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Abstract— A novel active contour model named Variable 
Background Active Contour model is proposed and applied for 
the detection of thyroid nodules in ultrasound images. The new 
model offers edge independency, no need for smoothing, ability 
for topological changes and it is more accurate when compared to 
the Active Contour Without Edges model. Improved accuracy is 
achieved by introducing as background a limited image subset 
which appropriately changes shape to reduce the effects of 
background inhomogeneity. We validated the proposed model on 
ultrasound images acquired from 24 patients and the results 
demonstrate an improvement in accuracy when compared to the 
Active Contour Without Edges model.  

I.  INTRODUCTION  

Thyroid nodules are abnormal lumps growing within the 
thyroid gland which may represent various different conditions 
including cancer. A non-invasive low-cost imaging technique 
widely used for the detection and the ascertainment of the size 
and number of thyroid nodules is ultrasonography [1].  

The ultrasound images produced by this technique contain 
echo perturbations and speckle noise, which follows a 
Rayleigh distribution that cannot be modeled [2]. Thyroid 
nodule detection in such images imposes the use of a 
segmentation method that takes into consideration their 
inherent noise characteristics. 

Two main classes of image processing methods exist for 
feature based image segmentation: region growing methods [3-
5] and active contours [6-9]. Region growing methods include 
the definition of an initial set of seed pixels and the growing of 
a uniform and connected region from each seed according to 
an appropriately selected homogeneity criterion. Their main 
advantage is that they are insensitive to local perturbations as 
they test the statistics inside the region. However, they often 
generate irregular boundaries and small holes [6].  

Early approaches of active contour models utilize local 
filtering techniques such as edge detection operators. These 
approaches are considered inappropriate for ultrasound images 
as the strong isotropic smoothing Gaussian that needs to be 
applied for noise reduction, introduces the risk of smoothing 
the edges corresponding to the object boundaries [7]. Efforts 
have been made towards the unification of contour and region-
based approaches [8, 9]. An improved region based active 
contour model that incorporates previous improvements was 
proposed by Chan and Vesse [7]. This model, named Active 
Contour Without Edges is based on the level set method [10] 
and the Mumford-Shah segmentation techniques [11] to build 
the stopping criterion for the curve evolution on the desired 
boundary instead of an edge function. This way the input 
image does not have to be smoothed, even if it contains noise 
and therefore the object boundaries are preserved and could be 
accurately detected. The Active Contour Without Edges model 
allows the detection of objects whose boundaries are either 
smooth or not necessarily defined by gradient. For both these 
cases the classical active contour models are not applicable. In 
addition, the level set formulation of this model enables the 
algorithm to detect two or more objects in the image as it 
provides adaptability to topological changes e.g. contour 
splitting. A limitation of the Active Contour Without Edges 
model is that it presumes homogeneity for object and 
background areas. A modification of this model taking into 
account image inhomogeneity could lead to more accurate 
object detection.  

In this paper, we propose a novel active contour model that 
uses a variable background to reduce the effects of image 
inhomogeneities. This model aims to the enhancement of the 
object detection accuracy. To the best of our knowledge active 
contour models have not been employed for the accurate 
detection of thyroid nodules in ultrasound images. Thus we 
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apply the proposed model as well as Active Contour Without 
Edges model for this application.  

The rest of this paper is organized in three sections. 
Section II includes a brief description of the Active Contour 
Without Edges model and the presentation of the proposed 
Variable Background Active Contour model. The experimental 
results from the application of the proposed model on thyroid 
ultrasound images are apposed in Section III. Finally, in 
Section IV, the conclusions of this study are summarized.   

II. VARIABLE BACKGROUND ACTIVE CONTOUR MODEL 

A. Active Contour Without Edges 

Active Contour Without Edges as posed in [7] has the form 
of a minimization problem: if we consider Ω  as a bounded 
open subset of 2R  corresponding to image size, with Ω∂  the 
boundary, we seek for ),,(inf CccF −+ : 
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where Ru →Ω:0
 is the given image, 2]1,0[:)( RsC →  a 

piecewise parameterized curve, +c  and −c  are unknown 
constants representing the average value of 

0u  inside and 

outside the curve and parameters  0>µ  and 0, >−+ λλ   are 
weights for the regularizing term and the fitting terms, 
respectively. This problem is a particular case of the minimal 
partition problem, for which the existence of minimizers has 
been proved in [11]. As in the minimum energy problem, the 
minimizer corresponds to the “equilibrium” of the regularizing 
and fitting terms that force the contour to stop. 

In the level set method [10], Ω⊂C  is represented by the 
zero level set of a Lipschitz function ,: R→Ωφ  such that 
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Using the Heaviside function H  and the one-dimensional 
Dirac measure δ, defined respectively by 
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the constants +c  and −c   can be expressed as: 
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Keeping  +c  and −c  fixed, and minimizing F with respect 

to φ , we deduce the associated Euler-Langrange equation for 

φ . For this purpose, we consider slightly regularized versions 

of H  and δ, as described in [7]. Parameterizing the descent 
direction by an artificial time 0≥t , the equation in ),,( yxtφ   
(with ),(),,0( 0 yxyx φφ =  defining the initial contour) is 
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In a practical implementation, a quantitative criterion 
should force the algorithm to stop when the changes of φ  fall 
bellow a threshold for a fixed number of iterations. When this 
criterion is satisfied it is assumed that the minimizer is found 
and the corresponding equilibrium has been reached.  

