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ABSTRACT 
 
Parameterization is an open issue in active contour research, 
associated with the cumbersome and time-consuming 
process of empirical adjustment. This work introduces a 
novel framework for self-adjustment of region-based active 
contours, based on multi-directional texture cues. The latter 
are mined by applying filtering transforms characterized by 
multi-resolution, anisotropy, localization and directionality. 
This process yields to entropy-based image “heatmaps”, 
used to weight the regularization and data fidelity terms, 
which guide contour evolution. Experimental evaluation is 
performed on a large benchmark dataset as well as on 
textured images. Τhe segmentation results demonstrate that 
the proposed framework is capable of accelerating contour 
convergence, maintaining a segmentation quality which is 
comparable to the one obtained by empirically adjusted 
active contours.  
 
Index Terms—Active Contours, Local Feature Space, 
Automated Parameter Adjustment, Segmentation. 

 
1. INTRODUCTION 

 
Successful active contour applications highly hinge on 
determining the parameter values involved. In most cases, 
parameters are empirically adjusted through a cumbersome 
trial and error process, with technical skills being a 
prerequisite for the domain user. Although in this way 
segmentation results can be optimized on a case-by-case 
basis, they lack objectivity, whereas the parameterization 
involved cannot be adopted in alternative active contour 
contexts.  

A number of ad hoc approaches have been proposed to 
cope with the issue of parameterization. In 
Pluempitiwiriyawej et al. [1] and Tsai et al. [2], parameters 
are updated within the iterative procedure of active contour 
evolution. Nonetheless, possible erroneous behavior of the 
active contour in the early evolution stages has not been 
encountered. Kokkinos et al. [3] introduced a statistical 
approach based on the posterior probabilities of texture, 
edge and intensity cues in a locally adaptive manner. 

Nevertheless, their approach requires extensive developer 
support. Additionally, Keuper et al. [4] and Liu et al. [5] 
proposed a dynamic parameter adjustment, primarily 
dependent on the shape of the object of interest. Iakovidis et 
al. [6] and Hsu et al. [7] presented a framework for 
optimization of active contour parameters based on genetic 
algorithms. These heuristic approaches converge slowly in 
locally optimal solutions. Allili et al. [8] proposed a method 
for estimating hyper-parameters, which is capable of 
balancing the contribution of regularization and data fidelity 
terms. However, manual parameter tuning is still involved. 
Moreover, Yushkevich et al. [9] developed a toolkit for 
level-set segmentation of images of anatomical structures. 
Although their GUI is friendly to non-expert users, 
parameter settings are still empirically fixed. A precursor of 
the proposed work has been introduced in [10], where active 
contour parameters are automatically adjusted based on 
image entropy, which is derived by the application of the 
gray-level co-occurrence matrix. Nevertheless, this method 
cannot account for information residing in multiple scales, 
whereas the associated computation cost is high. 

This work introduces a novel framework for self-
adjustment of region-based active contours, based on texture 
cues. The latter are mined by filtering methods characterized 
by multi-resolution, anisotropy, localization and 
directionality. This information is encoded by entropy-based 
image “heatmaps”, which are able to weight the 
regularization and data fidelity terms appearing in the 
region-based energy functional. The main idea is to amplify 
forces which guide contour away from noisy, high-entropy 
regions and reduce forces imposed within the proximity of 
structured regions, naturally related to target edges. 

The proposed framework is more objective, as well as 
unsupervised, thus freeing domain users from technical 
considerations. Moreover, it can be applied to various image 
modalities, such as biomedical, textured and real-world 
images and does not require a priori knowledge on the 
shape of the target region.  

The outline of this paper is organized as follows: Section 
2 presents the proposed framework. Section 3 demonstrates 
the experimental results whereas conclusions of this study 
are summarized in Section 4.  
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2. PROPOSED FRAMEWORK 
 
Textural information along image edges can be used in 
order to adjust regularization and data fidelity parameters in 
an intuitive way. In this light, we use the Contourlet 
Transform (CT) [12] as a multi-dimensional, multi-scale 
texture representation method. 
 
