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Abstract 
Microarray gene expression image analysis is a labor-intensive task and requires human 

intervention since microarray images are contaminated with noise and artifacts while spots 
are often poorly contrasted and ill-defined. The analysis is divided into two main stages: 
Gridding and Spot-Segmentation. In this paper, an original, unsupervised and fully-
automated approach to gridding and spot-segmenting microarray images, which is based on 
two genetic algorithms, is presented. The first genetic algorithm determines the optimal grid 
while the second one determines, in parallel, the boundaries of multiple spots. Experiments 
on 16-bit microarray images show that the proposed method is effective and achieves more 
accurate gridding and spot-segmentation results in comparison with existing methods. 
 
1. Introduction 

cDNA microarrays [1] is a powerful biotechnology tool for analyzing expressions levels of 
thousands of genes in normal and abnormal samples. The gene expression information is 
obtained by fluorescently scanning the hybridized glass slides and analyzing the scanned 
images. A typical microarray image is composed of blocks, each containing a number of spots 
of various fluorescence intensities, which correspond to the level of hybridization of the 
samples. A variety of software packages have been developed for the analysis of microarray 
images. In these packages, image analysis is divided into two main stages: Gridding and Spot 
Segmentation [2].  

The analysis of the scanned images is not a straightforward process since the quality of 
microarray images suffers from the existence of noise (i.e. dust on the slide), artifacts (i.e. 
inner holes and scratches) and uneven background [3][4]. Moreover, lowly expressed genes in 
microarray experiments are depicted by spots that are poorly contrasted and ill-defined. 
Increasing the photometric gain during scanning is not ideal for studying these spots since it 
may cause some pixels of highly expressed genes to become saturated [5]. Given that the 
automatic image analysis is defective, all of the above problems lead to errors that propagate 
to all the following stages of the statistical analysis [6]. Therefore, image analysis tools 
require human intervention in order to recognize the boundaries of spots.  

The first step in image analysis is the spot-gridding problem. Software packages such as 
ScanAlyze [7] and GenePix [8] are based either on a grid with uniform cells or on manual 
intervention in order to specify the grids properly. Amongst other well-known techniques, the 
axis projections method [9], the morphological method [10], the Markov random field [11], 
and the template matching and seeded region growing method [12] are most commonly used. 
However, all the aforementioned techniques are only semiautomatic as they require 
mandatory input parameters and, at times, manual intervention in order to locate the grid 
precisely.  

Gridding is followed by spot-segmentation techniques. ScanAlyze software [7] uses a fixed 
circle segmentation method while GenePix [8] uses an adaptive circle segmentation method. 
Both of them are not ideal for non-circularly spots. QuantArray software [2] computes a 
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threshold based on the nonparametric Mann–Whitney test. However, it does not provide 
reliability in an automated system given that it requires a background sample. Other methods 
are the seeded growing method [13] and the method based on a generalized hit-or-miss 
transformation [14]. The former relies on the selection of a seed point while the latter requires 
a training sample from which a typical spot shape can be acquired.  

In this paper, an original, unsupervised and fully-automated approach for gridding and 
spot-segmenting microarray images, based on two genetic algorithms, is presented. The first 
genetic algorithm determines the optimal line segments which constitute the grid while the 
second one determines, simultaneously, the boundaries of multiple spots by optimally fitting 
them into diffusion models. Current experiments demonstrate that the proposed method gives 
very effective results and the accuracy of location reaches a very high value. To the best of 
our knowledge genetic algorithms have not been previously applied to microarray gridding 
and spot-segmenting. 

The rest of this paper is structured in three sessions. Section 2 describes the proposed 
approach to gridding microarray images and segmenting cDNA spots. The results of its 
application in microarray images are presented in section 3, whereas the conclusions of this 
study are summarized in section 4. 
 
2. Image analysis using genetic algorithms 

Locating the optimal grid and the optimal boundaries of spots in microarray images is not a 
straightforward process, seeing that we know little for them. Therefore, we developed an 
original method for cDNA microarray image analysis based on genetic algorithms since they 
are stochastic, robust optimizers, suitable for solving problems for which there is little or no a 
priori knowledge of the underlying processes [15].  

The proposed approach consists of the following three main steps: a) Preprocessing of 
input images by applying wavelet-based noise reduction and Box-Cox transformation 
adjustment, b) Gridding the preprocessed images using a genetic algorithm which determines 
the optimal lines which constitute the grid, c) Spot-segmenting together with model-based 
quantificating of individual spots using another genetic algorithm, which determines, 
concurrently, the parameters of multiple diffusion models that optimally fit the characteristics 
of possible spots. 
 
