ELSEVIER

J. Vis. Commun. Image R. 19 (2008) 1-11

Available online at www.sciencedirect.com

ScienceDirect

JOURNAL OF

SUAL

Communication &

IMAGE

Representation

www.elsevier.com/locate/jvci

Hardware implementation of a disparity estimation scheme
for real-time compression in 3D imaging applications

. .. a, a . a b
D. Chaikalis **, N. Sgouros “, D. Maroulis “, P. Papageorgas
& National and Kapodistrian University of Athens, Department of Informatics and Telecommunications, Panepistimiopolis, Ilisia, Athens 15784, Greece
b Technological Educational Institute of Piraeus, Department of Electronics, Petrou Ralli & Thivon Avenue, Egaleo, Athens 12244, Greece

Received 31 July 2005; accepted 25 September 2007
Available online 12 October 2007

Abstract

This paper presents a novel hardware implementation of a disparity estimation scheme targeted to real-time Integral Photography
(IP) image and video sequence compression. The software developed for IP image compression achieves high quality ratios over classic
methodologies by exploiting the inherent redundancy that is present in IP images. However, there are certain time constraints to the
software approach that must be confronted in order to address real-time applications. Our main effort is to achieve real-time perfor-
mance by implementing in hardware the most time-consuming parts of the compression algorithm. The proposed novel digital architec-
ture features minimized memory read operations and extensive simultaneous processing, while taking into concern the memory and data
bandwidth limitations of a single FPGA implementation. Our results demonstrate that the implemented hardware system can success-
fully process high resolution IP video sequences in real-time, addressing a vast range of applications, from mobile systems to demanding

desktop displays.
© 2007 Elsevier Inc. All rights reserved.

Keywords: 3D Imaging; Integral Photography; Autostereoscopic display; Hardware; FPGA; Real-time; Compression

1. Introduction

Over the past few years, the rapid increase in process-
ing power and graphic card acceleration, combined with
improvements in high fidelity optical systems, revived the
interest for three-dimensional (3D) applications. Many
promising technologies have evolved, ranging from polar-
izing glasses, used at the early stages of 3D cinema, to
most sophisticated techniques like shuttering glasses [1]
and more recently autostereoscopic display devices [2].
Autostereoscopy is considered to be the “holy grail” of
electronic 3D displays [3], mainly because display devices
based on this technology provide 3D stereoscopic view-
ing without the need of additional eyewear, reducing

* Corresponding author.
E-mail addresses: dhaik@di.uoa.gr (D. Chaikalis), nsg@di.uoa.gr
(N. Sgouros), dmarou@di.uoa.gr (D. Maroulis), ppapag@teipir.gr (P.
Papageorgas).

1047-3203/$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.jvcir.2007.09.003

eye fatigue. In addition, most of these displays allow
multiple viewers to experience the 3D effect. These dis-
play systems are of great use in medical [4], educational
and entertainment [5] applications. However, three-
dimensional display devices that currently appear in the
market, display only a limited number of different views
to the observer. Their main disadvantage is the
restrained natural perception of a three-dimensional
world, where the viewing angle can change in an arbi-
trary manner.

A special category of autostereoscopic displays that can
provide enhanced sense of depth, full colour support and in
most cases multidirectional parallax, functions on the prin-
ciples of Integral Photography (IP), first introduced by
Lippman [6] back in 1908. Recent advances in microoptics
and display devices manufacturing procedures, allowed the
development of a number of different IP display setups that
produce high quality 3D IP images. In Fig. 1, a typical IP
capturing and display setup is illustrated.

mailto:dhaik@di.uoa.gr
mailto:nsg@di.uoa.gr
mailto:dmarou@di.uoa.gr
mailto:ppapag@teipir.gr

2 D. Chaikalis et al. | J. Vis. Commun. Image R. 19 (2008) 1-11

Display device

L

ens Array
e

Projected
object

Fig. 1. An IP (a) capturing setup and (b) display setup.

IP images are formed by a number of sub-images that
are usually arranged in a square or hexagonal topology,
in accordance to the lens array used in the capturing phase.
It is evident that neighbouring sub-images exhibit a high
degree of correlation, which results in high volumes of
redundant information. A portion of an IP image, formed
using a lens array with square lenses, is depicted in Fig. 2.

One of the main issues when developing applications
based, but not restricted to the IP principle, is the necessity
to cope with high resolution images that result in high
bandwidth and storage requirements for the capturing
and reproduction of 3D objects and scenes. Consequently,
a high-efficiency compression scheme of the associated data
is crucial. The inherent properties of an IP image gave rise
to new techniques for the compression of high correlated
data, in order to provide efficient case-oriented algorithms
that achieve high compression ratios over traditional
methodologies.

To the knowledge of the authors, the most recent com-
pression techniques that are targeted to IP images are
mostly based on the utilization of standard lossy compres-
sion algorithms like JPEG, based on the two-dimensional
Discrete Cosine Transform (2D-DCT) or on higher order
DCT techniques [7], with significant results over certain
types of IP images. One of the most noticeable drawbacks

of the standard JPEG scheme is that it primarily exploits
the redundancy present between adjacent pixels inside a
confined window that is imposed by the transform used.
Such a scheme does not take advantage of the data redun-
dancy that exists in neighbouring windows, and thus cre-
ates additional data for image blocks that are highly
correlated with previously JPEG encoded blocks. Addi-
tionally, the merits of a technique that uses a 3D-DCT
transform taking advantage of the data redundancy of
adjacent image blocks, are cancelled out by the complexity
and the lack of robustness due to proprietary and usually
suboptimal quantization tables in high dimensionality
spaces.