B. Variable Background Active Contour 

Thyroid ultrasound images contain dark areas outside the 
thyroid gland and the model will tend to delineate all of them. 
This problem can be solved by using the function 

0φ  and the 

corresponding Heaviside function )( 0φH to filter the part of the 

image outside the initial contour from the background and the 
foreground term, assuming that the user defines the initial 
contour in the interior of the thyroid gland.  

In addition, inhomogeneities inside the thyroid gland may 
be present, increasing the background term in the model 
equation with an effect on the contour evolution. We consider 
a variable background area to reduce the inclusion of 
inhomogeneities. To achieve this, we introduce a difference 
term ),( yx∆  in the Active Contour Without Edges model: 

 

0)),,(()),((),( >−−=∆ ayxHayxHyx φφ  (7) 

 

and we require 0),( >∆ yx  to restrict the background area. The 
constant a determines the background area considered. This 
way it is ensured that when inhomogeneities inside the thyroid 
gland lie around a nodule, the background area changes to 
exclude them. This can be justified by the fact that the thyroid 
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gland inhomogeneities cause an abrupt change of φ  which 
results in 1)),(()),(( ==− yxHayxH φφ  for the 
inhomogeneous areas in the image. Therefore the condition 

0),( >∆ yx  is not satisfied and these areas are excluded from 
the background. Introducing )( 0φH  and ),( yx∆  in Eq. (5), we 

derive: 
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The above equations describe the proposed Variable 
Background Active Contour model.   

III. RESULTS 

Thyroid ultrasound examinations were performed on 24 
patients using a digital ultrasound system HDI 3000 ATL with 
a 5-12 MHz linear transducer. The acquired digital images had 
a resolution of 256×256 pixels and 256 gray-level depth.  

We applied the Active Contour Without Edges model and 
the Variable Background Active Contour model for the 
detection of thyroid nodules in the acquired ultrasound images. 
For the purposes of our study we adopted the image intensity 
as the supervising feature for the contour evolution, to enable 
the detection of hypo-echoic thyroid nodules. Low 
echogenicity characterizes the majority of thyroid nodules and 
especially those that are suspect of malignancy [12]. The 
model constants used in the experiments are derived 
empirically as 5=+λ , 5=−λ , 650=µ  and 1310−=a .  

A special purpose software suite implementing these 
algorithms was developed on Microsoft Visual C++. 

An expert radiologist manually delineated the thyroid 
nodules to enable comparisons with the active contour models. 
As a measure of similarity between the area inside the active 
contour delineation A and the area inside the expert’s 
delineation B, we use the overlap value [5]: 

 

BA

BA
i

∪
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For a perfect matching i is expected to be equal to 1.  

Figure 1 illustrates the average overlap value achieved by 
the two models. The Active Contour Without Edges model 
achieved i=0.86±0.04 while the proposed Variable 
Background Active Contour Model achieved i=0.94±0.01. 

Indicative results for two thyroid ultrasound images are 
illustrated in Fig. 2. The first image (Fig.2a) contains one 
nodule while the second (Fig.2b) contains two nodules. It can 
be observed that both algorithms have detected the nodules. 
The delineation achieved by the Variable Background Active 
Contour model is more similar to the expert’s delineation 
compared to the one achieved by the Active Contour Without 

Edges model. Moreover, for the two-nodule case the proposed 
model managed to produce separate contours while the Active 
Contour Without Edges model failed to do so. 
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Fig. 1. Average overlap values achieved by the two active 

contour models. 

 

  
(a1) (b1) 

  
(a2) (b2) 

  
(a3) (b3) 

Fig. 2. Two example thyroid ultrasound images: (a1-b1) 
Contours delineated by the expert radiologist, (a2-b2) Active 
Contour Without Edges, (a3-b3) Variable Background Active 

Contour. 

IV. CONCLUSION 

We have proposed a Variable Background Active Contour 
model and applied it for the detection of thyroid nodules in 
ultrasound images. In this model, the background is a variable 
subset of the image, which changes shape to reduce the effects 
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of background inhomogeneity. The results of the experimental 
study lead to the following conclusions:  

1) The proposed model can be applied without 
preprocessing due to its edge independency. 

2) It is capable of detecting two or more nodules taking 
advantage of its ability for topological changes such 
as contour splitting. 

3) It provides improved accuracy compared to the 
Active Contour Without Edges model. In particular, 
the improvement in contour accuracy is important 
due to the fact that nodule size and shape are factors 
affecting medical expert’s characterization [12].  

Future perspectives of this work include the incorporation 
of an object’s inhom ogeneity as well as the embedment of 
textural features [13] to supervise contour evolution, which 
could enable the detection of non hypo-echoic nodules.   
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