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ABSTRACT 
 
Parameter adjustment is a crucial, open issue in active 
contour methodology. Most state-of-the-art active contours 
are empirically adjusted on a trial and error basis. Such an 
empirical approach lacks scientific foundation, leads to 
suboptimal segmentation results and requires technical skills 
from the end-user. This work introduces a method for 
automatic adjustment of active contour parameters, which is 
based on image entropy. In addition, instead of being 
uniform, the parameter values calculated are spatially-
varying, so as to reflect textural variations over the image. 
Experimental evaluation of the proposed method is 
conducted on thyroid US images, liver MRI images, as well 
as on real-world photographs. The results indicate that the 
proposed method is capable of identifying plausible object 
boundaries, obtaining a segmentation quality which is 
comparable to the one obtained with empirical parameter 
adjustment. Moreover, the applicability of the proposed 
method is not confined on a single active contour variation. 
 

Index Terms—Active Contours, Automatic Parameter 
Adjustment, Segmentation. 

 
1. INTRODUCTION 

 
Despite the numerous active contour variations introduced 
in image analysis literature in the last two decades [1], [2], 
[3], the challenging issue of automated adjustment of active 
contour parameters remains open. Most often, a parameter 
set suited for a specific dataset performs significantly worse 
on others [4]. This encouraged empirical approaches to 
parameter adjustment, which very often involve manual 
interaction, as in the case of the active contours recently 
proposed in [5] and [6]. Although widely adopted by the 
image analysis community, such approaches are not 
principled, lead to suboptimal segmentation results and 
require technical skills from the end-user. 

Image analysis literature features only a limited number 
of attempts to cope with automated parameter adjustment. 
Recently, Keuper et al. [7] proposed a method for dynamic 
adjustment of active contour parameters, applicable on the 

segmentation of cell nuclei from 3D microscopic data. 
However, the assumption of spherical objects of interest 
confines the applicability of this method. Allili et al. [8] 
proposed an approach for estimating hyper-parameters 
based on probability maximization. Hyper-parameters are 
used for balancing boundary and region-based terms in the 
active contour energy functional. Iakovidis et al. [9] 
presented a framework for the genetic optimization of active 
contour parameters, within the context of thyroid ultrasound 
image segmentation. Although this framework liberates the 
radiologist from manual parameter adjustment, genetic 
algorithms are time-consuming, non-intuitive and 
sometimes result in suboptimal parameter vectors. Batur et 
al. [10] proposed a framework for modeling images of 
deformable objects based on the active appearance model 
(AAM). The fixed gradient matrix is replaced with a linearly 
adaptive which is updated according to the composition of 
the target texture.  

This work introduces a method for automatic adjustment 
of active contour parameters, which is based on image 
entropy. From an information-theoretic point of view, 
entropy is a highly intuitive texture descriptor, supported by 
several studies [11], [17]-[19]. In addition, instead of being 
uniform, the parameter values calculated are spatially-
varying, so as to reflect textural variations over the image.   

The outline of this paper is organized as follows: Section 
2 provides a brief background in active contour energy 
functionals. Section 3 introduces the proposed method 
whereas Section 4 presents the experimental results. Finally, 
Section 5 summarizes the conclusions of this study. 
 

2. ACTIVE CONTOUR ENERGY FUNCTIONALS 
 
Active contours are guided by minimizing an appropriately 
defined energy functional. The segmentation of an image

, where Ω is a bounded open subset of 2R with 
∂Ω its boundary, is formulated by seeking for the infimum 
of the energy functional F: 
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where μ, k and λi are weighting parameters for smoothness, 
boundary and region-based terms, respectively and i indexes 
image regions. Boundary-based active contours, such as the 
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original snake introduced by the pioneering work of Kass et 
al. [12], set λi=0, whereas region-based active contours, such 
as the Chan-Vese model [13], set k=0.  

State-of-the-art active contour research includes the Chan-
Vese variation proposed by Bresson et al. [5], which is less 
sensitive to initialization and another variation proposed by 
Wang et al. [6], which incorporates both regional intensity 
and regional variance terms. Both variations outperformed 
the Chan-Vese model in segmentation quality within 
specific contexts; however the parameters involved in the 
energy functionals are arbitrary selected, which suggests 
that with different parameter settings, the outcome of these 
comparisons might have been different. 