An alternative methodology for IP image compression is
proposed by Sgouros et al. [8], according to which the ori-
ginal MPEG coding scheme is adopted in a certain extent,
with major changes in the motion vector estimation unit.
Two of the most significant features of this alternative that
derive from the properties of the IP image are the a priori
knowledge of the search window size and the motion vector
directionality. These properties further simplify the archi-
tecture, favoring real-time applications, where high com-
pression ratios must be combined with real-time
performance of the whole process.

Since the above methodology is targeted not only to
imaging but also to video applications, the overall process
time becomes a critical factor of the compression tech-
nique. Moreover, the time-consuming nature of the specific
algorithm imposes the acceleration of the compression
task. Aiming to achieve real-time performance, hardware
implementation is the dominant way to accelerate the
time-consuming parts of the compression algorithm.

Hardware implementations can exploit pipelined and
massively parallel processing, accelerating time-critical
and high complexity tasks, especially for real-time applica-
tions. Such tasks include motion estimation used in various
real-time compression schemes.

Although Field Programmable Gate Arrays (FPGAs)
and Application Specific Integrated Circuits (ASICs) have

Fig. 2. The inherent redundancy in an IP image.

D. Chaikalis et al. | J. Vis. Commun. Image R. 19 (2008) 1-11 3

both been used for hardware implementation, the use of
FPGAs has dominated over ASICs in the research and
development phase over the last few years [9]. The primary
benefit of an FPGA design is a combination of increased
flexibility, sufficient performance, faster design times and
scalability over ASIC designs [10].

Many different architectures based on the MPEG com-
pression scheme have been proposed for the implementa-
tion of video compression modules taking advantage of
specific target devices. Recent research interest can be
grouped to three main domains:

e ASIC implementations of standard MPEG techniques
[11].

e FPGA implementations of parts or simplified MPEG
components [9,12,13].

e Novel architectures for parts of the MPEG compression
scheme, such as the Sum of Absolute Differences (SAD),
the DCT and inverse DCT transforms and the Motion
Estimation component [14-16].

A hardware implementation of a system for real-time
stereoscopic videoconferencing with viewpoint adaptation
is described by Ohm et al. [17]. In this system intermediate
views at arbitrary positions are synthesized from the views
of a stereoscopic camera system. Disparity Estimation
(presented in Section 2) is used for retrieving depth infor-
mation from two view images in order to synthesize inter-
mediate views by interpolation.

The aforementioned recent works present an interesting
approach for image and video compression. However,
none of the previous methods has been properly adapted
in order to take advantage of IP image or video sequence
characteristics.

In this paper, an area-efficient hardware implementation
of a real-time motion estimation scheme specially modified
for IP images is presented, targeted to real-time 3D captur-
ing and display applications. The main idea is the exploita-
tion of the inherent redundancy that is present in IP
images, while considering the memory and data bandwidth
limitations of such an implementation, creating a memory-
efficient and bandwidth-limited hardware system. Prelimin-
ary results presented by Chaikalis et al. [18] revealed that
the implementation is deemed suitable for real-time IP
image compression.

The rest of the paper is organized in four sections. In Sec-
tion 2 we describe the algorithm on which the proposed com-
pression architecture is based, and introduce some essential
aspects of motion estimation. In Section 3 we illustrate the
proposed hardware design, the results of which are apposed
in Section 4. Finally, the conclusions and prospects of this
study are summarized in the last section.

2. Algorithm description

The realized algorithm derives from the basic MPEG
scheme for video compression, based on the fact that the

elemental images can be treated as a spatial sequence of
subsequent frames having a predetermined motion pattern.

A typical MPEG encoder consists of standard quantiza-
tion maps, encoding procedures, motion vector prediction
and coding. Sgouros et al. [8] have proposed a technique
based on the above encoder, where certain modifications
are made to the motion estimation and vector coding units.
These modifications derive from the unique properties of
the IP image as described earlier in Section 1.

In detail, the motion estimation module is replaced by a
disparity estimation and coding unit where a full pixel dis-
parity estimation strategy is used over an area that is
decided to contain the most probable matching parts. This
area confinement is easily calculated, considering the geo-
metric relation exhibited by neighboring areas of an IP
image. The advantages of this technique derive from the
use of standard 2D-DCT and the relatively low-complexity
disparity compensation modules, along with the standard
quantization and coding techniques.

The proposed method achieves high quality ratios over
classic methodologies like JPEG. The Peak Signal-to-Noise
Ratio (PSNR) objective metric was used to assess the
results of the algorithm, over baseline JPEG, showing that
quality gain is over 2 dBs for a wide range of bit rates [8].
Fig. 3 depicts the coding gain for a typical IP image as the
one presented in Fig. 2.

The reduced complexity of the compression method
allows easy hardware prototyping and scalability of the
algorithm. Additionally, the aforementioned properties of
an IP image favor the development of highly parallel and
thus time-efficient hardware implementations.

2.1. Motion estimation
One of the critical tasks of a compression scheme based
on an MPEGe-like architecture is motion estimation.

Motion estimation has been introduced in an attempt to
trace the motion of objects within a video scene, i.e. iden-

PSNR vs Bit rate

26

L | S /),/

22t =

PSNR (dB)

20 4

16 : ~ —-JPEG

Disparity Encoder]

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Bit rate (bpp)

Fig. 3. PSNR values of the proposed disparity encoder compared to
baseline JPEG for several bit rates.

