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1. Introduction

Real-time video communication over the internet and other heterogeneous IP networks has
become a significant part of modern communications, underlining the need for highly effi‐
cient video coding algorithms. The most desirable characteristic of such an algorithm would
be the ability to maintain satisfactory visual quality while achieving good compression. Ad‐
ditional advantageous characteristics would be low computational complexity and real-time
performance, allowing the algorithm to be used in a wide variety of less powerful comput‐
ers. Transmission of video over the network would benefit by the ability to adapt to the net‐
work's end-to-end bandwidth and transmitter/receiver resources, as well as by resistance to
packet losses that might occur. Additionally, scalability and resistance to noise would be
highly advantageous characteristics for a modern video compression algorithm. Most state
of the art video compression techniques like the H.264, DivX/Xvid, MPEG2 fail to achieve
real time performance without the use of dedicated hardware due to their high computa‐
tional complexity. Moreover, in order to achieve optimal compression and quality they de‐
pend on multipass statistical and structural analysis of the whole video content, which
cannot happen in cases of live video stream generation as in the case of video-conferencing.

In this chapter, a more elaborate analysis of a novel algorithm for high-quality real-time vid‐
eo encoding, originally proposed in [1], is presented. The algorithm is designed for content
obtained from low resolution sources like web cameras, surveillance cameras, etc. Critical to
the efficiency of video encoding algorithm design is the selection of a suitable image repre‐
sentation method. Texture representation methods proposed in the literature that utilize the
Fourier transform, the Discrete Cosine transform, the Wavelet transform as well as other fre‐
quency domain methods have been extensively used for image and video encoding. Never‐

© 2013 Katsigiannis et al.; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



theless, these methods have some limitations that have been partially addressed by the
Contourlet Transform (CT) [2], which our video encoding algorithm is based on. The Con‐
tourlet Transform offers multiscale and directional decomposition, providing anisotropy
and directionality, features missing from traditional transforms like the Discrete Wavelet
Transform [2]. In recent years, the Contourlet Transform has been successfully utilised in a
variety of texture analysis applications, including synthetic aperture radar (SAR) [3], medi‐
cal and natural image classification [4], image denoising [5], despeckling of images, image
compression, etc. By harnessing the computational power offered by modern graphics proc‐
essing units (GPUs), a gpu-based contourlet transform is able to provide an image represen‐
tation method with advantageous characteristics, while maintaining a fast performance.

The rest of this chapter is organised in four sections. First, some background knowledge and
information needed for better understanding the algorithm is presented in section 2. Then,
the aforementioned video encoding algorithm is presented in section 3, whereas an experi‐
mental study for the evaluation of the algorithm is provided in section 4. Conclusions and
future perspectives of this work are presented in section 5.

2. Background

2.1. The Contourlet Transform

The Contourlet Transform (CT) is a directional multiscale image representation scheme pro‐
posed by Do and Vetterli, which is effective in representing smooth contours in different direc‐
tions of an image, thus providing directionality and anisotropy [2]. The method utilizes a
double filter bank in which, first the Laplacian Pyramid (LP) [6] detects the point discontinui‐
ties of the image and then the Directional Filter Bank (DFB) [7] links those point discontinuities
into linear structures. The LP provides a way to obtain multiscale decomposition. In each LP
level, a downsampled lowpass version of the original image and a more detailed image with the
supplementary high frequencies containing the point discontinuities are obtained. This scheme
can be iterated continuously in the lowpass image and is restricted only by the size of the origi‐
nal image due to the downsampling. The DFB is a 2D directional filter bank that can achieve
perfect reconstruction, which is an important characteristic for image and video encoding ap‐
plications. The simplified DFB used for the contourlet transform consists of two stages and
leads to 2 l subbands with wedge-shaped frequency partitioning [8], with l being the level of de‐
composition. The first stage of the DFB is a two-channel quincunx filter bank [9] with fan filters
that divides the 2D spectrum into vertical and horizontal directions, while the second stage is a
shearing operator that just reorders the samples. By adding a 45 degrees shearing operator and
its inverse before and after a two-channel filter bank, a different directional frequency partition
is obtained (diagonal directions), while maintaining the ability to perfectly reconstruct the orig‐
inal image, since the sampling locations coincide with the (integer) pixel grid.

