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Abstract 

Microarray image analysis is a significant tool for cDNA microarrays and it is divided in two 
main stages: Gridding and Spot-Segmentation. Most of the available microarray image 
analysis tools require human intervention to specify certain landmarks on the grid, or even to 
precisely locate individual spots. This paper focuses on the development of an original, fully 
automated gridding and spot-segmentation approach based on a genetic algorithm. This 
approach involves three main steps: a) Preprocessing of input images by wavelet-based noise 
reduction and Box-Cox transformation adjustment  b) Gridding the preprocessed images by 
detecting the rectangular regions where individual spots are placed, c) Spot-segmenting 
together with model-based quantificating of individual spots using a genetic algorithm. The 
proposed genetic algorithm searches within a multidimentional-parameter space to determine, 
in parallel, the parameters of multiple diffusion models that optimally fit the characteristics of 
possible spots.  Experiments with 16-bit microarray images show that the proposed method is 
effective and results in higher percentage of spot detection than that of existing method. 
 
Keywords: cDNA Microarrays, Image Analysis, Gridding, Spot Segmentation, Parallel 
Genetic Algorithm. 
 

1. Introduction 
The cDNA microarrays [Leung et. Al. (2003)] is a powerful biotechnology tool with 
which the expression levels of thousands of genes over different samples are 
measured simultaneously. Because of its high throughput capacity and its ability to 
compare gene expression in normal and abnormal samples, this technique has a large 
impact on a variety of different application areas [Lobenhofer et. Al. (2001)]. In 
cDNA microarrays experiments [Cambell et. Al. (2006)], two distinct populations of 
mRNA are reversely transcribed to cDNAs, coloured with fluorescent dyes, then 
mixed and finally hybridized to a glass slide. The end product of the experiment is 
two digital images, one for each population of mRNA. 

Ideally, the pixel intensity of each image varies in proportion to the hybridization 
level. However, in reality, the resulting images are contaminated with noise and 
artifacts. Moreover, they may contain inner holes, scratches and uneven background 
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[Chen et Al. (2006)]. Image-processing techniques [Smyth et. Al. (2002)], [Chen et. 
Al. (1997)] are applied on microarray images in order to remove artifacts, adjust 
image intensity, detect the grid structure (Gridding) and determine the boundaries of 
each individual spot (Spot Segmentation).  These techniques are vital to microarray 
experiments due to the fact that the subsequent steps in experiments such as intensity 
extraction from each individual spot, clustering and identification of differentially 
expressed genes can be considerably affected. Since all the stages of microarray 
image analysis are challenging tasks, they have generally been separately dealt with 
in the literature. 

Preprocessing applications which have recently been applied are based on stationary 
wavelet filtering techniques [Wang et. Al. (2003)] or on vector processing techniques 
[Steinfath et. Al. (2001)], which remove noise while preserving the structural cDNA 
image information.  

Image adjustments are executed through transformations which are based either on a 
small set of available spot characteristics (i.e. mean, median, variance) or on the 
values of all the pixels of an image.  As mentioned in Wit et. Al. (2003), more 
accurate adjustments can be obtained by transformations based on all pixel values. 
Such transformations are: the Box-Cox logarithmic transformation [Ekstrom et. Al. 
(2004)] and the Hyperbolic Sine transformation [Durbin et. Al. (2002)].  

Gridding applications are achieved by a variety of different methods. Deng et. Al. 
(2004) use axis projections of image intensity. This method is not ideal in the case of 
misalignments and rotations of different grids. Angulo et. Al. (2003) propose 
morphological methods for grid segmentation. Since these methods use axis 
projections as a central component, misalignments and rotations of different grids can 
cause problems too. Yang et. Al. (2002) use template matching and seeded region 
growing methods while Katzer et. Al. (2003) use a Markov random field (MRF) for 
semiautomatic gridding. All aforementioned techniques require mandatory input 
parameters such as the number of rows and columns of the grid structure and, at 
times, manual intervention in order to locate precisely the grid.  