4 D. Chaikalis et al. | J. Vis. Commun. Image R. 19 (2008) 1-11

tifying the best match between pixels in the current frame
and pixels in the reference frame. To this end, a search area
within the reference frame must be traversed in order to
find the best match. After that, the intensity differences
between the pixels must be coded along with the difference
in coordinates between the matched locations in the cur-
rent and reference frame (motion vector). In block-based
motion estimation, a search is performed in the reference
frame to locate the best match for a block of pixels (named
macroblock in MPEG) in the current frame.

Two key issues are associated with motion estimation in
general, namely the size of the search area and the metric
used for determining the “best match”. For both issues,
many methods have been proposed [14] in order to reduce
the number of computations.

The most commonly used metric is the Sum of Absolute
Differences (SAD), which adds up the absolute differences
between corresponding elements in the macroblocks. The
SAD value calculation process is time-consuming due to
the complex nature of the absolute value calculation proce-
dure and the subsequent multitude of additions. For an
8 x 8 block, the SAD is calculated as follows:

7 7

SAD(U,¥) = Y [U(x,y) = V(x,y)]

x=0 y=0

where

x,y=0,1,2 ... 7 are the spatial coordinates in the pixel
domain and

U(x,y), V(x,y) represent arbitrary 8 x 8 blocks in adja-
cent frames. The actual coordinates of these blocks in the
frames are chosen by the search algorithm used.

A second issue is the type of transform to be used for the
coding of the reference and the residual frames. The Dis-
crete Cosine Transform (DCT) that is used in a variety
of multimedia compression systems (JPEG, MPEG,
H261), is the dominant candidate, thanks to its relatively
low complexity. Despite its design simplicity, even a typical
8 x 8 2D-DCT has a significant computational cost, since it
requires execution of 4096 multiplications per window [19].

In multimedia compression applications, it is widely
acceptable that, the choice of an 8 x8 window size for
the 2D-DCT 1is a good trade-off between the transform
complexity and the achieved spatial decorrelation [16].
The expression of an 8 x 8 2D-DCT is given by the follow-

ing equation:
7 . .

B (2i + 1)mmn (2 + nn
Foun= Z fijcos (T cos 16
where
mon,i,j=0,1,2...7.

;
i=0 j=0

2.2. Compression method

The compression method is applied on an IP image in
order to exploit its correlation properties, using each sub-

image as a spatial frame and assuming that is highly corre-
lated with its neighbouring sub-images. In this manner, all
time dependent quantities present in MPEG are trans-
formed to equivalent spatial ones.

One of the most valued features of an MPEG algorithm
are motion vectors that determine the displacement of the
best match macroblock in the reference frame with respect
to the macroblock in the predicted frame. These vector
quantities are substituted by disparity vectors that reflect
the coordinates offset of the best match between two sub-
images which act as a reference and predicted frames.
Moreover, disparity vectors are expected to have con-
straints regarding the maximum and minimum offset in
coordinates between two sub-images, due to the knowledge
of the characteristics of the elemental lenses that comprise
a lens array.

In this work, the size of the search area is defined by the
properties of the IP images as already discussed. In detail,
horizontally subsequent sub-images are perfectly aligned
and this constraints the search window to an 8§ x 32 pixel
area. The absence of vertical disparity between horizontally
adjacent lenses is due to the manufacturing specifications
of the lens array [8]. Hence, a unidirectional exhaustive
block search method is performed ensuring an optimal
block match. The time performance of this method is close
to the ones used in the general case by MPEG due to the
unidirectionality of the search and the search area selec-
tion, which is based on the IP image properties, reducing
the overall computational cost. It must be noted though
that the exhaustive block search method is selected, since
the proposed technique targets to high quality compressed
images. This differentiates the technique from the temporal
MPEG algorithm aiming to achieving low bit rates for the
encoded sequence.

Fig. 4 is an illustration of an IP image segmentation in
spatial blocks along with the search method followed. An
intra sub-image (I-type) of size 32x 32 is encoded in a
JPEG like manner by the use of the two-dimensional
DCT transform, followed by quantization and entropy
coding to optimize performance. Specifically, the I-type
sub-image is segmented to 8 x 8 pixel blocks and a 2D-
DCT is applied on each block using the quantization table
as described in the JPEG standard [20]. The coefficients are
zigzag scanned and finally coded with a combination of
run-length and Huffman procedures.

Based on the reconstructed I-type sub-image, the dispar-
ity vector matrices are created for the two neighbouring
P-type sub-images, which are located to the left and to
the right of the I-type sub-image. This group of three
sub-images form what will hereafter be referred to as a
P-I-P sub-image triplet. Due to the unidirectional search
method, the disparity vector degenerates to a scalar, which
denotes the horizontal disparity offset of each P block in its
corresponding I-type sub-image row, and has a value from
0 to 24. After the disparity vector matrices’ creation, an
estimation P of the two P-type sub-images of 32 x 32
pixel size is formed by using the reconstructed I-type

D. Chaikalis et al. | J. Vis. Commun. Image R. 19 (2008) 1-11 5

P(llll-‘;___ /<

N
0

IP Image 32

I-type sub-image

8

P-type sub-image

"\

/

a

b

Fig. 4. (a) The I-type and P-type sub-images in an IP image, (b) block search area outline.

sub-image and the proper disparity vectors for each P-type
sub-image. Finally, the P — P, difference between the esti-
mated and the actual P-type sub-images is calculated and
compressed.