 
3. ENTROPY-BASED SPATIALLY-VARYING 

PARAMETER ADJUSTMENT 
 
Each term in the energy functional of Eq. (1) is associated 
with a “force” guiding contour evolution. Accordingly, in 
the standard active contour approach these forces are 
weighted uniformly over the entire image by arbitrarily 
adjusted parameter values. Facing this, the proposed method 
introduces two ideas: a) adjust parameter values in a 
principled manner, considering textural information and b) 
instead of calculating constant parameter values which are 
uniform over the entire image, calculate spatially-varying 
parameter values, so as to reflect textural variations.  

Entropy can be defined by the following equation: 
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where C is the standard gray-level co-occurrence matrix 
[14]. Entropy values, as determined by this equation, are in 
the range [0,1], with zero values corresponding to 
homogeneous image regions. Matrix C is calculated for 
couples of neighboring pixels (i, j), located so as to form a 
certain direction. This direction must reflect the dominant 
directionality in the image; otherwise several texture 
patterns may not be represented [15]. 

The proposed method encodes the dominant directionality 
in the image by means of the orientation of connected 
components. The latter are identified as regions of q-
neighbors, resulting from image binarization with the use of 
Otsu thresholding [16]. An ellipse embedding each 
connected component is identified, as illustrated in Fig. 1. 
The orientation of each connected component is determined 
by the angle that is formulated between the x-axis and the 
major axis of the embedding ellipse. Figure 2 illustrates: (a) 
the orientation of the connected component of Fig. 1, and 
(b) considered directions of the position operator. Four 
different directions were considered in our experiments.  

In the case that the number of connected components 
exceeds one, the area of each connected component is 
calculated. The final orientation is considered equal to the 
orientation of the connected component of the maximum 
area. Assuming that there is a low variance between the 

areas of the connected components, the final orientation is 
considered equal to the mean value of the orientations of the 
connected components. 

 
Fig. 1: Binary image region consisting of the ellipse which 
embeds the connected component. 

  
(a) (b) 

Fig. 2: (a) Orientation of the connected component of Fig. 1, 
(b) Considered directions of the position operator on an 
image region. 
 

The region-based parameters iλ  and the smoothness-
based parameter μ are calculated according to the following 
equations: 

2255)4/1(, ×== HHi µλ                                                 (3) 
This results in a relative amplification of the region-based 

forces over the smoothness-based forces, in areas of high 
entropy. Intuitively, when contour lies in “fuzzy” areas of 
high entropy, boundary information is much less reliable 
and region-based forces should be amplified [17]-[19]. The 
experimental results show that contour convergence is 
actually reached for our automatically adjusted energy 
functionals. It should be stressed that Eq. (3) were utilized 
on various types of images with consistent segmentation 
quality. It is also tempting to recall, that the proposed 
parameter adjustment process reflects the second law of 
thermodynamics.  

 
4. RESULTS 

 
Experiments were conducted on three types of images: a) 
real thyroid ultrasound (US) images containing nodules, b) 
liver MRI images and c) real-world photographs, in order to 
demonstrate the capability of the proposed method to: a) 
automatically adjust active contour parameters and obtain 
plausible segmentation results, and b) obtain results of 
comparable segmentation quality than the ones obtained by 
manually adjusting the active contour parameters. The 
experiments employ the well-known Chan-Vese model, as 
well as two state-of-the-art active contours proposed by 



Bresson et al. [5] and Wang et al. [6]. The proposed method 
and these three active contours have been implemented in 
Matlab R2009b and executed on a 3.2 GHz Intel Pentium 
workstation. Additionally, q is set to 8, i.e. all neighbors of 
each pixel are considered for the identification of connected 
components. 

Figure 3 illustrates: (a), (b) examples of thyroid US 
images, (c), (d) maps of the region-based parameters as 
calculated by the proposed method, where the parameter 
values are normalized and quantized in the range [0,255] 
and (e), (f) delineations of nodules obtained by the Chan-
Vese model, where the region-based parameters λ1, λ2 and 
smoothness-based parameter μ (Eq. 1), were automatically 
adjusted by the proposed method. It can be observed that the 
proposed method is capable of identifying nodules over the 
inhomogeneous background and obtaining plausible nodule 
boundaries. 

Figure 4 illustrates: (a) the original liver MRI image 
utilized by Bresson et al. [5], (b) the map of the region-
based parameters calculated by the proposed method in a 
similar fashion with the case of Fig. 3, (c) the segmentation 
results obtained by the model of Bresson et al., where 
region-based and smoothness-based parameter values are set 
to 0.5, respectively, as suggested by the authors, and (d) the 
segmentation results obtained by the application of the 
proposed method. It can be observed that the proposed 
method is capable to segment the important part of the liver 
despite the low contrast changes. It should also be stressed 
that in the case of the proposed method there was no time-
consuming manual adjustment of the active contour 
parameters. 

