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ABSTRACT 

 
Gridding is the first, essential stage of processing cDNA 
microarray images. The existing tools for allocating the grid 
structure in a microarray image often require human 
intervention which causes variations to the gene expression 
results. In this paper, an original and fully-automatic 
approach to gridding microarray images is presented. The 
proposed approach is based on a Genetic Algorithm which 
determines parallel and equidistant line-segments 
constituting the grid structure. Thereafter, a refinement 
procedure follows which further improves the existing grid 
structure, by slightly modifying the line-segments. 
Experiments on 16-bit microarray images have shown that 
the proposed method is effective as well as noise-resistant. 
Additionally, it achieves an accuracy of more than 95% and 
it outperforms existing methods. 
 

Index Terms—Microarrays, Image, Gridding 
 

1. INTRODUCTION 
 
cDNA microarrays is a fundamental biotechnological tool 
which has been utilized in a variety of biomedical 
application areas, such as cancer research [1]. The reason 
for its popularity in the scientific community is the fact that 
scientists can gain insight into the expression of thousands 
of genes in a single experiment. The end product of a 
microarray experiment is a digital image which contains one 
or more distinct blocks, each one containing equal number 
of spots. A typical microarray image is depicted in Figure 1. 

In order for scientists to monitor the expression levels of 
genes, it is necessary to analyze the digital image. The first 
important stage in the microarray image analysis is 
gridding; that is the process of segmenting a microarray 
image into numerous compartments, each containing one 
individual spot and background. Gridding however, is far 
from being a straightforward procedure, as images are 
contaminated with noise and artifacts, while some spots are 
poorly contrasted and ill-defined [2]. Additionally, there 
may be rotations, misalignments and local deformations of 
the ideal rectangular grid [3]. 

The available commercial or experimental software 
packages require human intervention in order to specify the 

grids properly. For instance, ScanAlyze [4], and ImaGene 
[5] software programs as well as the morphological method 
[6], and the Markov random field [7] require human 
intervention in order to define mandatory input parameters 
as well as to locate properly the grid structure. The absence 
of automation in the gridding procedure leads to significant 
discrepancies in the results of the gene expression levels, 
even for the same microarray slide as it is reported in [8].  

 
Moreover, techniques which have been proposed to solve 

the rotation and misalignment problems are not always 
adequately effective, as they address only limited aspects of 
these challenging problems. For example, Ho et al [9] can 
cope with rotation effectively only when the grids are 
smoothly distorted. 

In this paper, an original, fully-automatic approach to 
gridding microarray images is presented. The proposed 
approach improves the one reported in [10]. It is based on a 
genetic algorithm which determines parallel and equidistant 
line-segments constituting the grid structure. Thereafter, a 
refinement procedure follows which further improves the 
existing grid structure, by slightly rotating or transposing 
the line-segments. The proposed method is noise-resistant 
and it can effectively cope with rotations, misalignments 
and local deformations of the ideal rectangular grid. 

The rest of this paper is structured in three sections as 
follows: In Section 2, the details of the proposed gridding 
method are presented. Experimental results are discussed in 
section 3 and concluding remarks are apposed in section 4. 

 
2. PROPOSED APPROACH 

 
The proposed approach to gridding microarray images is 
divided into the following two main stages: I) the 

Fig. 1.  A typical microarray image  
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microarray image is segmented into blocks and II) each 
block of the microarray image is segmented into spots. The 
segmentation of stage I is equivalent to the determination of 
a set SB of line-segments whose members constitute the 
borders of adjacent blocks, while the segmentation of stage 
II is equivalent to the determination of a set SS of line-
segments whose members constitute the borders of adjacent 
spots. Let G be a microarray image or block. Each of the SB 
or SS sets can be divided into the following two sub-sets: 1) 
a sub-set SV of line-segments whose members are defined by 
the two vertical sides of G, and 2) a sub-set SH of line-
segments whose members are defined by the two horizontal 
sides of G. 
 
2.1. A Genetic Algorithm  
 
The determination of line-segments which are included in 
either the SV or the SH sub-sets can be viewed as an  
optimization problem which is tackled by using the 
proposed Genetic Algorithm which determines the exact 
values of the variables of all the line-segments included in 
both subsets, one sub-set at a time. 
 