In order to calculate the disparity vectors, the P-type sub-
image is segmented to sixteen 8 x 8 blocks (Fig. 4), so 4 rows
and 4 columns of blocks are created. The SAD metric is
used for determining the best match of each 8 x 8 block of
each P-type sub-image into the I-type sub-image. For each
8 x 8 block, the search area in the I-type sub-image is
defined starting by the same top-left coordinates as the ones
of the P block and advancing until the right end of the line
of blocks in the sub-image. The exhaustive search method
indicates that the search advances one pixel at a time, com-
paring in this manner the leftmost P block with 25 blocks in
the I-type sub-image, traversing the row from its leftmost
edge up to its rightmost edge - horizontal coordinates from
0 up to 24. The next P block is compared with 17 blocks—
coordinates from 8 up to 24—and the third P block with 9
blocks—coordinates from 16 up to 24. In total,
25+ 17 +9 = 51 comparisons are needed for each row of
blocks in the P-type sub-image, and for each comparison
one SAD value is calculated, resulting to 51 SAD values
for each row of blocks in the P-type sub-image.

The aforementioned calculations and the block match-
ing search are implemented into hardware, in order to
achieve real-time performance. The block diagram of the
above compression scheme is presented in Fig. 5. The
shaded components represent the part that is implemented
in hardware, which will be referred to as Disparity Vectors
Matrices” Generator (DVMG) henceforth.

3. Hardware design

The DVMG architecture contains the initial compres-
sion parts of the algorithm, and the creation of the dispar-
ity vectors. In order to create a robust digital system,
certain facts are taken into account, concerning the imple-
mentation platform and the hardware requirements. Given
that one of our objectives is a timing comparison to the
software realization, the FPGA fitted on the Celoxica
RC1000-PP PCI board was tested against the software ver-

sion of the algorithm. Moreover, the additional hardware
on the development board is exploited to a maximum
degree in favour of the digital architecture residing in the
FPGA device.

The proposed hardware is designed using Very High
Scale Integrated Circuits (VHSIC) Hardware Description
Language (VHDL). The hardware modules are imple-
mented in FPGA using a Celoxica RC1000-PP PCI board.
The FPGA on the development board is a Xilinx Virtex
XCV-2000E chip, with an equivalent area to 2 million logic
gates. The board includes 8 MB memory modules orga-
nized in four different banks, each with separate address
and data buses. In this way, every memory bank can be
accessed independently in the same clock cycle. The FPGA
implements a dedicated 640 kbits (80 Kbytes) dual-ported
memory, which can be used in any width desired [21].

In total, four FPGA memory modules are realized in the
FPGA dedicated memory. Three FPGA memory modules
are used for storing the sub-images and one for storing the
results. In order to maximize memory utilization and opti-
mize the speed of the read operations, a cell size equal to 64
bits was chosen, that can store the intensity values of 8 pix-
els. For each memory module 11 bits address space is
required. Each memory module used for sub-image storage
can store up to 16 sub-images with size 32 x 32 bytes. These
three FPGA modules occupy 48 Kbytes out of the 80 Kby-
tes of the dedicated memory available on the device and
store 16 P-I-P sub-image triplets in each processing phase.
The rest of the dedicated memory is allocated to the results’
memory module where the calculated disparity vectors are
stored.

Each disparity vector is expressed using 5 bits, but is
allocated an 8-bit value corresponding to the width of the
memory cell of the FPGA dedicated memory. For the 16
P-I-P sub-image triplets that are stored in the FPGA
sub-image memory modules, 32 disparity vector matrices
are created (see Fig. 4). Each matrix contains 4 x 3 dispar-
ity vector values, since no disparity estimation is performed
for the rightmost P block of each row, which is indepen-
dently coded. In total, 4 x 3 x 32 =384 bytes of results’
memory are needed to store the disparity vector matrices
for 16 P-1-P triplets.

6 D. Chaikalis et al. | J. Vis. Commun. Image R. 19 (2008) 1-11

P blocks(left)

I block transform

I blocks

2D-DCT 2D-1DCT

A 4

P blocks(right)

d.v. matrices (left)

D PC M

d.v. matrices (right)

A 4

DPCMpb—

Disparity
Vector’s Creation

Pea generation

P-Peyt difference
calculation <

2D-DCT

2D-DCT

v '

i

Fig. 5. Block diagram of the IP image compression scheme as detailed in [8]. The Disparity Vector Matrices’ Generation (DVMG) represents the part that

is implemented in hardware.

In our implementation, each sub-image type is down-
loaded from the host to a separate board memory bank.
In total, 6 Mbytes of image data are transferred to the
board memory. In this way, the simultaneous access of
the board memory banks by the DVMG allows pixels of
three of the sub-images forming the P-I-P sub-image trip-
lets to be transferred to the FPGA memories in parallel.

The memory layout of the FPGA and board memory
modules along with their sizes and interconnections are
illustrated in Fig. 6. The memory interface is designed in
the FPGA and rearranges the image data while transferring
them from the board memory modules to the FPGA ones.

In the remainder of this section, the DVMG’s architec-
ture and operation phase are presented in detail.