Gridding is followed by spot-segmentation techniques. Several methods have been 
developed to segment microarrays spots. ScanAlyze software [Eisen (1999)] uses a 
fixed circle segmentation method which is based on a fixed radius circle of the spot. 
GenePix [Axon (2002)] uses an adaptive circle segmentation method which is based 
on a circle with adjustable radius so as to fit the spot. However, both of them are not 
optimal for non-circularly spots. Vesanen et. Al. (2002) suggested a method based on 
a generalized hit-or-miss transformation. A drawback of this method is the 
requirement of a training sample from which a typical spot shape can be learned. The 
Chen et. Al. (1997) method is based on the nonparametric Mann–Whitney test. This 
method does not make any assumptions on the spot shape. However, it requires a 
background sample, which makes it difficult to provide reliably in an automated 
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system. Yang et. Al. (2002) use a seeded region growing method, however this 
method presents the weakness of relying heavily on a seed point. 

In this paper, we present an original approach to unsupervised gridding and spot-
segmentation in microarray images, based on a genetic algorithm. This algorithm 
searches within a multidimentional parameter space to determine, in parallel, the 
parameters of multiple diffusion models that optimally fit the characteristics of 
possible spots. The spot-segmentation is achieved by modeling spots using diffusion 
modeling functions. To the best of our knowledge genetic algorithms have not been 
previously applied to microarray spot-segmentation. 

The rest of this paper is structured in four sessions. Section 2 describes the diffusion 
modeling of microarray spots used in this study. The proposed approach to gridding 
and spot-segmenting is described in Section 3. The results of its application in 
microarray images are presented in section 4, whereas the conclusions of this study 
are summarized in section 5. 

2. Diffusion modeling of Spots 
Microarray spots share with each other some common characteristics, such as having 
an approximately elliptical shape which can be depicted to a ‘volcano’ or to ‘plateaus’ 
in 3-dimensional space. These simple characteristics can be captured by tuning the 
parameters of a mathematical model so that it fits an image region containing a spot.  

The diffusion model proposed by [Bettens et. Al. (1997)] suggests that the spots are 
modeled by a mathematical function representing the actual diffusion process of a 
protein into a polyacrylamide gel. The assumptions for this process are the following: 
a) the medium of the diffusion is two-dimensional and anisotropic, i.e. there are two 
main directions of diffusion (x and y) with different diffusion constants Dx and Dy, b) 
the diffusing substance is initially distributed uniformly on a disc with radius a.  

The cDNA strands are hybridized by a diffusion process too [Gadgil et Al. (2004)]. 
However, their diffusion process differs from that of the proteins because it is 
isotropic. Therefore, spots can be modeled on the aforementioned diffusion model 
only if it is properly modified from an anisotropic to an isotropic one. We assume that 
the constant Dx cannot differ from the constant Dy more than a threshold TD. 

 DT<=− yx DD     (1)

3. A Genetic Approach to Gridding and Spot-Segmentation 
The proposed approach to microarray gridding and spot-segmentation consists of 
three main steps: a) Preprocessing of input images by wavelet-based noise reduction 
and Box-Cox transformation adjustment, b) Gridding the preprocessed images by 
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detecting the rectangular regions where individual spots are placed, and c)  Spot-
segmenting together with model-based quantificating of individual spots using a 
genetic algorithm. 

3.1 Preprocessing of microarray images 
The quality of microarray images suffers from the existence of noise (i.e. dust on the 
slide), artifacts (i.e. inner holes and scratches) and uneven background [Chen et. Al. 
(2006)]. Therefore, stationary wavelet-base filtering of the input images [Wang et. Al. 
(2003)] is used as a de-noised step, which involves the following three steps: Firstly, 
the image is decomposed by applying the biorthogonal wavelet procedure. After the 
decomposition procedure at two levels, the SureShrink thresholding algorithm 
[Donoho et. Al. (1995)] is applied to the detail-images in order to eliminate the noise 
source.  Finally, the denoised detail-images and the approximation image are 
reconstructed.  