The combination of the LP and the DFB is a double filter bank named Pyramidal Directional Fil‐
ter Bank (PDFB). In order to capture the directional information, bandpass images from the LP
decomposition are fed into a DFB. This scheme can be repeated on the coarser image levels. The
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combined result is the contourlet filter bank, which is a double iterated filter bank that decom‐
poses images into directional subbands at multiple scales. The contourlet coefficients have a
similarity with wavelet coefficients since most of them are almost zero and only few of them, lo‐
cated near the edge of the objects, have large magnitudes [10]. In the presented algorithm, the
Cohen and Daubechies 9-7 filters [11] have been utilized for the Laplacian Pyramid. For the Di‐
rectional Filter Bank, these filters were mapped into their corresponding 2D filters using the
McClellan transform as proposed by Do and Vetterli in [2]. It must be noted that these filters are
not considered as optimal. The creation of optimal filters for the contourlet filter bank remains
an open research topic. An outline of the Contourlet Transform is presented on Figure 1, while
an example of decomposition is shown on Figure 2.

Figure 1. The Contourlet Filter Bank.

Figure 2. Example of contourlet transform decomposition of a greyscale image. Three levels of decomposition with the
Laplacian Pyramid were applied, each then decomposed into four directional subbands using the Directional Filter Bank.
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2.2. GPU-based contourlet transform

By analysing the structure of the contourlet transform, it is evident that its most computational‐
ly intensive part is the calculation of all the 2D convolutions needed for complete decomposi‐
tion or reconstruction. Calculating the convolutions on the CPU using the 2D convolution
definition is not feasible for real-time applications since performance suffers significantly due
to the computational complexity. Utilizing the DFT or the FFT in order to achieve better per‐
formance provides significantly faster implementations but still fails to achieve satisfactory re‐
al-time performance,  especially in mobile platforms such as laptops and tablet  PCs.  The
benefits of the FFT for the calculation of 2D convolution can only be fully exploited by an archi‐
tecture supporting parallel computations. Modern personal computers are commonly equip‐
ped with powerful graphics processors (GPUs), which in the case of live video capture from
web or surveillance cameras are underutilized. Intensive, repetitive computations that can be
computed in parallel can be accelerated by harnessing this “dormant” computational power.
General purpose computing on graphics processing units (GPGPU) is the set of techniques that
use a GPU, which is otherwise specialized in handling computations for the display of comput‐
er graphics, in order to perform computations traditionally handled by a CPU. The highly par‐
allel structure of GPUs makes them more effective than general-purpose CPUs for algorithms
where processing of large blocks of data can be done in parallel.

For the GPU implementation of the contourlet transform, the NVIDIA Compute Unified De‐
vice Architecture (CUDA) has been selected due to the extensive capabilities and specialized
API it offers. CUDA is a general purpose parallel computing architecture that allows the
parallel compute engine in NVIDIA GPUs to be used in order to solve complex computa‐
tional problems that are outside the scope of graphics algorithms. In order to compute the
contourlet transform, first the image and the filters are transferred from the main memory to
the GPU dedicated memory. Then, the contourlet transform of the image is calculated by
migrating all the calculations on the GPU in order to reduce the unnecessary transfers to
and from the main memory that introduce delay to the computations. The 2D convolutions
required are calculated by means of the FFT. After calculating the contourlet transform of
the image, the output is transferred back to the main memory and the GPU memory is freed.
Considering that this implementation will be used for video encoding, the filters are loaded
once at the GPU memory since they will not change from frame to frame. In order to evalu‐
ate the performance of this approach, various implementations of the contourlet transform
were developed, both for the CPU and the GPU. These implementations were based on the
FFT (frequency domain) and the 2D convolution definition (spatial domain). Except for the
basic GPU implementation using spatial domain convolution, other out-of-core implementa‐
tions were developed, based on the 2D convolution definition and utilizing memory man‐
agement schemes in order to support larger frames when the GPU memory is not sufficient
[12]. The GPU implementation based on the FFT outperformed all the aforementioned im‐
plementations in our tests and was therefore the method of choice for our video encoder.
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2.3. The YCoCg colour space

Inspired by recent work on real-time RGB frame buffer compression using chrominance sub‐
sampling based on the YCoCg colour transform [13], we investigated the use of these techni‐
ques in conjunction with the contourlet transform to efficiently encode colour video frames.