3.1. System overview

Right after the FPGA device is programmed with the
DVMG, the host downloads a part of an IP image up to
6 MB in size to the board memory using DMA transfer
mode of operation. The DMA transfer is performed in a
rate of approximately 90 MB/s; for the appropriate data
to be downloaded to the board memory, about 66.7 ms
are required. Upon completion, the DVMG is signalled
through a host-to-FPGA signal in order to start processing
the data.

The first task of the DVMG is to transfer 16 P-I-P sub-
image triplets to the FPGA memory. From there on, a ser-

ies of operations are executed in order to calculate and
write to the results’ memory the final data, which are the
disparity vector matrices for the 16 sub-image triplets.
Each processing phase ends when all the data in the avail-
able FPGA memory are processed. The next processing
phase initiates by transferring the next 16 P-I-P sub-image
triplets from the board memory to the FPGA memory, and
the disparity vector matrices are created in the same fash-
ion. The operation phase of the DVMG ends when all
the image data residing in the board memory have been
processed and the results are transferred from the results’
memory module to the board memory.

When the DVMG completes its operation phase, the
desired results are residing in the board memory. The host
is notified and uploads the final data, and the FPGA sys-
tem returns to its initial state, waiting for a new start signal
from the host.

The DVMG is comprised of the following sub-systems:
the two-dimensional Discrete Cosine Transform (2D-DCT)
Unit, the Quantizer and the Inverse Quantizer, the 2D
Inverse-DCT (2D-IDCT) Unit, the Disparity Vectors’ Cre-
ation Unit (DVC Unit or DVCU), an Address Generation
Unit, and the Control Unit along with the necessary FPGA
memory modules. The first four units (see Fig. 5) men-
tioned above are grouped to the I block transform module,
that is responsible for compressing and decompressing the
I-type sub-images. Fig. 6 presents a block diagram of the
hardware system.

D. Chaikalis et al. | J. Vis. Commun. Image R. 19 (2008) 1-11 7

(i S g e e——— ———— —— — — S S——— — f— —— — — — -
1 Board) I_DL"A/_IG (lPG4) FPoTTTmETmTETTT |
" L | 1 Memory modules 1
| memory 1 - I |
o 1 1 |
<I] E— < | [Results \I/I—l: I
| bank 3 1 L3S .
g SIS - i |
1 s 1 1 |
| | o 1 1
SRAM |1 I P-type (left) o |
= :—I—> bank 2 ™ > § > sub-image Disparity | |
g | s12Kx32 | I g : 2Kx64 ! Vectors” | |
g I 1 I E E 1 1 Creation I
& 1 | . =) 1 1 (DVC)
3 L] sran | g EE ! Lt - Unit I
e SR.] EZ -type
- ::—_> bank 1 . = i é _—I_> sub-image I
L sioksz |y 8 : 2Kx64 : I
1 1 | = 1 1 |
1 : 1 I |
o] sram | | i L P-type ighy ! I
:-|—> bank 0 > r > sub-image |
L7 e 1 e
| s12Kxs2 | | Address | 2KxG4 ' I
v "-_-_-_-_-_-_-_-_' Generation Unit i W o |
:- Board |] -[|
I components |
! (memory 1 Control Unit
: arbitration etc.) ! | I
_________ S S e e s S e e S e |

Fig. 6. An overview of the DVMG.

3.2. Datapath

The FPGA memory used to store the sub-images is
organised into three different banks. The P-type sub-images
are written in two separate P-type sub-image memories,
one for the P-type sub-images preceding an I sub-image
and one for the P-type sub-images following an I-type
sub-image, while the I-type sub-images are stored in a sep-
arate bank.

As soon as the image data are read from the board
memory, the I-type sub-images are passed through an
8 x8 2D-DCT transform, and then quantized according
to the standard JPEG luminance table [20]. Finally, they
are inverse-quantized and fed in to an 8 X 8 inverse 2D-
DCT transform. At the end of this processes, the recon-
structed I-type sub-images are stored in the I-type
sub-image FPGA memory.

The Disparity Vector’s Creation Unit is responsible for
generating the disparity vector matrices for the P-type sub-
images by calculating the minimum SAD value for each
8 x 8 block (see Fig. 4). The SAD value calculation is per-
formed by comparing I-type and P-type sub-image pixel
values, according to the procedure explained in this section.

For the creation of the disparity vectors, the Sum of
Absolute Differences (SAD) metric is implemented (see
Section 2.1). The SAD calculations could be performed
in a completely parallel manner, increasing the overall
speed of the system. Such an approach though poses the
problem of high bandwidth and area demands, which
requires a multitude of FPGAs [15].

In the proposed method, instead of implementing one
Absolute Difference (AD) unit for each pair of pixels in

the compared blocks (e.g. 64 AD units for an 8 x 8 block
comparison), we implement only 8 of these units for each
8 x 8 block comparison, in order to avoid the distribution
of the implementation to more than one FPGAs. By suc-
cessive repetition, each SAD unit produces a SAD value
for an 8 x 8 block in 8 clock cycles, by processing in parallel
8 pixel pairs from one P-type and I-type sub-image block in
every clock cycle. The hardware design of the implemented
AD calculation and the adder tree are based on a method
proposed in [15]. Fig. 7 presents the SAD unit for 8 pixel
pairs, which is designed in VHDL and implemented in
the system.

The DVMG effectively reduces the I-type sub-image
pixel reads for calculating the minimum SAD value for a
line of block in the P-type sub-image. The sub-images are
only transferred once from the FPGA memory to the
DVC Unit (Fig. 6) in order to create the disparity vectors
for the P blocks. This translates to 92% less clock cycles
needed for performing the SAD calculations compared to
the simplest approach of reading each pixel as many times
as it participates in the calculations.