2.1. Entropy Heatmaps 
 

CT facilitates the identification of edges in multiple 
directions, providing an inherent noise filtering mechanism, 
since directionality cannot be attributed to noise. In addition, 
CT retrieves vital information at multiple scales, whereas it 
is computationally efficient, by employing iterated 
directional filter-banks (DFB) which capture point 
discontinuities by means of the Laplacian Pyramid (LP). In 
the context of the proposed framework, CT output is used to 
calculate entropy measures. The derived entropy heatmaps 
are used to adjust regularization and data fidelity 
parameters. 

The downsampled low-pass and band-pass image 
versions contain lower and higher frequencies, respectively. 
The band-pass image contains detailed information of point 
discontinuities associated with target edges. Furthermore, 
DFB is implemented by an l-level binary tree which leads to 
2l subbands. In the first stage, a two-channel quincunx 
filterbank [13] with fan filters divides the 2D spectrum into 
vertical and horizontal directions. In the second stage, a 
shearing operator reorders the samples. As a result, different 
directional frequencies are captured at each decomposition 
level.  

Figure 1 portrays a sample image grid obtained by the 
Amsterdam Library of Object Images (ALOI) database [14] 
being fed into CT filter-bank. The sample is decomposed to 
the finest and second finest scales which are partitioned into 
four directional subbands. The band-pass directional 
subbands represent the local feature space. For each 
subband of image jkI , entropy measures are calculated 
according to: 

 

),(log),(
1 1

nmpnmpIE jk

N

n

M

m
jkjk

jk jk

⋅−= ∑∑
= =

                             (1) 

∑∑
= =

=
jk jkN

n

M

m
jk

jk
jk

nmI

nmI
nmp

1 1

2

2

)],([

|),(|
),(

                                    (2) 

 
where jkIE  is the information entropy of the kth direction in 
the jth level, jkM  is the row size and jkN  the column size of 
the subband image. The maximum entropy value jkIE  of the 
most informative scale j, which depends on N and M, is 
calculated and assigned to all pixels of each grid. The result 

is considered as an entropy image heatmap. The entropy 
measure is selected as an appropriate indicator to discard a 
noisy edge. Providing that the structure of an edge region is 
well ordered or not, each edge is identified as target or 
noisy, respectively.  
 

 
Fig. 1: A sample image grid, obtained by ALOI database 
[14], is fed into CT filter-bank. 
 
2.2. Contour Evolution 
 

Region-based active contours are guided by the 
minimization of an energy functional imageE : 

 
fidelitydatafidelitydatationregularizationregularizaimage FwFwE ⋅+⋅=             (3) 

where tionregularizaF  and fidelitydataF  are associated with 
regularization and data fidelity forces respectively, whereas 

tionregularizaw  and fidelitydataw  are weighting parameters.  
In the context of the proposed framework, the weighting 

parameters are interconnected, yielding a balance between 
regularization and data fidelity terms. Weight calculations 
are based on the entropy heatmaps derived in the previous 
subsection: 
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                                                                                            (4) 
These weights: (a) amplify region-based forces in noisy, 
high-entropy regions, driving the contour away, and (b) 
reduce region-based forces in structured regions associated 
with target edges. As a result, iterations dedicated to 
erroneous local minima are avoided, speeding up contour 
convergence. Figure 2 illustrates: (a) an artificial bipartite 
textured image consisting of a target object and the initial 
contour (green circle), (b) a sketch of data fidelity forces in 
an iteration of contour evolution, and (c) a sketch of these 
forces in the next iteration. 
 