Moreover, lowly expressed genes in microarray experiments are depicted by spots 
that are poorly contrasted and ill-defined. Box-Cox transformation, [Ekstrom et. Al. 
(2004)] is employed in order to adjust properly the intensities of microarray images. 
The equation of the Box-Cox transformation as a function of (x, y, λ1, λ2) is the 
following:  
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where Z stands for the denoised microarray image, Y is the transformed microarray 
image, and (x,y) are pixel coordinates of the aforementioned images. λ1 is a positive, 
non-zero constant (λ1>0), λ2 is a positive or zero constant (λ2≥ 0), and k is a constant 
used to scale the transformed pixel intensities so that a saturated pixel (for a 16-bit 
image, a saturated pixel has intensity equal to 65535) corresponds to a value of Y(x, y, 
λ1, λ2)=1.  

3.2 Gridding microarray images 
The pre-processed microarray images are segmented into rectangular regions each 
one ideally containing one individual microarray spot, as follows:  

For a line l of the pre-processed image Y we define the real function P(Y)
line(l) which 

shows the possibility of the line containing spots. The P(Y)
line(l) function is calculated 

by the following equation:  
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where (x,y) are the coordinates of the image Y, and Ts is a threshold.  

Respectively, for a column c of the image Y we define the real function PP

(Y)
column(c) 

which shows the possibility of the column containing spots.  
The algorithm proceeds by calculating the real functions P(Y)

line(l) and P(Y)
column(c) for 

each line l and column c. If the line lxo and the column cyo of the pixel (xo,yo) have 
values of PP

(Y)
line(l ) and P(Y)

xo P column(cyo) larger than the threshold Tp (P(Y)
line(lxo)>Tp and  

P(Y)
column(cyo)>Tp ), the pixel is inside a region. Otherwise, the pixel is situated 

between two different regions. The Tp and Ts thresholds are defined through 
experimentation. 

The algorithm continues by drawing a grid separating in half the pixels (black) which 
are found between two distinct neighboring regions (white). A segmentation example 
of a microarray sub-image is illustrated in Figure 1. 

 
(a) 

 
(b) 

 
(c) 

Figure 1. Microarray image transformation and gridding: (a) Pre-processed image, 
(b) Image where the pixels which are inside a region are depicted in white color 
while the pixels which are between two distinct neighboring regions are depicted in 
black color, (c) Output image where gridding is depicted. 

3.4 Spot Segmentation in microarray images 
This step aims to determine the optimal diffusion model for each microarray spot, in 
the pre-processed microarray image. Finding the optimal model parameters is not a 
straightforward process due to inner holes, scratches, uneven background and spot 
overlapping. In order to tune automatically the parameters of the diffusion models so 
that they optimally fit the microarray spots, we developed an original method based 
on a genetic algorithm capable of dealing with the afore-mentioned situations. 
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Genetic algorithms are stochastic non-linear optimization algorithms based on the 
theory of natural selection and evolution [Goldberg et. Al. (1989)]. Compared to 
traditional search and optimization procedures, genetic algorithms are parallel, robust 
optimizers, suitable for solving problems for which there is little or no a priori 
knowledge of the underlying processes. 

The genetic approach to spot-segmentation, proposed in this paper, assumes that the 
procedure of gridding may give smaller regions or even sifted regions as compared to 
ideal regions. Therefore, for each rectangular region R we create another one, R’, 
which has the same center as R but its length and width are n times larger than the 
ones of R.  

The developed genetic algorithm performs a parallel search for the optimal model 
parameters of an N2 number of different microarray spots. Each spot model has its 
centre inside region R but a part of the spot can appear in region R’. 

Chromosome: The parameters of the diffusion models that correspond to microarray 
spots which are contained in an N2 number of different R’ regions are encoded into a 
single three-dimensional (3D) chromosome m. The chromosome consists of N2 
segments mij, i=1,2,3,…N, j=1,2,3,…,N. Each segment is a string of real values 
representing the diffusion-model parameters of a spot which belongs to a region R’.  