As explained in Section 2.2, 51 SAD values are com-
puted for each line of blocks in the P-type sub-image.
Therefore, the straightforward way to calculate these val-
ues in parallel would be to use 51 SAD Units [18]. Such
an implementation though would not fit into our target
FPGA device, so we experimented with several other
schemes in order to reduce the number of units. It was con-
cluded that the use of 25 SAD Units offers the best com-
promise between area coverage and architecture
complexity. Specifically, if less than 25 SAD Units were
implemented, we would need a very complex control mech-

8 D. Chaikalis et al. | J. Vis. Commun. Image R. 19 (2008) 1-11

8 pixel pairs from P and I sub-image blocks

B &

Inverting
the #0 #1 #2 #3

S T A I 0 Y A Y A T Y

#4 #5 #Ho #7

smallest

|0 0 ¥ 1 Y !

Correction

17-to-1 adder tree

I term

/ SAD value for 8 pixel pairs /

| Accumulator |

SAD value for an 8x8 block comparison

Fig. 7. The SAD unit for 8 pixel pairs, used to calculate the SAD value for an 8 x 8 block.

anism and connection scheme in order to distribute the
image data to the processing units. By using 25 SAD Units
we only need to insert an idle clock cycle after the SAD
Unit has been active for 8 clock cycles. During this idle
cycle, the data is cleared from its accumulators and
registers.

A simplified timing chart of an operation phase of the
SAD Units inside the DVC for a 8 x 32 pixel area is pre-
sented in Fig. 8. For the specific clock cycles, the 8 x 32
pixel areas of a P-type and I-type sub-image are read and
51 SAD values are calculated, as explained in Section 2.2.
In each clock cycle, one 8-pixel column of the P-type and
I-type sub-image is retrieved from the respective FPGA
memory and forwarded to the DVC Unit. The P, I
addresses indicate pixel columns of the P and I 8 x 32 area
respectively that are available in the input stage of the
DVC in a specific clock cycle. Two delay lines are created
inside the DVC, in order to feed all the SAD Units with
the appropriate data, and are denoted in the chart using
(addr-1) and (addr-2). The I pixel columns are forwarded
to the SAD Units only on the cycle that they are read from
the FPGA memory, while the P pixel columns are rippled
through the Units using a structure of delay registers in
order to be available throughout the 32 clock cycles.

The minimum SAD value for each P block derives from
the comparison of the SAD values calculated for it and
takes place in the Comparison module. The Comparison
module also generates the offset value to pair with the smal-
ler SAD value. The offset value represents the I block to
which the minimum SAD value corresponds. This offset
value constitutes the disparity vector that will be an ele-
ment to the block’s disparity matrix.

As long as the 32 disparity vector matrices for the 16 P—
I-P sub-image triplets that reside in the FPGA memory are
stored in the results’ memory, the next P-I-P triplets are
transferred from the board memory to the FPGA memory
and 32 more disparity vector matrices are generated with

the processes described in the above sections. When all
image data is processed and the matrices are complete, they
are transferred from the FPGA results’ memory to the
board memory, so that the host can access them. The
DVMG then notifies the host that the results for the image
are ready, and returns to its initial state, waiting for a host
signal.

4. Results

As described in the previous sections, the DVMG has
the ability to calculate the disparity vector matrices for
an [P image by processing 16 P-I-P sub-image triplets on
each processing phase. These matrices are temporarily
stored to FPGA memory and, upon processing of the
whole image, they are transferred to the board memory,
where they are accessible by the host computer.

A simplified timing chart of the main units comprising
the DVMG, during a processing phase of 16 P-I-P trip-
lets is illustrated in Fig. 9. The chart also illustrates the
time measured in clock cycles, starting from 0, on which
the most important transitions during the processing
phase take place. The total time required for calculating
the disparity vector matrices for 16 P-I-P sub-image
triplets adds up to 20 869 clock cycles. The DVMG
can be clocked with a maximum frequency of
11.29 MHz occupying 87% of the Virtex XCV-2000E
area. The overall time for processing an entire image
depends on the image size. As an example, for an image
with a dimension of 1024 x 768 pixels, 31.4 ms are
required. In other words, 31 such images are processed
per second by the implemented hardware system.
Fig. 10 depicts the number of IP images that the hard-
ware system can process per second, for images with sev-
eral dimensions.

The operating clock rate of the DVMG is defined by
the maximum operation frequency of its slowest compo-