Figure 5 illustrates: (a) the original real-world photograph 
utilized by Wang et al. [6], (b) the map of the region-based 
parameters calculated by the proposed method in a similar 
fashion with the case of Fig. 3, (c) the segmentation results 
obtained by the model of Wang et al., where region-based 
and smoothness-based parameter values are set to 0.1 and 
0.01x2552, respectively, as suggested by the authors and (d) 
the segmentation results obtained by the application of the 
proposed method. It is evident that the results in the case of 
the proposed method are more plausible, more so in the 
upper left and upper right as well as in the lower boundaries 
of the target object. 

It should be noted that the maps of region-based 
parameters contain pixels marked as white in the case where 
their neighborhood area is characterized by a high value of 
entropy. On the contrary, pixels marked as black refer to 
neighborhood areas characterized by a low value of entropy. 
Region-based parameters are visualized in a similar fashion 
with the case of the velocity function illustrated in Fig. 3(d-
f) and Fig. 4(d-f) in the work of Jehan-Besson et al. [19]. 

 
5. CONCLUSIONS 

 
This work introduces a method for automatic adjustment of 
active contour parameters, addressing a crucial, open issue 

in active contour methodology: the arbitrary parameter 
settings. For this purpose, active contour parameters are 
adjusted in a principled manner, by means of image entropy. 
Entropy is calculated from the standard co-occurrence 
matrix, using the dominant image directionality of 
connected image components. The latter are identified as 
regions of q-neighbors, emerging on the binary output of 
Otsu thresholding. In addition, instead of being uniform, the 
parameter values calculated are spatially-varying, so as to 
reflect textural variations over the image.   
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(b) (d) (f)  
Fig. 3: (a), (b) Thyroid US images containing nodules, (c), 
(d) maps of the region-based parameters, as calculated by 
the proposed method, (e), (f) delineations of nodules 
obtained by the proposed method. 
 

  
(a) (b) 

  
(c) (d) 

Fig. 4: (a) Original liver MRI image, (b) map of the region-
based parameters, as calculated by the proposed method, (c) 
segmentation results obtained by the model of Bresson et 
al., (d) segmentation results obtained by the application of 
the proposed method. 
 
The experimental evaluation of the proposed method has 
been conducted on thyroid US images, liver MRI images, as 
well as on real-world photographs. The results indicate that 
the proposed method is capable of identifying plausible 
object boundaries, obtaining a segmentation quality which is 
comparable to the one obtained with empirical parameter 
adjustment. Further experiments which were conducted on a 
set of labeled images, lead to similar conclusions. These 
results are not presented in this paper due to space 
restrictions. It should be stressed that the applicability of the 



proposed method is not confined on a single active contour 
variation. Future perspectives of this work include 
experimentation on alternative state-of-the-art textural 
representations, including directional representations [20], 
[21], as well as on various segmentation contexts. 
 

  
(a) (b) 

  
(c) (d) 

Fig. 5: (a) Original real-world photograph, (b) map of the 
region-based parameters, as calculated by the proposed 
method, (c) segmentation results obtained by the model of 
Wang et al., (d) segmentation results obtained by the 
application of the proposed method. 

 
ACKNOWLEDGEMENTS 

 
We would like to thank Dr. N. Dimitropoulos, M.D. 

Radiologist, and EUROMEDICA S.A., Greece, for the 
provision of the thyroid ultrasound images. This research 
has been co-financed by the European Union (European 
Social Fund-ESF) and Greek national funds through the 
Operational Program “Education and Lifelong Learning” of 
the National Strategic Reference Framework (NSRF)-
Research Funding Program: Heracleitus II. Investing in 
knowledge society through the European Social Fund. 
 

6. REFERENCES 
 
[1] S. Osher, N. Paragios. Geometric Level Set Methods in 

Imaging Vision and Graphics, Springer Verlag, 2003. 
[2] M. Rousson, T. Brox, R. Deriche, “Active Unsupervised 

Texture Segmentation on a Diffusion based Feature Space,” in 
Proc. IEEE Int. Conf. on Computer Vision and Pattern 
Recognition (CVPR), vol. 2, pp. 699-7-4, 2003. 

[3] M.A. Savelonas, E.A. Mylona, D. Maroulis, "Unsupervised 
2D Gel Electrophoresis Image Segmentation based on Active 
Contours," Pattern Recognition, vol. 45, pp. 720-731, 2012. 

[4] H. Xiao, Y. Li, J. Du, A. Mosig, “Ct3d: Tracking Microglia 
Motility in 3D using a Novel Cosegmentation Approach,” 
Bioinformatics, vol. 27, no. 4, pp. 564-571, 2011. 

