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Abstract. Ultrasound imaging of thyroid gland provides the ability to acquire 
valuable information for medical diagnosis. This study presents a novel scheme 
for the analysis of longitudinal ultrasound images aiming at efficient and 
effective computer-aided detection of thyroid nodules. The proposed scheme 
involves two phases: a) application of a novel algorithm for the detection of the 
boundaries of the thyroid gland and b) detection of thyroid nodules via 
classification of Local Binary Pattern feature vectors extracted only from the 
area between the thyroid boundaries. Extensive experiments were performed on 
a set of B-mode thyroid ultrasound images. The results show that the proposed 
scheme is a faster and more accurate alternative for thyroid ultrasound image 
analysis than the conventional, exhaustive feature extraction and classification 
scheme.  
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1   Introduction 

Thyroid is a small gland located near the bottom of the neck. It produces hormones 
that affect heart rate, cholesterol level, body weight, energy level, mental state and a 
host of other conditions. Epidemiologic studies have showed that palpable thyroid 
nodules occur in approximately seven percent of the population, but nodules found 
incidentally on ultrasonography suggest a prevalence up to 67 percent [1]. Ultrasound 
imaging (US) can be used to detect thyroid nodules that are clinically occult due to 
their size or their shape. However, the interpretation of US images, as performed by 
the experts, is still subjective. An image analysis scheme for computer aided detection 
of thyroid nodules would contribute to the objectification of the US interpretation and 
the reduction of the misdiagnosis rates.  

Early approaches to US image analysis utilized local grey-level histogram in-
formation for the characterization of the histological state of the thyroid tissue [2].  
Subsequent approaches were based on spatial, first and second order statistical 
features [3][4] as well as on frequency domain features for computer aided diagnosis 
of lymphocytic thyroiditis [5]. Recent approaches include quantification of thyroid 

mailto:LNCS@Springer.com
mailto:LNCS@Springer.com
mailto:LNCS@Springer.com
mailto:LNCS@Springer.com
mailto:LNCS@Springer.com
mailto:LNCS@Springer.com
mailto:LNCS@Springer.com
mailto:LNCS@Springer.com
mailto:LNCS@Springer.com
mailto:LNCS@Springer.com
mailto:LNCS@Springer.com
mailto:LNCS@Springer.com
mailto:LNCS@Springer.com


tissue characteristics using co-occurrence matrix features [6], and active contour 
methodologies for fine delineation of thyroid nodules [7]. However, the afore 
mentioned approaches require either manual selection of Regions Of Interest (ROI) 
within the US image, or conventional feature extraction from regions sampled from 
the whole US image.  

In this paper we propose a novel scheme for automatic nodule detection based on 
features extracted from longitudinal US images of thyroid gland. It involves two 
phases: a) application of a novel algorithm for the detection of the boundaries of the 
thyroid gland, and b) detection of thyroid nodules via classification of textural feature 
vectors extracted only from the ROI defined by the thyroid boundaries. The textural 
characteristics of the thyroid tissue are encoded by histograms of Local Binary 
Patterns (LBP) [8]. The advantages of this novel scheme include increased accuracy 
in nodule detection, compared with the conventional ultrasound image analysis 
methods, and time efficiency. 

The rest of this paper is organized in three sections. Section 2 describes the 
proposed scheme for the detection of nodules in thyroid gland.. The results from the 
experimental evaluation of the proposed scheme on thyroid US images are apposed in 
Section 3. Finally, the conclusions as well as future perspectives are summarized in 
Section 4. 

2   Thyroid Ultrasound Image Analysis Scheme 

2.1   Thyroid Boundaries Detection Algorithm  

The lobes of the thyroid gland are surrounded by a thin fibrous capsule of connective 
tissue [9]. That capsule bounds the thyroid gland and can be identifiable in 
longitudinal US images as thin hyperechoic lines. The first phase of the proposed 
thyroid US image analysis scheme aims to the detection of those hyperechoic lines. 
Detection is performed by a novel Thyroid Boundaries Detection (TBD) algorithm. 
This algorithm involves three stages: a) pre-processing of the US image, b) analysis 
of the pre-processed image, and c) identification of the thyroid boundaries.  

In the pre-processing stage, a US input image of N×M pixels and G grey levels, is 
normalized and uniformly quantized into z discrete grey levels. Let pi be the original 
value of a pixel and qi the value of that pixel after quantization. Then qi can be 
computed as follows: 
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Fig. 1. a) Input thyroid US image digitized at 256 grey levels. (b) Pre-processed US image, 
quantized at 3 grey levels. (c) Horizontal stripes sampled from the pre-processed image for 
analysis. (d) The detected thyroid boundaries superimposed to the original input image. 