2.1.1. Chromosome 
The Chromosome m represents all line-segments Li, 
i=1,…,N(m) belonging to the SV or SH sub-set, where N(m) 
is the number of the line-segments belonging to the 
respective sub-set. Before explaining how the Chromosome 
can represent all the line-segments, it is worth making the 
following two observations: 
1) Any line-segment can be represented on a Cartesian 
plane and it is defined by its end-points. In this case, for 
each of the SV or SH sub-sets, let the x-axis of the plane be 
the one of the two sides of G, that does not intersect with 
the corresponding line-segments. It is obvious that the end-
points of line-segments Li belonging to the SV or SH sub-sets 
are located on the sides of the quadrilateral in shape G. As a 
result, any line-segment Li belonging to the SV or SH sub-sets 
can be defined under the condition that the y-coordinates of 
its end-points are known. 
2) Due to the alignment of blocks inside the microarray 
image and the arrangement of spots inside the blocks, the 
line-segments belonging to the SV or the SH sub-sets are 
ideally parallel and equidistant. As a result, the distance d 
between two adjacent line-segments, belonging to the same 
sub-set, is considered as constant.  

According to the above observations, the Chromosome m 
has been encoded as a string of three real values; the two y-
coordinates of the end-points of one line-segment and the 
distance d between two adjacent line-segments. In the case 
when the Genetic Algorithm searches for the exact values of 
the variables of the optimal line-segments belonging to the 
SV sub-set, its Chromosome will encode the y-coordinates of 
the end-points of “lineV1” and “dV” (Figure 2). In the case 
when the Genetic Algorithm searches for the exact values of 

the variables of the optimal line-segments belonging to the 
SH sub-set its Chromosome will encode the y-coordinates of 
the end-points of “lineH1” and “dH”. 

 
 
2.1.2. Fitness Function 
A line-segment which is part of the grid is located in an area 
empty of spots. The pixels of this area are part of the 
background and their intensities are generally lower than the 
intensities of the pixels constituting spots. As a result, we 
define the probability ( )iP L of a line-segment Li to be part of 
the grid by the following equation: 
 

 ( ) ( ) ( )Li LiR R
i B i S iP L f L f L  (1) 

 
RLi denotes the region of G which contains those pixels 
whose distance from the line-segment Li is less than a 
margin w. The real-valued function ( )LiR

B if L expresses the 
percentage of pixels of the region RLi whose intensity is 
lower than a value IB, while the real-valued function 

( )LiR
S if L expresses the percentage of pixels of the region RLi 

whose intensity is higher than a value IB. IB is an intensity 
value which is defined as the value which is present in most 
pixels of G. Any pixel below this intensity value IB belongs 
to the background.   

The Fitness Function F(m) of a Chromosome m that 
encodes a possible solution to the particular optimization 
problem is defined by the following equation: 
 

 ( ) ( ), ( )
( )

( ),
p LS Max

p

S m N m if f m f
F m

S m otherwise
  (2) 

 
The real-valued function Sp(m) denotes a total sum of the 
probabilities P(Li) of the line-segments Li, i=1,…,N(m), that 
are represented by the Chromosome m, and have a high 
probability P(Li) to be part of the grid.  The real-valued 
function fLS(m) denotes the percentage of the line-segments 
Li, i=1,…,N(m), that are represented by the Chromosome m, 
and have a low probability P(Li) to be part of the grid. A 
high probability P(Li) is the one which is higher than a 
threshold PMAX while a low one is the one which is lower 

 
Fig. 2.  Line-segments constituting the grid structure in a 
microarray image or block. 
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than a threshold PLOW, where   LOW MAP P . N(m) denotes the 
total number of the line-segments Li which are represented 
by the Chromosome m. 
 
2.1.3. Genetic Operators and Termination criterion 
The initial population of randomly generated chromosomes 
evolves because of the subsequent use of: 1) the elitist 
reproduction, 2) the BLX-a crossover and the Dynamic 
Heuristic one [11] and 3) the Wavelet mutation [12].  