D. Chaikalis et al. | J. Vis. Commun. Image R. 19 (2008) 1-11 9
addr addr-1 addr-2 SAD Units (#)
Pl P Pl |0 1 2 3 4 5 & 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
o (00
1 (1
2| @2 s 0 L
3| @3 Sis
4| 4.4 I b
5| (55) Siqibis e
6| (©8) 2isivis
7| @n 1 iZisiTis
8| (88 air gimi®ist 1
9| (99 (89 oir 2i3i%is -
10| (10,10) (9.9) or 83115 .
11| (1,41 (10,10) Bl 7 eimifisl L
12| (1212) (11,11) T clr 21FIT e
13| (13,13) (12,12) AR _ clr @2 Sn < § .
14f (1414) (1313) Si{iTIS_ | e 3ix|=i®
L 15| (1515 (1414) 3i3 f g - or 3 f:.: BB 1
S 16| (1618) (1515) L 1SIBITIE S clr ER S
x 17| 1717y (16,16) clr 3 ali= clr zixieie .
S 18| (1818) (717 (1618) [i BIZITIR 1 Bigi&isi]
G 19| (19,19) (1818) (17.17) [~ olr BiF < ; _ clr 228 .
20| (20,20) (19,19) (18,18) | @ | . or RIZIZIS clr Bigizisy i
21| @121) (20200 (19.19) [2 {3} _ or TIRIZITIZ oIr Bigieis
22| (2222) (2121) (2020) |3 {3 sl olr TR E z ; _ dr Rigjeis! 1
23| (2323) (2222 @121) |RiRiSi®is clr R g _ clr 3ixieis _ .
24| (2424) (2323) (2222) |7 {RigiILiISio ol B3 < § _ clr 3 3 i
25| (2525) (2424) (2323) | 1T imiImiSi2i_ cr BiziIT E _ odri 1 i3i=iBioy
26| (2626) (2525) (23.24) |or] 1T imimiSioio gl | |I8|Z|T § _ arf 1 18 3 e1s
27| (27.27) (26,26, (25,25) ari 1T B Lo dri | BiziT § cri 2|3 =
28| (28,28) (27,27) (26,26, orf_ 1T IRI® Lo ari 1 iBIZIT ori i 1S1=
29| (29,29) (28,28) (27.27) ori BB = ari 1 181G ari 1 12
30 (30,30) (29,29) (28,28) dri | 8D ari E orj
31| (31,31) (30,30) (29,29) ol 412 ori i cri i
32 (31,31) (30,30) cri cel clr
33 (31,31) ot | or
34
Fig. 8. A simplified timing chart of an operation stage of the SAD Units.
— [=a}
B33 2 28 £g g
Clock cycles_ — =f2 222 &8 g
Board memory Q Transferring data to FPGA \::: : L ::< Writing results from >:
' memory and Compression module /i L ! o 4t Results’ memo !
P-I-P memory : Writing P from board memory,X; I XI Transferring P-I-P \Ei E
: 1 from Compression module .i : i ' data to DVC Unit /:i E
Compression Compressing I-type sub—images: i : i \ E E
module N__(from board to FPGA memory): P4 /: ! '
1} L + 1 [l
. '/ Cdleulpting disparity vectors, \! !
DVC Unit N ﬁn'ftir?g to results’ memory ¥4 !
A A : Transferring results :
® 1
.. . . 1
Writing disparity vectors —b:

*Writing from Compression
module, reading from DVC Unit

Fig. 9. Timing chart of the main units comprising the DVMG. The clock cycle count corresponds to a processing phase of 16 P-I-P triplets.

nent. Being this the case, the low clock rate of the sys-
tem is due to the combinatorial logic of the adder trees
in the SAD units. If extensive pipelining were to be used
for the current architecture, area coverage would exceed
the available FPGA device. Using larger FPGA devices
would improve the performance of the hardware system,
as discussed in the last section. Nevertheless, as revealed

in Fig. 10, the DVMG is able to process IP images of
significant size in real time, targeting a resolution range
from moderate resolutions, normally used in mobile sys-
tems, to high resolutions for demanding 3D desktop
applications. Therefore, the implemented hardware sys-
tem is deemed suitable for real-time processing of video
sequences.

10 D. Chaikalis et al. | J. Vis. Commun. Image R. 19 (2008) 1-11

Processed TP Images per second

80

60

Images per second
sy
e

720x576 800x600

204

1024x768

1600x1200 2048x1756 2660x1920

Image dimension in pixels (width x height)

Fig. 10. The number of IP images that the DVMG can process in every second.

The timing results are compared to a software approach,
created in C programming language, that produces the
same disparity vector matrices for an IP image. The host
PC used for the realisation of the FPGA and software
approaches was a Pentium 4 2.8 GHz unit, equipped with
512 MB of RAM. Measuring the time needed for the soft-
ware to complete the generation of the disparity vectors for
several sizes of IP images, a speedup of 2 orders of magni-
tude was measured in favour of the hardware realisation.
Specifically, several seconds are required for the software
to create the matrices even for small image sizes, while
the FPGA produces the final data approximately 100 times
faster. Table 1 illustrates the advantage of FPGA process-
ing when compared to the software approach.

5. Discussion—Future work

The continuously growing interest for three-dimensional
applications has revived the research for methods and tech-
niques for 3D image capturing and reproduction. Today’s
means of processing and display need to confront the high
bandwidth and storage requirements derived from high res-
olution 3D images. In this paper, a hardware implementa-
tion of a disparity estimation scheme is presented, targeted
to IP image coding.

Area optimization was the most critical task of the
DVMG, given that multiple FPGAs should be used if a
completely parallel processing scheme is adopted. Target-
ing to a single Virtex-E FPGA with an area capacity equiv-
alent to 2 million logic gates, we succeeded in implementing

Table 1
Timing comparison between FPGA and software approach for disparity
vector matrices’ generation for an IP image

Data processor FPGA (ms) Software (ms)
Image dimension in pixels

800 x 600 20.33 2800

1024 x 768 31.42 4100

1600 x 1200 75.79 8700

a novel, area-efficient, real-time disparity estimation hard-
ware system. The latter has the ability to process video-
sized images in a rate greater than 30 frames per second,
being 100 times faster compared to the current software
realisation. Hence, it is evident that the proposed hardware
system can constitute a robust accelerating component in a
hybrid IP image compression system.