Grey level quantization results in a rough segmentation of the US image and 
accentuates the hyperechoic bounds of the thyroid gland (Fig. 1b). 

In the second stage of the algorithm, the quantized image is vertically sampled 
from top to bottom with horizontal stripes (Fig 1c). Each stripe has h pixels height 
and M pixels width, spanning the entire width of the image. A step of ],0( hs∈  pixels 
between two successive stripes is considered, leading to a total of K stripe samples per 
image. 

For each stripe, a weighted sum In is computed, where n denotes the stripe index 
incrementing from top (n = 1) to bottom (n = K) (Fig. 1c). The weighted sum of the 
number of pixels with grey level j, for each stripe n is calculated by the following 
equation: 
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where Pj,n represents the set of pixels having grey level j and reside within stripe n. 

In Eq. 3, w(j) denotes a quadratic weight function, which is defined as 
γβ +⋅+⋅= jjajw 2)( , where α, β, γ are constants. The choice of the optimal weight 

function has been considered so as to amplify the contribution of higher grey levels in 
the calculation of In. Constants β, γ are chosen so as to satisfy (w, j) = (0, 0) and (w, j) 
= (1, G). Therefore w(j) is finally derived by the following equation: 
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This weight function aims to amplify the contribution of higher grey levels, which 
clearly appear as hyperechoic lines in US images after the quantization process of the 
first stage (Fig 1c). 



0

5000

10000

15000

20000

25000

30000

35000

40000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
n

 I n

 

Fig. 2. Example of In values for each stripe of the longitudinal US image of figure 1. 

The values of In for the stripes sampled from the US image of Fig. 1, are depicted 
in Fig. 2. From this figure, it can be noticed that the peak values of In correspond to  
the stripes that fall on the thyroid boundaries. 

A direct measure of the rate of change of In, between two successive stripes is 
estimated as follows: 
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In the final stage of the algorithm, the stripes that contain the outer and the inner 

thyroid boundaries are selected. If nouter and ninner are the stripe indices that correspond 
to the outer and the inner boundaries respectively, then nouter and ninner should satisfy 
the following conditions: 
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Threshold T represents a minimum anteroposterior diameter of the thyroid gland 

and ensures that stripe ninner will always reside below stripe. nouter. The logarithmic 
weight functions ω1(n) and ω2(n) are bias nouter and ninner towards the upper and lower 
image regions, respectively. 

2.2 Detection of Thyroid Nodules 

The boundaries detected by the TBD algorithm define a ROI in which feature 
extraction and classification take place. This ROI is raster scanned with sliding 
windows (Fig. 3), and from each window a textural feature vector is extracted.  

The feature extraction method used for texture analysis of the thyroid gland is 
based on Local Binary Patterns (LBP). This method was chosen because it produces 
highly discriminative texture descriptors, it involves low complexity computations, 
and it has been successfully applied for ultrasound image analysis [10]. 

Feature extraction is succeeded by classification of the feature vectors into two 
classes; a class of normal tissue regions, and a class of nodular tissue regions. A 
simple k-nearest neighbor (k-NN) algorithm was chosen as a powerful and robust 
non-parametric classification method with well-established theoretical properties that 
has demonstrated experimental success in many pattern recognition tasks [11]. As the 
LBP feature vectors are actually statistical distributions, the k-NN algorithm uses the 
intersection of two distributions as an effective similarity measure [12]. This measure 
is estimated by the following equation:  
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Fig. 3. (a) Longitudinal US image of thyroid gland. (b) ROI defined by the TBD algorithm. (c) 
Raster scanned ROI with sliding windows for feature extraction. 



 
where h1 and h2 are the two LBP distributions compared, and L is the number of  bins 
of each distribution.   

3   Results 

Thyroid US examinations were performed using a digital US imaging system HDI 
3000 ATL with a 5-12 MHz linear transducer at the Department of Radiology of 
Euromedica, Greece. A total of 39 longitudinal in vivo digital thyroid US images 
were acquired at a resolution of 256×256 pixels with 256 grey-level depth. The 
dataset used in the experiments is comprised of various thyroid nodules classified as 
Grade 3 [13]. 

In order to obtain ground truth images for the experiments, three expert 
radiologists manually annotated the US images by drawing horizontal lines for the 
inner and the outer boundaries of the thyroid lobe, and by delineating the existing 
thyroid nodules. The ground truth images were generated according to the principle 
that every pixel is characterized either as normal thyroid parenchyma, thyroid nodule 
or tissue not belonging to thyroid gland, only if at least two out of three expert 
radiologists characterized it that way [14]. As a measure of detection accuracy, we 
consider the overlap between the detected and the ground truth region.  

