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Abstract- In this paper we propose a methodology for intelligent analysis of genomic 
measurements. It is based on a sequential scheme of Support Vector Machines and it can be used for 
class prediction of multiclass genomic samples. The proposed methodology was evaluated using two 
lung cancer datasets. The results are comparable and in many cases higher to the accuracy of relevant 
methodologies that have been proposed in the literature.  
 
     I. Introduction 
 
The analysis of genomic measurements is a complicated problem that can be tackled by computer 
scientists and statisticians. Microarray technology first provided the ability of measuring the gene 
expression levels of thousands of genes in parallel. Microarrays consist of large numbers of individual 
DNA sequences printed as spots in a systematic order on a microscope’s glass. Each spot produced by 
a DNA microarray hybridization experiment represents the expression levels’ ratio of a particular gene 
[1]. The microarray glass is scanned by a special scanner capable of producing digital images (Fig. 1), 
which are used for the measurement of the spots’ intensities. 
 

 
Figure 1. Microarray images. 

 
The analysis of microarray measurements aims to the identification of the functional role of the 

genes, the way they are organized, the way they interact and the way their expression levels are 
changed by various diseases. The major related research areas include the detection of differential 
expression, pattern discovery, inference of regulatory pathways and networks and class prediction. 
Class prediction methods involve supervised machine learning techniques for diseases’ diagnosis or 
prediction. This is a challenging task mainly due to three reasons: a) microarray data consist of a large 
number of gene expression measurements, while the number of samples is disproportionaly small, b) a 
significant percentage of genes is usually not associated with the problem under investigation and c) 
the biochemical procedure used to produce microarrays, adds a lot of noise to the measurements. 
Methods that have been applied for microarray measurements include linear discriminant analysis, k-
nearest neighbors (k-NN), parzen windows, decision trees, Neural Networks (NN) and Support Vector 
Machines (SVM) [2-7]. Comparative studies suggest that SVMs outperform other methods [3][7]. 
SVMs are remarkably robust machine learning algorithms that are based on statistical learning theory 
[8]. Their performance is not easily affected by sparse or noisy data, they resist to overfitting and to the 
“curse of dimensionality”. 

In order to remove the genes that are not associated with the classification problem, identify the 
differentially expressed genes and reduce the dimensions of the vector space generated by the genomic 
measurements, gene selection algorithms are usually applied prior to the classification stage. [4] [9-13].  



The performance of the proposed methodology was evaluated by following two approaches [14]. 
Both of them calculate the Leave-One-Out Cross Validation (LOOCV) error. The first has been widely 
used in the past [11-13] but Ambroise et al showed that it is biased and leads to overestimates [14]. In 
the second, the LOOCV procedure avoids bias. 

We propose a methodology for multiclass microarray data analysis using an intelligent class 
prediction scheme implemented by Support Vector Machines (SVM). It utilizes a statistical ranking 
method for the selection of the differentially expressed genes. The methodology was applied for the 
classification of samples corresponding to normal and lung cancer subtypes. 

 
II. Methodology 

 
The proposed methodology aims to the classification of a gene expression vector x to its appropriate 
class ωi, i=1,2,...N. The gene expression levels are normalized to zero mean and unitary variance in 
order to obtain comparable sample measurements. The scheme of SVM classifiers implemented by our 
methodology is illustrated in Figure 2. It consists of N-1 blocks Bi each of which contains two modules. 
The first module noted as Si, realizes gene selection and the second noted as Ci, implements 
classification. Each block Bi is trained separately with a samples’ subset Xi of the available training set 
X, where 
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Module Si selects a subset of v genes gij, j=1,2…v which best discriminates class ωi from class ωh, via 
Welch’s t-test. The number of selected genes is determined by maximizing the performance of the 
classification module Ci. Presenting a vector x of unknown class to the system, module Ci is fed with 
the selected subset of genes, gij and outputs 1 if x∈ωi and -1 if x∉ωi. If x∉ωi, the sample enters to the 
next block Bi+1 else the classification task terminates and x is assigned to class ωi. The last block BN-1 
decides whether x∈ωN-1 or x∈ωN.  
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Figure 2. Multiclass microarray measurements analysis scheme. 

 
A. Gene Selection 
 
The statistical approach followed for the selection of the differentially expressed genes is Welch’s t-test 
ranking. Welch’s t-test is a statistical test that assumes unequal variances among classes and it can be 
applied in problems involving a small number of samples [10]. The genes are ranked based on how 
well they lead to a large between-class distance and a small within-class variance in the feature’s space. 
Genes’ ranking is achieved by calculating the absolute value of the t-statistic Z(j) for each gene j: 
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where (mi
j, σi

j) and (mh
j, σh

j) correspond to the mean and standard deviation of gene’s j expression 
levels of the training samples that belong to ωi and ωh classes respectively. The number of samples 
belonging to each of the above classes is denoted by Ni and Nh. The larger the absolute value of Z(j) the 
higher the expression of gene j. 
 