Using an FPGA device with larger available area could
lead to improvements in the overall performance with the
hardware implementation of additional time consuming
modules of the compression algorithm. Moreover, in larger
FPGAs, a more efficient pipelining scheme would be rea-
lised, leading to higher clock rates and additional perfor-
mance gain.

Acknowledgments

This work was realized under the framework of the
Reinforcement Programme of Human Research Man-
power (“PENED 2003”—03ED656), cofunded by the Gen-
eral Secretariat for Research and Technology, Greece, and
the European Social Fund.

References

[1] Developers Handbook, Stereographics 1997, available from:www.
stereographics.com.

[2] M. Halle, Autostereoscopic displays and computer graphics, com-
puter graphics, ACM SIGGRAPH 31 (2) (1997) 58-62.

[3] Janusz Konrad, Visual communications of tomorrow: natural,
efficient and flexible, IEEE Communications Magazine 39 (1) (2001)
126-133.

[4] H. Liao, S. Nakajima, et al., Intra-operative real-time 3D informa-
tion display system based on integral videography, MICCAI 01,
LNCS 2208 (2001) 392-400.

[5] P. Harman, Home based 3D entertainment—an overview, in: Proc.
ICIP(1), 2000, pp. 1-4.

[6] G. Lippman, La Photographie Integrale, Comptes Rendus de L
Academie Des Sciences 146 (1908) 446-451.

[7] R. Zaharia, A. Aggoun, M. McCormick, Adaptive 3D-DCT compres-
sion algorithm for continuous parallax 3D integral imaging, Elsevier,
Signal Processing: Image Communication 17 (2002) 231-242.

http://www.stereographics.com
http://www.stereographics.com

D. Chaikalis et al. | J. Vis. Commun. Image R. 19 (2008) 1-11 11

[8] N. Sgouros, A. Andreou, M. Sangriotis, P. Papageorgas, D.
Maroulis, N. Theofanous, Compression of IP images for autostereo-
scopic 3D imaging applications, in: Third International Symposium
on Image and Signal Processing and Analysis (ISPA03), Rome, Italy,
September 18-20, 2003.

[9] S. Ramachandran, S. Srinivasan, FPGA Implementation of a novel,
fast motion estimation algorithm for real-time video compression, in:
Ninth International Symposium on FPGAs, Monterey, Canada,
2/2001.

[10] S. Rathnam, G. Slavenburg, An architectural overview of the
programmable multimedia processor, TM-1, in: Proc. COMP-
CON’96, 1996, pp. 319-326.

[11] V.G. Moshnyaga, K. Tamaru, A memory efficient array architecture
for real-time motion estimation, in: Eleventh International Parallel
Processing Symposium (IPPS’97), Geneva, Switzerland, April 01-05,
1997, pp. 28-32.

[12] N. Roma, T. Dias, L. Sousa, Customisable core-based architectures
for real-time motion estimation on FPGAs, in: Proc. 13th Interna-
tional Conference on Field Programmable Logic and Applications—
FPL’03, Lisboa—Portugal, 1-3 September, 2003, pp.745-754.

[13] D. Zandonai, L. Carro, S. Bampi, A.A. Suzin, An architecture for
MPEG motion estimation, VII Workshop Iberchip IWS2001, 2001,
Montevideo, 1. pp. 90-95.

[14] S. Wong, S. Vassiliadis, S. Cotofana, A sum of absolute differences
implementation in FPGA hardware, in: 28th Euromicro Conference

(EUROMICRO’02), Dortmund, Germany, September 04-06, 2002,
pp. 183-186.

[15] S. Wong, B. Stougie, S. Cotofana, Alternatives in FPGA-based SAD
implementations, in: IEEE I.C. on Field Programmable Technology
2002 (FPT’02), Hong Kong, December 2002.

[16] M. Martina, A. Molino, F. Vacca, Reconfigurable and low power 2D-
DCT IP for ubiquitous multimedia streaming, in: IEEE International
Conference on Multimedia and Expo (ICME 2002) 2, August 26-29,
2002, pp. 177-180.

[17] J.-R. Ohm, K. Gréneberg, E. Hendriks, E. Izquierdo M., D. Kalivas,
M. Karl, D. Papadimatos, A. Redert, A realtime hardware system for
stereoscopic videoconferencing with viewpoint adaptation, Image
Communication, special issue on 3D technology, January 1998.

[18] D. Chaikalis, D. Maroulis, N. Sgouros, P. Papageorgas, N. Theof-
anous, An area-efficient FPGA implementation of a disparity
estimation scheme for real-time compression of IP images, in:
International Conference on Signals and Electronic Systems (ICSES),
Poznan, Poland, 2004, pp. 309-312.

[19] R. Woods, A. Cassidy, J. Gray, VLSI architectures for field
programmable gate arrays: a case study, IEEE Symposium on
FPGAs for Custom Computing Machines, 1996.

[20] W.B. Pennebaker, J.L. Mitchell, JPEG Image Compression standard,
VNR, NY, 1993.

[21] Celoxica RC1000-PP development board: Hardware Reference,
www.celoxica.com.

http://www.celoxica.com

	Hardware implementation of a disparity estimation scheme for real-time compression in 3D imaging applications
	Introduction
	Algorithm description
	Motion estimation
	Compression method

	Hardware design
	System overview
	Datapath

	Results
	Discussion-Future work
	Acknowledgments
	References