Genetic Operations: At the beginning, an initial population of randomly generated 
chromosomes is selected. This population evolves then, through the genetic 
algorithm, by creating new generations of population. In each generation of the 
genetic algorithm, the Pr% of the best chromosomes is maintained in the next 
generation of population. The rest are reproduced by applying: 1) the joint application 
of the BLX-a crossover and of the Dynamic Heuristic one [Herrera et. Al.  (2005)] 
and 2) the Wavelet mutation [Ling et. Al. (2006)]. The joint application of the BLX-a 
and the Dynamic Heuristic crossover is the most promising crossover application, 
[Herrera et. Al.  (2005)] while wavelet mutation exhibits a fine-tune ability, [Ling et. 
Al. (2006)] .  

Fitness Function: The fitness of a chromosome m as a solution to the particular 
optimization problem is defined by the following equation: 
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where the real valued function fL(mij) is defined as the local fitness of a chromosome 
segment mij, i=1,2,3,…,N , j=1,2,3,…,N. 

The local fitness fL(mij) of a chromosome segment mij is computed by the following 
equation: 
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 (x, y) are pixel coordinates in the transformed image Y  

C(x y|mij) is the value of the diffusion model encoded by the chromosome segment mij

b= p Y(x, y) and 0 < p ≤ 1 is a constant.  

The local fitness expresses the percentage of pixels of the model spot for which 
C(x,y|mij) differs from Y(x,y) less than b. If |C(x,y|mij)-Y(x,y)|<b and  C(x,y|mij)>B(mij) 
then fL(mij) =1. The parameter b controls the tolerance level of the local fitness to 
include as fittest solutions, models that approximate spots with irregularities, and 
asymmetries, or even spots which have volcano or plateau shape, with arbitrary 
precision.   

4. Results 
Several experiments were executed so as to evaluate the performance of the proposed 
algorithm on a set of microarray images at 16-bit grey level depth. An example of 
these images is the one illustrated in figure 2a which is a sub-image of “Array1.tif” 
that is used in [Leonardi et. Al. (2004)]. A population of 100 chromosomes was used. 
In each generation of the genetic algorithm, 20% of the best chromosomes were 
maintained in the population, whereas the remaining 80% were reproduced by 
crossover and mutation operations.  

The best results were achieved using a high crossover probability of 0.8 and a high 
mutation probability of 0.8 which are in accordance with [Miller et. Al. (2003)] and   
[Janikow et. Al. (1991)] respectively. In particular, Janikow et. Al. suggest that the 
real-coded genetic algorithm may take advantage of such high mutation probability 
rates. The reason is that the real-coded genetic algorithm does not provide enough 
diversity via the crossover operation alone. Mutation on the other hand can select a 
new real value within the allowable range of each designed gene of the chromosome. 
The values of the thresholds which gave adequate spot segmentation results were: 
TD=0.25, TS =4000, and Tp=0.5. 

Using the proposed approach, the accuracy of locating spots is considerably higher 
than that of the MicroZip software package. Our method segmented 84.6% of real 
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spots instead of 77% of the MicroZip software package. Examples of output images 
containing indicative spot detection results are illustrated in Figure 2. This figure 
contains 187 real microarray spots.  As we can see, the proposed method found and 
segmented all 187 real microarray spots while the MicroZip software program could 
not properly segmented 52 of them. 

 
(a) 

 
(b) 

 
(c) 

 

Figure 2. Microarray spot segmentation results. (a) Input microarray subimage, (b) 
Output of the proposed method, (c) Output of the MicroZip software package. 

5. Conclusions 
In this paper, an original method to detect the grid and segment microarray spots in 
microarray images based on a genetic algorithm has been presented. The genetic 
algorithm searches within a multidimensional-parameter space to determine, in 
parallel, the parameters of multiple diffusion models that optimally fit the 
characteristics of possible spots.  

The proposed method has the following advantages: a) it does not require a training 
phase, b) it is capable of segmenting spots which have volcano or plateaus shape, c) it 
is capable of segmenting spots distorted by imperfect diffusion, d) its spot-
segmentation rate is higher than that of the MicroZip software package.   
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Future development at this project includes further experimentation, optimization and 
parallelization of the proposed method, and its integration into a complete user-
friendly software application.  
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