New Populations are produced until the following 
criterion is met: the Genetic Algorithm is executed up to a 
maximum number of Populations GFit for which the best 
Fitness Value has remained unchanged. 
 
2.2. The Refinement procedure  
 
As mentioned before, due to the alignment of blocks inside 
the microarray image and the arrangement of spots inside 
the blocks, the line-segments - having the same direction 
and constituting the borders of blocks (or spots) - are ideally 
equidistant. However, this observation may not come true 
when rotations, misalignments and local deformations of the 
ideal rectangular grid exist. As a result, the determined line-
segments may slightly vary from the optimal ones.  

In order to tackle this problem, each line-segment Li 
belonging to the SV or SH sub-sets is replaced with a new 
one, Li’, under the following two conditions: 1) the line-
segment Li’ is located inside the region RLi of G, 2) the 
probability P(Li’), of the line-segment Li’, to be part of the 
grid, is higher than the equivalent probability of Li (P(Li)), 
by more than a threshold Tp. An example of the refinement 
procedure is depicted in figure 3.  

 
 

3. RESULTS 
 

Several experiments were performed in order to evaluate the 
efficiency of our proposed approach. The set of microarray 
images, which were used for the evaluation, were obtained 
from the Stanford Microarray Database (SMD) which is 
publicly available. This set contained 25 real microarray 
images, which were digitized at ~5000x 2000 pixels at 16-
bit grey level depth and they were stored in TIFF format. 

Each microarray image contained thousands of spots. It 
should be noted that due to the fact that the microarray 
images contained low-intensity spots, the Box-Cox 
transformation was applied as a pre-processing step, prior to 
gridding, in order to adjust microarray spot intensities [13]. 

The parameters of the Genetic Algorithm have been 
experimentally adjusted once and for all. Thus, the values of 
the parameters remained stable during the gridding 
procedure. The population size of the Genetic Algorithm 
was set to 100.  The percentage of each Population which 
was reproduced was set to 10%. In accordance with 
[14][15], both the Crossover and the Mutation probabilities 
were chosen to be 80%. The Termination criterion was 
satisfied when GFit equaled 200. The value of the margin 
(w) was set to 8 when the Genetic Algorithm was searching 
for line-segments constituting the borders between two 
adjacent blocks. Respectively, when the Genetic Algorithm 
was searching for line-segments constituting the borders 
between two adjacent spots, the margin (w) was set to 2.  
The values PMAX=0.7, PLOW=0.5, fMax=0.2, and Tp=0.1 were 
adopted as the most appropriate ones. 

Using the proposed approach, 95.1% of spots were 
perfectly placed inside a compartment, 4.3% were very 
nearly gridded while only 0.6% were gridded incorrectly, 
while using a previous version of the approach [10], 94.6% 
of spots were perfectly placed inside a compartment. It 
should be noted that the spot areas, used as a reference, 
were the ones annotated in the SMD. Three gridding results 
are presented in figures 4, 5 and 6. In the first example, it is 
obvious that the proposed method has efficiently located the 
grid structure even though the block is contaminated with 
noise. In the second example, despite the existence of a 
local deformation, the proposed method has efficiently 
located the grid structure, while in the third example the 
proposed method has efficiently located the grid structure in 
a rotated sub-image.  

 
 

4. CONCLUSIONS 
 

In this paper, an original method for the fully-automatic 
determination of the grid structure in a microarray image 
has been presented. The experimental results over real 
images demonstrate that the proposed method is efficient 

 

 
Fig. 4. Gridding results in a microarray sub-image 
contaminated with noise. 

Fig. 3.  The line-segment lineV2A is replaced with the line-
segment lineV2B. The high-lighted areas on either sides of 
the line-segments denote the regions RLi. 
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even when the image is contaminated with noise, or 
artifacts. Moreover, it can efficiently cope with various 
kinds of perturbations such as arbitrary rotations or local 
deformations. It should be noted that following its 
application to several images, the proposed method 
achieved an accuracy of more than 95%. To our knowledge, 
this percentage is much higher than the ones obtained from 
state-of-the-art gridding techniques. 
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Fig. 5. Gridding results in a rotated microarray sub-image.  

 
Fig. 6. Gridding results in a rotated microarray sub-image. 
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