The human visual system is significantly more sensitive to variations of luminance com‐
pared to variations of chrominance. Encoding the luminance channel of an image with high‐
er accuracy than the chrominance channels provides a simple low complexity compression
scheme, while maintaining satisfactory visual quality. Various image and video compres‐
sion algorithms take advantage of this fact in order to achieve increased efficiency. First in‐
troduced in H.264 compression, the RGB to YCoCg transform decomposes a colour image
into luminance (Y), orange chrominance (Co) and green chrominance (Cg) components and
has been shown to exhibit better decorrelation properties than YCbCr and similar trans‐
forms [14]. It was developed primarily to address some limitations of the different YCbCr
colour spaces [15]. The transform and its reverse are calculated by the following equations:

Y   =   R / 4 +  G / 2 +  B / 4 (1)

Co =   R / 2 –   B / 2 (2)

Cg =  - R / 4 +  G / 2 –  B / 4 (3)

R =  Y +  Co –  Cg (4)

G =  Y +  Cg (5)

B =  Y –  Co –  Cg (6)

Image set Number of images Average PSNR (dB)

Kodak 23 59.27

Canon 18 59.05

Outdoor scene images 963 58.87

Table 1. Average PSNR obtained for each image set after transforming from RGB to YCoCg and back using the same
precision for the RGB and YCoCg components.

In order for the reverse transform to be perfect and to avoid rounding errors, the Co and Cg
components should be stored with higher precision than the RGB components. Experiments
using 23 images from the Kodak image set and 18 images from the Canon image set, all ob‐
tained from [16], as well as 963 outdoor scene images obtained from [17], showed that using the
same precision for the YCoCg and RGB data when transforming from RGB to YCoCg and back
results in an average PSNR of more than 58.87 dB for all the image sets, as shown in Table 1. This
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loss of quality cannot be perceived by the human visual system, resulting to no visible altera‐
tion of the image. Nevertheless, it indicates the highest quality possible when used for image
compression.

3. The presented algorithm

Listings 1 and 2 depict the presented algorithm for encoding and decoding respectively. Input
frames are considered to be in the RGB format. The first step of the algorithm is the conversion
from RGB to YCoCg colour space for further manipulation of the luminance and chrominance
channels. The luminance channel is decomposed using the contourlet transform, while chromi‐
nance channels are subsampled by a user-defined factor N. The levels and filters for contourlet
transform decomposition are also defined by the user. From the contourlet coefficients ob‐
tained by decomposing the luminance channel, only a user-specified percentage of the most
significant ones are retained. Then, the precision allocated for storing the contourlet coefficients
is reduced. All computations up to this stage are performed on the GPU, avoiding unnecessary
memory transfers from the main memory to the GPU memory and vice versa. After reducing
the precision of the retained contourlet coefficients of the luminance channel, the directional
subbands are encoded using a run length encoding scheme that encodes only zero valued ele‐
ments. The large sequences of zero-valued contourlet coefficients that occur after the insignifi‐
cant coefficient truncation make run length encoding ideal for their encoding.

The encoding algorithm

1: Start

2: Input RGB frame

3: Convert to YCoCg

4: Downsample Co and Cg by N

5: Decompose Y with the Contourlet Transform

6: Keep the M% most significant CT coefficients

7: Round the CT coefficients to the n-th decimal

8: IF the frame is an internal frame

9:      Calculate the frame as the difference between the frame and the previous keyframe

