ 𝑅𝑎,𝑖
′ ), as 

illustrated in Fig. 1(f).   

III. EXPERIMENTAL EVALUATION  

Several experiments on real as well as synthetic 2D-gel 
images were conducted in order to evaluate the performance 
of the proposed approach against other widely used software 
packages and techniques; namely Melanie 7, PDQuest, 
Scimo and Delta2D. It should be noted that these techniques 
need parameter tuning -by expert biologists- for every single 
image, while the optimal parameters for the proposed 
approach were experimentally determined once and then 
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Fig. 1. (a) Overlapping 𝑊𝑖 and tiled 𝑊𝑖
′ window for a region of a real 2D-gel 

image, (b) foreground, background and middle intensity pixels of 𝑊𝑖
′, (c) 

spot centers, (d) modified grow-cut result, (e) region growing result, (f) 
fusion of optimal thresholding results on intensity and gradient values. 

 



  

used for all the experiments. The parameters utilized were: 
𝑑′=80, 𝑀=6, ℎ=2, 𝑙=4, 𝑘=4, 𝑎=31, 𝑥=10, 𝑟=5. 

The real 2D-gel image images as well as their detection 
ground truth were kindly provided by the courtesy of the 
Biomedical Research Foundation of the Academy of Athens 
(BRFAA) [23], and their use was approved by the local 
Ethics Committee of the BRFAA. Table I presents the 
detection results for the real 2D-gel images in terms of 
Sensitivity, Precision, and the F-measure [24]. Higher 
Sensitivity indicates that less real spots are not detected, 
while higher Precision indicates that fewer spurious spots 
are detected. The F-measure is a more reliable measure as it 
takes into consideration both Sensitivity and Precision. As a 
result, higher values indicate better overall detection 
performance. It is evident, that the proposed approach 
outperforms the other methods as it: a) detects almost all 
protein spots, b) detects very few spurious spots, and c) 
achieves the highest F-measure value. Fig. 2 depicts the 
detection and segmentation results of the proposed approach 
as well as the compared techniques for a region of a real 2D-
gel image. The location of each spot -according to the 
ground truth given by expert biologists- is illustrated with a 
black cross. It is evident that all the compared techniques 
detect a large number of spurious spots (Fig. 2(b-e)), 
contrary to the proposed approach (Fig. 2(f)).  

TABLE I.  DETECTION RESULTS FOR THE REAL 2D-GEL IMAGES 

Measure 
Method 

Melanie 7 PDQuest Scimo Delta2D Proposed 
Approach 

Sensitivity 91.2  ± 2.7 91.0  ± 3.0 73.5  ± 3.5 75.0  ± 6.3 90.4  ± 2.8 
Precision 83.0  ± 2.9 83.5  ± 2.7 88.6  ± 3.9 72.6  ± 16.1 93.4  ± 2.7 
F-measure 86.9  ± 2.8 87.1  ± 3.2 80.3  ± 3.3 73.8  ± 10.7 91.9  ± 2.7 

 
 

Additionally, the spot boundaries obtained by PDQuest 
often overlap, and similar to those obtained by Delta2D: a) 
have elliptical shape, contrary to real spots which have 
irregular shape and b) may include more than one spot. 
Moreover, Melanie7, PDQuest and Delta2D include 
background pixels inside the resulting spot regions, while 
boundaries obtained by Scimo often exclude parts of spots. 
On the contrary, the proposed approach effectively detected 
and segmented almost all of the protein spots and provided 
more plausible spot boundaries. 

Since the segmentation ground truth cannot be available 
for the real images, synthetic 2D-gel images emulating the 
real ones were generated by our group in order to allow for a 
qualitative as well as quantitative comparison of the 
segmentation results. By comparing the segmentation results 
with the ground truth, each pixel can be characterized as 
“Actual Spot” (AS), “Actual Background” (AB), “False  

      
(a) (b) (c) (d) (e) (f) 

Fig. 2. (a) Region of a real 2D-gel image. Spot boundaries obtained by (b) Melanie 7, (c) PDQuest, (d) Scimo, (e) Delta2D, and (f) the proposed approach. 
 

      
(a) (b) (c) (d) (e) (f) 

      
(a1) (b1) (c1) (d1) (e1) (f1) 

Fig. 3. (a) Region of a synthetic 2D-gel image. Detection and segmentation results for (a) obtained by (b) Melanie 7, (c) PDQuest, (d) Scimo, (e) Delta2D, 
and (f) the proposed scheme, whereas (a1) – (f1) are magnified regions of (a)–(f), respectively. 



  

TABLE II.  SEGMENTATION RESULTS FOR THE SYNTHETIC 2D-GEL IMAGES  

Measure 
Method 

Melanie 7 PDQuest Scimo Delta2D Proposed 
Approach 

VO 95.6 ± 2.1 97.9 ± 1.1 97.3 ± 0.8 98.6 ± 0.8 95.3± 2.0 
VE 27.1 ± 9.9 84.9 ± 23.3 14.0 ±  2.9  69.7 ± 20.8 6.9 ± 1.7 
VOE 23.6 ± 5.1 47.3 ± 6.5 14.9 ± 2.1 45.2 ± 8.7 9.2 ± 1.1 

 

Spot” (FS), and “False Background” (FB) pixel. Then, the 
Volumetric Overlap (𝑉𝑉 = 𝐴𝐴𝐴/(ASV + FBV)), 
Volumetric Error (𝑉𝑉=FSV/(ASV+FBV)) and Volumetric 
Overlap Error (VOE= 𝐴𝐴𝐴/(ASV + FBV + FSV)) measures 
[25] can be estimated utilizing “ASV”, “FSV”, “ABV”, 
“FBV” which correspond to the cumulative volumes of 
“AS”, “FS”, “AB”, and “FB” pixels, respectively. The 
segmentation performance of each method is presented on 
Table II. Higher VO indicates higher overlap between the 
segmented spot pixels and the ground truth, while lower VE 
and VOE values indicate less falsely segmented pixels. The 
lowest VE and VOE as well as the high VO achieved by the 
proposed approach demonstrate its effectiveness in 
segmenting 2D-gel images compared to the four other 
evaluated methods. Segmentation results for the evaluated 
methods for a region of a synthetic image (Fig. 3(a)) are 
shown in Fig. 3(b-f), while magnified regions of Fig. 3(a-f) 
are depicted in Fig. 3(a1-f1), respectively. It is evident that 
the proposed approach provides more accurate spot 
boundaries that contain almost all spot pixels, while 
avoiding the inclusion of background pixels. On the other 
hand, the results obtained by PDQuest and Delta2D include 
many background pixels inside the spot boundaries, while 
Melanie 7 and Scimo occasionally miss spot pixels. 
Moreover, PDQuest results in boundaries that overlap. 

IV. CONCLUSION 
In this paper, the authors proposed an original approach 

for segmenting 2D-gel images. The proposed methodology 
combines a custom grow-cut segmentation algorithm with a 
region growing approach and morphological operators. 
Evaluation on real and synthetic 2D-gel images 
demonstrated its robustness and effectiveness for 2D-gel 
image spot detection and segmentation. The proposed 
approach outperformed state-of-the-art 2D-gel image 
analysis software packages and techniques, achieving 
significantly lower volumetric error (VE) and volumetric 
overlap error (VOE). As a result, it provides more accurate 
results, leading to improved quantification of the protein 
expression levels and as a consequence to enhanced 
reliability of the extracted biological conclusions.  
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