3. RESULTS 
 

The proposed framework is embedded into two active 
contour models [15], [16] so as to evaluate the segmentation  
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(a) (b) (c) 

Fig. 2: (a) Artificial bipartite textured image consisting of a 
target object and the initial contour (green circle), (b) sketch 
of data fidelity forces in an iteration of contour evolution, 
where A

fidelitydataF  (white arrows) relate to noisy edges and 
B

fidelitydataF  (black arrows) reflect structured target edges, (c) 
sketch of data fidelity forces in the next iteration of contour 
evolution, where A

fidelitydataF  is amplified (long white arrows) 
and  B

fidelitydataF  is reduced (short black arrows).  
 
performance of manual versus self-adjusted version. The 
Chan-Vese [15] model has been implemented in Matlab, 
whilst for the model of Bresson et al. [16], the author’s 
Matlab code [17] is used. The multi-scale and multi-
directional decomposition stage of CT is performed by 
means of the ‘9-7’ biorthogonal filter [18]. The original, 
manually parameterized algorithms were used as baseline, 
being compared to the self-adjusted versions by means of 
the region overlap measure, known as the Tannimoto 
Coefficient (TC) [19], 
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where A is the region delineated by the segmentation 
method under evaluation, B is the ground truth region and 
N() indicates the number of pixels of the enclosed region. 
Experiments were conducted on 8 textured images provided 
in [17] as well as on 100 images of the ALOI database [14] 
in order to evaluate the proposed framework on a large 
benchmark dataset. The ALOI database has been utilized in 
literature for segmentation purposes [20]-[22]. All test 
images were captured with varying viewing and 
illumination angles, resulting in challenging shades. It 
should be noted that the manual parameterizations used as 
baseline, follow the authors’ suggestions.  

Figure 3 illustrates segmentation results of the self-
adjusted Chan-Vese model, using the proposed framework. 
Several images of ALOI database, such as the illustrated 
‘mouse’, ‘parrot’ and ‘jar’, contain only intensity-based 
information, whereas some also contain textured regions, as 
is the case with ‘knot of wire’. Moreover, various images, 
such as “mouse” and “parrot”, consist of difficult shades as 
well as challenging illuminations, as is the case with “jar”. It 
is evident that in the manual case, contour convergence is 
delayed. On the contrary, in self-adjustment, forces guiding 
contour evolution are appropriately amplified in non-target, 
high-entropy regions, accelerating convergence.  

The self-adjusted version achieves an average TC value of 
96.9±1.6%, which is comparable to the TC value obtained 

by the empirically adjusted version. However, the self-
adjusted version converges in 10-20 times less iterations. 
The empirically adjusted version achieves a TC value of 
58.4±14.3%, with regards to all ALOI images tested, in the 
same iteration that the self-adjusted version has converged. 

Figure 4 illustrates bipartite textured images utilized in 
[15], whereas Fig. 5 depicts segmentation results of the 
manual and self-adjusted versions for the model of Bresson 
et al. It is evident that both versions converge to the actual 
object boundaries, resulting in comparable segmentation 
quality. However, it should be considered that with manual 
adjustment it is always possible to set “optimal” values after 
laborious, time-consuming experimentation. 

 

    
(a) (b) (c) (d) 

    
(a1) (b1) (c1) (d1) 

    
(a2) (b2) (c2) (d2) 

    
(a3) (b3) (c3) (d3) 

Fig. 3: (a)-(d) Test images obtained by ALOI database, (a1)-
(d1) ground truth images, (a2)-(d2) segmentation evolution of 
the manual version in the same iteration that the self-
adjusted version has converged, (a3)-(d3) segmentation 
results of the self-adjusted Chan-Vese model. 
 
 

5. CONCLUSIONS 
 

This work presents a novel framework for self-adjustment of 
region-based active contours based on multi-directional 
texture cues. The latter are fed into entropy-based image 
“heatmaps” which are able to weight forces and guide 
contour evolution. The proposed framework has been 
experimentally evaluated on a large benchmark dataset as 
well as on textured images by comparing the segmentation 
performance obtained by manual versus self-adjusted 
version of two state-of-the-art region-based active contour 
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models. The experimental results demonstrate that the 
proposed framework is capable of accelerating contour 
convergence, whereas it obtains a segmentation quality 
comparable to the one obtained with manual 
parameterization. 
 

  
(a) (b) 

Fig. 4: (a), (b) Bipartite textured images. 
 
 

Thresholded Image Final Contour 
Manual Self-Adjusted Manual Self-Adjusted 

    

    
Fig. 5: Segmentation results of the model of Bresson et al. 
Magenta and green contours correspond to manual and self-
adjusted version, respectively. 
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