The results of the proposed thyroid US image analysis scheme are presented in two 
parts, according to the experiments performed. The first part presents the results of the 
experimental evaluation of the TBD algorithm, whereas the second part presents the 
results of the proposed scheme for thyroid nodule detection. 

3.1   Evaluation of the TBD algorithm 

Experiments were performed to determine the optimal stripe dimensions that 
minimize the error between the boundaries detected by the TBD algorithm and the 
ground truth boundaries. In all the experiments a total of z = 3 quantization levels was 
found to be sufficient. Figure 4 illustrates the results obtained for different 
combinations of h ∈ H and s ∈ H: s ≤ h, where H = {4, 8, 16, 32, 64}.  

The optimal values of the investigated parameters were found to be h = 16 and s = 
16 pixels, for which the mean accuracy in the detection of thyroid boundaries reaches 
a maximum of 93.2±3.2%. For large values of h (>32) a notable decrement of the 
accuracy is observed as the large stripe size leads to a gross localization of the thyroid 
boundaries.  
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Fig. 4. Mean accuracy of the TBD algorithm for different values of h and s. 

3.2   Evaluation of the proposed scheme for thyroid nodule detection 

Experiments were performed to evaluate the performance of the proposed scheme 
with the TBD algorithm in comparison with the conventional, exhaustive feature 
extraction scheme. The window sizes tested were 16×16, 32×32 and 64×64 pixels, for 
sliding steps of 4, 8, 16, 32, 64 pixels. Three LBP neighborhoods, namely 3×3, 5×5, 
and 7×7 pixels, and three k-NN classifiers for k = 3, 5, 7 were tested. The parameters 
delivering the best results in Section 3.1 were used for the TBD algorithm i.e. s = 16 
and h = 16.   

A balanced proportion of normal and abnormal samples was extracted from the 
available US images in a way that all samples corresponding to nodular thyroid 
tissues were included and an equal number of samples corresponding to normal 
tissues was randomly selected. In [15], it has been shown that learning from a 
balanced class distribution the classifiers generally come up with fewer but more 
accurate classification rules for the minority class than for the majority class. So, as 
the nodular tissue samples comprise a minority class, such an approach is expected to 
enhance the classification of abnormal samples and thus increase the system’s 
sensitivity. 

The best results obtained per LBP neighborhood are summarized in Table 1. It can 
be observed that in all cases the application of the TBD algorithm improves nodule 
detection accuracy. The smallest LBP operator, for windows of 32×32 pixels sliding 
with a step of 8 pixels, resulted in the highest accuracy.  



Table 1.  Best classification results. 

Accuracy % 
Method Window/Step k (k-NN) 

Without 
 TBD Algorithm 

With  
TBD Algorithm 

LBP{3} 32/8 7 75 82 
LBP{5} 32/4 7 74 81 
LBP{7} 32/8 5 74 81 

 

  
(a) (b) (c) (d) 

Fig. 5. (a) Longitudinal US image of thyroid gland with a nodule. (b) Ground truth thyroid 
nodule annotated by radiologists. (c) Classification result without TBD (d) Classification result 
with TBD. The nodular tissues detected are colored white.  

An example detection of a single nodule with and without the TBD algorithm is 
illustrated in Fig. 5.  

Besides the notable improvement of the detection accuracy, the use of the TDB 
algorithm led also to a notable improvement in time performance, which reached 
74%.  

4   Conclusions  

We presented a novel scheme for nodule detection on longitudinal US images of the 
thyroid gland. This method encompasses two consecutive phases: utilizing TBD 
algorithm to detect thyroid boundaries defining an initial ROI and then applying 
feature extraction and classification techniques within the region defined. Through a 
series of experiment presented, the proposed scheme proved to be more accurate and 
less time consuming in nodule detection, compared with the conventional US image 
analysis methods. 

The results of the experimental study presented in this paper lead to the following 
conclusions about the proposed scheme: 

• The proposed scheme can improve nodule detection accuracy. 



• The proposed scheme can considerably decrease processing time needed for 
nodule detection.  

• Its application clinical practice is feasible and could contribute to the 
reduction of false medical decisions. 

Future work and perspectives include:  
• Experimentation to determine the optimal feature extraction and 

classification methods for thyroid nodule detection.  
• Enhancement of the functionality of the proposed TBD algorithm, to deal 

with other US images beside the longitudinal US images of thyroid gland.  
• Evolvement of the proposed time efficient scheme for application in an 

integrated real time system for the assessment of the thyroid gland. 
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