10:    Run-length encoding of Co, Cg and the lowpass CT component of Y

11: END IF

12: Run-length encoding of the directional subbands of Y

13: Adjust precision of all components

14: IF frame is NOT the last frame

15:    GOTO Start

16: END IF

17: Finish

Listing 1. Steps of the encoding algorithm. Highlighted steps refer to calculations performed on the GPU, while the
other steps refer to calculations performed on the CPU.
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The algorithm divides the video frames into two categories; keyframes and internal frames.
Keyframes are frames that are encoded using the steps described in the previous paragraph
and internal frames are the frames between two key frames. The interval between two key‐
frames is a user defined parameter. At the step before the run-length encoding, when a
frame is identified as an internal frame all its components are calculated as the difference
between the respective components of the frame and those of the previous key frame. This
step is processed on the GPU while all the remaining steps of the algorithm are performed
on the CPU unless otherwise stated. Then, run length encoding is applied to the chromatic
channels, the low frequency contourlet component of the luminance channel, as well as the
directional subbands of the luminance channel. It must be noted that steps that are executed
on the CPU are inherently serial and cannot be efficiently mapped to a GPU.

The last stage of the algorithm consists of the selection of the optimal precision for each vid‐
eo component. The user can select between lossless or lossy change of precision, directly af‐
fecting the output’s visual quality.

The decoding algorithm

1: Start

2: Input encoded frame

3: IF the frame is a keyframe

4:      Decode the run-length encoded directional subbands of Y

5:      Keep keyframe in memory and discard old keyframe

6: ELSE IF the frame is an internal frame

7:      Decode the run-length encoded Co, Cg, lowpass CT component of Y

8:      Decode the run-length encoded directional subbands of Y

9:      Calculate the frame as the sum of the frame and the previous keyframe

10: END IF

11: Upsample Co and Cg by N

12: Reconstruct Y

13: Convert to RGB

14: IF frame is NOT the last frame

15:    GOTO Start

16: END IF

17: Finish

Listing 2. Steps of the decoding algorithm. Highlighted steps refer to calculations performed on the GPU, while the
other steps refer to calculations performed on the CPU.

3.1. Chrominance channel subsampling

Exploiting the fact that the human visual system is relatively insensitive to chrominance
variations,  in  order  to  achieve  compression,  the  chrominance  channels  Co  and  Cg  are
subsampled  by  a  user-defined  factor  N  that  directly  affects  the  output’s  visual  quality
and the compression achieved. The chrominance channels are stored in lower resolution,
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thus  providing  compression.  For  the  reconstruction  of  the  chrominance  channels  at  the
decoding stage,  the  missing chrominance values  are  replaced with the nearest  available
subsampled chrominance values. This approach is simple and naïve but has been select‐
ed due to the significantly smaller number of (costly) memory fetches and minimal com‐
putation  cost,  compared  to  other  methods  like  bilinear  interpolation.  Utilizing  the
nearest  neighbour reconstruction approach can introduce artifacts  in the form of mosaic
patterns  in  regions  with  strong  chrominance  transitions  depending  on  the  subsampling
factor. In order to address this problem, given adequate computational resources, the re‐
ceiver can choose to use the bilinear interpolation approach. Figure 3 shows an example
of subsampling the Co and Cg chrominance channels by various factors, while using the
nearest  neighbour  and  the  bilinear  interpolation  approach  for  reconstruction.  Only  a
small, magnified part of the “baboon” image used is shown for clarity. As demonstrated
in Figure  3,  subsampling by a  factor  of  2  or  4  does  not  have a  drastic  effect  on visual
quality. Further subsampling leads to visible artifacts indicating the need for an optimal
trade-off between quality and compression.

Figure 3. Example of chroma subsampling by factor N of the Co and Cg channels of the “baboon” image. Row (a) depicts
images reconstructed using the nearest neighbour method, while (b) those reconstructed using bilinear interpolation.

3.2. Contourlet Transform decomposition of luminance channel and quality selection

The luminance channel of the frame is decomposed using the contourlet transform. Decompo‐
sition levels, as well as the filters used are user-defined and directly affect the quality of the out‐
put. Decomposition at multiple scales offers better compression while providing scalability, i.e.
multiple resolutions inside the same video stream. This characteristic allows video coding algo‐
rithms to adapt to the network’s end-to-end bandwidth and transmitter/receiver resources. The
quality for each receiver can be adjusted without re-encoding the video frames at the source, by
just dropping the encoded information referring to higher resolution than needed.