2.1. Preprocessing cDNA microarray images 

The quality of microarray images suffers due to the deficiencies of the equipments used in 
microarray experiments [3][4]. Therefore, stationary wavelet-based filtering of the input 
images [4] and Box-Cox transformation of the de-noised images [5] are employed as a pre-
processing step with the purpose of improving the quality of the images. 
 
2.2. Gridding cDNA microarray images 

Gridding of microarray images is divided in the following two main stages: a) Detection of 
the borders between blocks and b) Identification of the borders between spots. In each stage, 
the genetic algorithm is used twice. Firstly, it performs a search in order to determine the 
optimal parameters of the line segments which constitute the borders between the blocks (1st 
stage) or spots (2nd stage) and are defined by the two vertical sides of the image or block 
respectively. Then the image or block is rotated by 90o and the genetic algorithm is used 
again. 
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2.2.1. Chromosome: Let G be an M1xM2 preprocessed microarray image or block. The 
chromosome encodes the parameters of a line segment which is defined by a point A(a1,a2) in 
the left vertical side (i.e. a2=0) of G and B(b1,b2) a point in the right vertical side (i.e. b2=M2-
1) of G. Since a2, b2 are known, only the parameters a1, b1 are encoded into a single real-
valued chromosome mG. 
 

2.2.2. Genetic Operators and Termination criterion: The initial population of randomly 
generated chromosomes is evolved by the subsequent use of a) the elitist reproduction, b) the 
BLX-a crossover and the Dynamic Heuristic one [16] and c) the Wavelet mutation [17]. 

The genetic algorithm is executed until a maximum number of generations have been 
reached from which no chromosome has larger fitness than a threshold Tf. It should be noted 
that during the evolution, chromosomes, with fitness value above the given threshold Tf, are 
considered solutions, i.e. line segments of the grid, and they are depicted in image G.  
 

2.2.3. Fitness Function: The fitness of a chromosome mG as a solution to the particular 
optimization problem is defined by the following equation: 

 )()()( GnGp mfmfmF
GG

−=  (1) 
where the real valued functions fp(mG) and fn(mG) are named as positive term and negative 

term of the fitness respectively.  
The positive term fp(mG) expresses the percentage of pixels of the image G whose a) 

intensity is smaller than a value IB and b) distance from the line encoded by the chromosome 
mG, is less than a constant D. IB is the largest intensity value that is present in a percentage of 
pixels, k% less than the maximum percentage of pixels depicting equal intensity value. D is a 
constant which controls the width of the margin existing between blocks or spots.  

B

Respectively, the negative term expresses the percentage of pixels whose a) intensity is 
larger than IB and b) distance from the line encoded by the chromosome mG is less than D.   
 
2.3. Segmenting cDNA spots 

cDNA spots have some common characteristics, such as an approximately “volcano” or 
“plateaus” elliptical shape and an isotropic distribution. These characteristics can be captured 
by tuning the parameters of a mathematical model so that it fits to the image region 
containing a spot.  

Thus, the proposed genetic algorithm for spot-segmenting performs a parallel search for 
determining the optimal model parameters of the cDNA spots which belong to an N1xN2 
window of adjacent regions of the grid. The boundaries of cDNA spots are the cross section 
between the models and the image plane.  
 

2.3.1. Chromosome: Since cDNA strands are hybridized by a diffusion process [18], the 
diffusion model proposed by Bettens et al [19] can be used in order to model cDNA spots. 
According to this model, a spot can be defined by the set of the following parameters: xo, yo, 
B, Co, a’, Dx’, Dy’, where x0, y0 stands for the coordinates of the substance on the plane. B is 
the background intensity. C0 is the initial concentration of the substance. a’ is the area of the 
disc containing the substance. Dx’ and Dy’ represent the diffusion constants in the two main 
directions of diffusion.  

However, the diffusion process of cDNA strands differs from the one proposed in [19] 
because it is isotropic. Therefore, cDNA spots can be modeled on the aforementioned 
diffusion model only if it is properly modified from an anisotropic to an isotropic one. 
Consequently, we assume that Dx’ cannot differ from the Dy’ by more than a threshold TD.  
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The parameters of the diffusion models that correspond to the cDNA spots, which belong 
to an N1xN2 window of adjacent regions of the grid, are encoded into a single three-
dimensional chromosome ms which consists of mijz cells, i=1,2,3,…N1, j=1,2,3,…,N2, 
z=1,2,…7. The chromosome also consists of segments sij, i=1,2,3,…N1, j=1,2,3,…,N2. Each 
segment sij encodes the diffusion-model parameters of the spot which belongs to the 
equivalent position (i,j) of the N1xN2 window. The B, Co, a’, Dx’, Dy’ parameters of a spot 
model are encoded as real value numbers while the xo, yo parameters are encoded as integers.  
 