B. Classification of Genomic Measurements 
 
Let Φ be a non-linear mapping from the input space nI ℜ⊆ to the feature space mF ℜ⊆ . The SVM 
algorithm is capable of finding a hyperplane defined by the equation 



 wΦ(x) + b = 0 (3) 

so that the margin of separation is maximized.  It is easy to prove [8][15] that for the maximal margin 
hyperplane, 
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where the variables λi are Lagrange multipliers that can be estimated by maximizing the quantity 
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with respect to λi, where the following constraints should be satisfied: ∑
=
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0λ  and ci ≤≤ λ0 , for 

i = 1, 2, …, N, and a given cost value c. Increasing c corresponds to a higher penalty for errors.  
),( ji xxK  is called kernel function and it is defined as the inner product  

 )()(),( jiji xxxxK ΦΦ= Τ  (6) 

Linear, polynomial (of second and third order) and Radial Basis Function (RBF) are the most 
common functions used as SVM kernels: 

 
Table 1. SVM Kernels 

Linear ( ) jiji xxxxK ⋅=,  

Polynomial ( ) ( )p
jiji xxxxK 1, +⋅=  

Radial Basis ( ) γ/
2
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were p is the order of the polynomial kernel and γ is a strictly positive constant. The linear kernel is 
less complex than polynomial and RBF kernels. The RBF kernel usually has better boundary response 
as it allows for extrapolation, and most high-dimensional data sets can be approximated by Gaussian-
like distributions similar to that used by RBF networks [15]. 

 
C. System Evaluation 
 
The two approaches followed for the evaluation of the proposed microarray measurements analysis 
scheme are illustrated in Fig. 3. The first calculates the Leave-One-Out cross validation error without 
allowance for the selection bias (LOO-1) by excluding gene selection from the LOOCV procedure. In 
the second the LOO procedure is external to the selection process and avoids selection bias (LOO-2). 
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Figure 3. Leave-One-Out Cross Validation schemes. 
 

III. Results 
 
Two lung cancer datasets were used for the evaluation of the proposed methodology. These datasets 
have been firstly used for the discovery of unknown adenocarcinoma subclasses by applying 
hierarchical clustering [16-17]. The first dataset (D1) is comprised of 203 samples spanning 6 different 
classes, namely normal lung specimens, Small-Cell Lung Carcinomas (SCLC), Adenocarcinomas 
(AC), Large-Cell Lung Carcinomas (LCLC), Squamous Carcinomas (SC) and ACs which are 
suspected to be extrapulmonary metastases (MAC). Each sample consists of 12600 gene 
measurements. The second dataset (D2) is comprised of 65 samples spanning the first 5 of the above 6 



classes. Each sample consists of 24193 gene measurements. Table 2 presents the classification 
sequence of each class ωi for the two lung cancer datasets and the number of samples per class.  
 

Table 2. Classification order for D1 and D2 and number of measured samples per class. 
i ωi D1 D2 
1 Normal 17 5 
2 SCLC 6 4 
3 LCLC 20 4 
4 SC 21 13 
5 AC 127 39 
6 MAC 12 - 

 
The results obtained by the proposed classification scheme, for the two datasets, using the two LOO 

cross validation approaches and the four different SVM kernels, are summarized in Table 3. 
 

Table 3. Results using the two lung cancer datasets. 
 D1 D2 

SVM Kernel LOO-1 LOO-2 LOO-1 LOO-2 
Linear 96.0 82.2 100.0 70.7 
Polyn. 2nd order 97.0 84.7 98.4 73.8 
Polyn. 3rd order 97.0 84.7 100.0 78.4 
Radial 98.5 85.2 100.0 72.3 

 
IV. Conclusions 

 
We presented a methodology for the analysis of genomic measurements based on an SVM multiclass 
classification scheme combined with gene selection modules. It was applied for the classification of 
lung cancer data. The results show that the accuracy of the proposed methodology is comparable and in 
many cases higher to the accuracy of relevant methodologies that have been proposed in the literature 
[6]. Moreover we have confirmed that the selection bias introduced in a performance evaluation 
approach (LOO-1), which is commonly used in the literature, leads to overestimated results. This 
conclusion is seconded by Ambroise and McLachian [14]. 
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