In order to achieve compression, after the decomposition of the luminance channel with the
contourlet transform, a user-defined amount of the contourlet coefficients from the direc‐
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tional subbands are dropped by means of keeping only the most significant coefficients. The
amount of coefficients dropped drastically affects the output’s visual quality as well as the
compression ratio. Contourlet coefficients with large magnitudes are considered more sig‐
nificant than coefficients with smaller magnitudes. Exploiting this fact, a common method
for selecting the most significant contourlet coefficients is to keep the M most significant co‐
efficients, or respective percentage, while dropping all the others [2] (coefficient truncation).
This procedure leads to a large number of zero-valued sequences inside the elements of the
directional subbands, a fact exploited by using run length encoding in order to achieve even
higher compression. Considering the values and the distribution of contourlet coefficients at
the directional subbands, only the zero-valued coefficients are run length encoded along the
horizontal direction. Compression gained by run length encoding of all the different values
is minimum and does not justify the increased computational cost. It is worth mentioning
that dropping all the contourlet coefficients is similar to lowering the luminance channel’s
resolution while applying a lowpass filter and then, at the decoding stage, upscaling it with‐
out reincorporating the high frequency content.

Figure 4. Example of smoothing due to the dropping of contourlet coefficients. The caption indicates the percentage
of the contourlet coefficients retained. Images are cropped and scaled to 200% of their original size.
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Keeping only the most significant contourlet coefficients also provides a means to suppress
the noise induced by low-quality sensors usually encountered in web-cameras. Random
noise is largely unstructured and therefore not likely to generate significant contourlet coef‐
ficients [2]. As a result, keeping only the most significant contourlet coefficients provides en‐
hanced visual quality, which is a highly desirable characteristic since no additional filtering
of the video stream is required in order to reduce the noise level. On Figure 4, an example of
smoothing due to the dropping of contourlet coefficients is shown. Mosaicing artifacts and
noise introduced due to the low quality of the web camera’s sensor are suppressed and re‐
placed by a fuzzier texture, resulting in a smoother and more perceptually acceptable image.

At the contourlet transform decomposition stage, 32 bit single precision floating point ele‐
ments are used in order to avoid rounding errors and precision loss. Experiments with the
precision allocated for the contourlet coefficients showed that the contourlet transform ex‐
hibits resistance to quality loss due to arithmetic precision reduction. This fact is exploited in
order to achieve better compression by reducing the precision of the contourlet coefficients
through rounding to a specific decimal point. Visual quality is not affected at all when only
one decimal or more are kept. Rounding to the integer provides a PSNR of more than 60 dB
when only the directional subbands’ coefficients are rounded. Additionally, also rounding
the low pass content provides a PSNR of more than 55 dB. In both cases, the loss of quality
cannot be perceived by the human visual system and is considered as insignificant. For
these experiments, the images were first transformed into the YCoCg colour space. Then the
luminance channel was decomposed using the contourlet transform and the contourlet coef‐
ficients were rounded. No alteration was done to the chrominance channels. After the ma‐
nipulation of the contourlet coefficients, the luminance channel was reconstructed and the
image was transformed back into the RGB colour space.

3.3. Frame types

As mentioned before, frames are divided into keyframes and internal frames, with an internal
frame being the difference between the current frame and the respective keyframe. Consecu‐
tive frames tend to have small variations, with many identical regions. This fact can be exploit‐
ed by calculating the difference between a frame and the keyframe. This procedure provides
components with large sequences of zero values leading to improved compression through the
run length encoding stage. Especially in the case of video-conferencing or surveillance video,
the background tends to be static, with slight or no variations at all. The occurrence of static
background leads to many parts of the consecutive frames to be identical. As a result, calculat‐
ing the difference of each frame from its respective keyframe provides large sequences of zero
values leading to improved compression when run length encoding is applied. Run length en‐
coding of the difference of contourlet-transformed images is even more efficient, since static
noise is drastically suppressed by the coefficient truncation. Experiments showed that the opti‐
mal compression is achieved for a relatively small interval between keyframes, in the region of
5-7 internal frames, providing small groups of pictures (GOP) that depend to a keyframe. This
characteristic makes the algorithm more resistant to packet loses when transmitting over a net‐
work. In the case of a scene change, consecutive frames drastically differ from each other and
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the compression achieved for the internal frames until the next keyframe is similar to that of a
keyframe. If this scenario occurs, having small intervals between consecutive keyframes re‐
duces the number of non optimally encoded frames. Nevertheless, in cases where the video is
expected to be mostly static, like surveillance video for example, a larger interval between key‐
frames will provide considerably better compression.