2.3.2. Genetic Operators and Termination criterion: The initial population is evolved in 
a similar manner to the one used in the gridding approach. However, since the chromosome is 
three-dimensional, the parents of the crossover can be either different chromosomes or 
columns of the same chromosome.  

The genetic algorithm is executed until all the regions of the grid have been tested as 
possible positions of spots.  

 
2.3.3. Fitness Function: The fitness of a chromosome ms, as a solution to the particular 

optimization problem, is defined by the following equation: 
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where the real valued function fL(sij) is defined as the local fitness of a chromosome 
segment sij, i=1,2,3,…,N1 , j=1,2,3,…,N2 and is computed by the following equation: 
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where dT(sij) expresses the number of pixels p belonging to the model spot encoded by the 
segment sij, and whose intensities do not differ from the intensities of the equivalent pixels in 
the image by more than a value |ID(p)|. ID(p) is defined as: ID(p)=w ·Ip, where 0<w<1 is a 
constant and Ip is the intensity of the pixel p. dI(sij) specifies the number of pixels p belonging 
to the inside of the model spot encoded by the sij, and whose intensities do not differ from the 
intensities of the equivalent pixels in the image by more than the value |ID(p)|. E(sij) defines 
the number of pixels belonging to the spot model encoded by sij . Ts is a threshold for the local 
fitness.  
 
3. Results 

Several experiments were executed so as to evaluate the performance of the proposed 
algorithm on a set of microarray images. Each image of the set contains thousands of spots at 
16-bit grey level depth. Figure 1 illustrates a partial of image “Array1.tif” (Array1.tif 
analysis: 1916 x 1872) used in [20]. 

In both genetic algorithms, a population of 100 chromosomes was used. In each generation 
of the genetic algorithm, 10% of the best chromosomes were maintained in the population, 
whereas the rest were reproduced by crossover and mutation operations. In accordance with 
[21][22], a high crossover probability of 0.8 and a high mutation probability of 0.8 were 
chosen. The genetic algorithm for gridding was applied using the following values of the 
thresholds. Tf=0.8, D=100 when the genetic algorithm is performed for detecting the 
boundaries of blocks and D=10 when the genetic algorithm is performed for detecting the 
boundaries of spots. The genetic algorithm for spot-segmenting was performed using a 
window with N1=3 and N2=3. Moreover, TD=0.25, and Ts = 1.4. 

Using the proposed approach, the accuracy of locating the spot reaches the high value of 
84.6% while MicroZip software program achieves only 77%. Moreover we have observed 
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that the three dimensional chromosome permits the genetic algorithm to accelerate its 
convergence. 

Examples of gridding and spot-segmenting results are illustrated in Figure 1. This figure 
contains 192 real microarray spots. As we can observe, the proposed method detects all the 
lines of the grid (Fig.1c) while MicroZip software failed to detect the last raw (Fig. 1b). 
Moreover, the proposed approach segmented all the 192 real spots. On the other hand, the 
MicroZip software did not detect 24 real microarray spots and failed to segment 29 more 
spots.  

   
(a) 

 
(b) 

 
(c) 

Figure 1: Microarray image analysis results: (a) input microarray sub-image, (b) output of 
the MicroZip software program, (c) output of the proposed method 

 
4. Conclusions 

In this paper, an original method to detect the grid of and segment microarray spots in 
microarray images based on two genetic algorithms has been presented. The first genetic 
algorithm conducts a search in order to determine the optimal parameters of the line segments 
which constitute the borders between the blocks or spots. The second genetic algorithm 
performs a parallel search for determining the optimal model parameters for the cDNA spots 
which belong to a window of adjacent regions of the grid. 

The proposed method has the following advantages: a) it is an unsupervised technique as it 
does not require a training phase, b) it is capable of segmenting spots which have volcano or 
plateaus shape, c) it is capable of segmenting spots distorted by imperfect diffusion and d) its 
spot-segmentation rate is higher than that of other software packages. 

Future development of this project includes further experimentation, optimization and 
parallelization of the proposed method, and its integration into a complete user-friendly 
software application. 
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