[5] X. Bresson, S. Esedoglu, P. Vandergheynst, J.-P. Thiran, S. 
Osher, “Fast Global Minimization of the Active 
Contour/Snake Model,” Journal of Mathematical Imaging 
and Vision, vol. 28, no. 2, pp. 151-167, 2007. 

[6] X.-F. Wang, D.-S. Huang, H. Xu, “An Efficient Local Chan-
Vese Model for Image Segmentation,” Pattern Recognition, 
vol. 43, no. 3, pp. 603-618, 2010. 

[7] M. Keuper, T. Schmidt, J. Padeken, P. Heun, K. Palme, H. 
Burkhardt, O. Ronneberger, “3D Deformable Surfaces with 
Locally Self-Adjusting Parameters-A Robust Method to 
Determine Cell Nucleus Shapes,” in Proc. International 
Conference on Pattern Recognition (ICPR), pp. 2254-2257, 
2010. 

[8] M. Allili, D. Ziou, “An Approach for Dynamic Combination 
of Region and Boundary Information in Segmentation,” in 
Proc. International Conference on Pattern Recognition 
(ICPR), pp. 1-4, 2008. 

[9] D. Iakovidis, M. Savelonas, S. Karkanis, D. Maroulis, “A 
Genetically Optimized Level Set Approach to Segmentation 
of Thyroid Ultrasound Images,” Applied Intelligence, 
Springer-Verlag, vol. 27, no. 3, pp. 193-203, 2007. 

[10] A.U. Batur, M.H. Hayes, “Adaptive Active Appearance 
Models,” IEEE Trans. Image Processing, vol. 14, no. 11, pp. 
1707-1721, 2005. 

[11] L. Hermes, J.M. Buhmann, “A Minimum Entropy Approach 
to Adaptive Image Polygonization,” IEEE Trans. Image 
Processing, vol. 12, no. 10, pp. 1243-1258, 2003. 

[12] M. Kass, A. Witkin, D. Terzopoulos, “Snakes: Active 
Contour Models,” International Journal of Computer Vision, 
vol. 1, no. 4, pp. 321-331, 1988. 

[13] T. Chan, L. Vese, “Active Contours without Edges,” IEEE 
Trans. Image Processing, vol. 10, no. 2, pp. 266-277, 2001. 

[14] R.C. Gonzalez, R.E. Woods, Digital Image Processing, 2nd 
Edition, Prentice Hall, New Jersey, U.S.A, 2002. 

[15] E.S. Gadelmawla, “A Vision System for Surface Roughness 
Characterization Using the Gray Level Co-occurrence 
Matrix,” NDT & E International, vol. 37, no. 7 pp. 577-588, 
2004. 

[16] N. Otsu, “A Threshold Selection Method from Gray-Level 
Histograms,” IEEE Trans. Systems, Man, and Cybernetics, 
vol. 9, no. 1, pp. 62-66, 1979. 

[17] A.L. Barbieri, G.F. Arruda, F.A. Rodrigues, O.M. Bruno, L.F. 
Costa, “An Entropy-based Approach to Automatic Image 
Segmentation of Satellite Images,” Physica A: Statistical 
Mechanics and its Applications, vol. 390, no. 3, pp. 512-518, 
2011. 

[18] A. Herbulot, S. Jehan-Besson, S. Duffner, M. Barlaud, G. 
Aubert, “Segmentation of Vectorial Image Features Using 
Shape Gradients and Information Measures,” Journal of 
Mathematical Imaging and Vision, vol. 25, no. 3, pp. 365-
386, 2006. 

[19] S. Jehan-Besson, M. Barlaud, G. Aubert, “DREAM2S: 
Deformable Regions Driven by an Eulerian Accurate 
Minimization Method for Image and Video Segmentation,” 
International Journal of Computer Vision, vol. 53, no. 1, pp. 
45-70, 2003. 

[20] M.N. Do, M. Vetterli, “The Contourlet Transform: an 
Efficient Directional Multiresolution Image Representation,” 
IEEE Trans. Image Processing, vol. 14, no. 12, pp. 2091-
2106, 2005. 

[21] K. Guo, D. Labate, “Optimally Sparse Multidirectional 
Representation using Shearlets,” SIAM Journal on 
Mathematical Analysis, vol. 39 pp. 298-318, 2007. 


	ENTROPY-BASED SPATIALLY-VARYING ADJUSTment OF
	ACTIVE CONTOUR PARAMETERS
	Abstract