3.4. Other supported colour spaces

Except for the YCoCg colour space, the algorithm supports the YCbCr and Greyscale colour
spaces without the need to alter its core functionality. The process of encoding greyscale videos
consists of handling the video as a colour video with only the luminance channel. All the steps
of the algorithm are calculated except for those referring to the chromatic channels. On the oth‐
er hand, due to the similarity of the YCbCr colour space with the YCoCg colour space the algo‐
rithm remains the same. The only difference is the RGB-to-YCbCr conversion at the encoder
and the YCbCr-to-RGB conversion at the decoder. The luminance channel is identically han‐
dled as in the YCoCg-based algorithm, and the same holds for the replacement of CoCg chan‐
nels with the CbCr ones. Nevertheless, the CbCr channels have a different range of values
compared to CoCg channels. As a consequence, the optimal precision for the CbCr channels dif‐
fers from that of the CoCg channels and has to be taken into consideration.

4. Quality and performance analysis

For evaluating the presented algorithm, two videos were captured using a VGA web camera
that supported a maximum resolution of 640x480 pixels. Low resolution web cameras are
very common on everyday personal computer systems showcasing the need to design video
encoding algorithms that take into consideration the problems arising due to low-quality
sensors. The videos captured were a typical video-conference sequence with static back‐
ground showing the upper part of the human body and containing some motion, and a sur‐
veillance video with almost no motion depicting the entrance of a building.

The captured videos were encoded using the YCoCg, YCbCr and Greyscale colour spaces.
The chrominance channels of the colour videos were subsampled by a factor of 4 and the
video stream contained two resolutions: the original VGA (640x480) as well as the lower
QVGA (320x240). The method utilized for the reconstruction of the chrominance channels
was the nearest neighbour method. The percentage of the most significant contourlet coeffi‐
cients of the luminance channel retained was adjusted for each encoded video, providing re‐
sults of various quality and compression levels. Furthermore, at each scale, the luminance
channel’s high frequency content was decomposed into four directional subbands. In order
to test the algorithm using the YCbCr colour space, the RGB to YCbCr conversion formula
for SDTV found in [18] was utilised. For the Greyscale colour space, the aforementioned vid‐
eos were converted from RGB to greyscale using the standard NTSC conversion formula
[18] that is used for calculating the effective luminance of a pixel:
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Y (i, j)=0.2989 · R(i, j) + 0.5870 · G(i, j) + 0.1140 · B(i, j) (7)

The sample videos were encoded using a variety of parameters. The mean PSNR value for
each video was calculated based on a set of different percentages of contourlet coefficients to
be retained. The compression ratios achieved when using the scheme that incorporates both
key frames and internal frames and when compressing all the frames as keyframes were al‐
so calculated. The interval between the key frames was set to five frames for the video-con‐
ference sample video and to twenty frames for the surveillance video. Detailed results are
shown on Tables 2, 3 and 4 while sample frames of the encoded videos utilizing the YCoCg,
YCbCr and Greyscale colour space for a set of settings are shown on Figures 5-10.

Examining the compression ratios achieved, it is shown that utilizing the keyframe and in‐
ternal frame scheme outperforms the naive method of encoding all the frames the same
way, as expected. However, the selection of an efficient entropy encoding algorithm that
will further enhance the compression ability of our algorithm is still an open issue. Another
interesting observation is that the contourlet transform exhibits substantial resistance to the
loss of contourlet coefficients. Even when only 5% of its original coefficients are retained, the
visual quality of the image is not seriously affected. This fact underlines the efficiency of the
contourlet transform in approximating natural images using a small number of descriptors
and justifies its utilization in this algorithm. The slightly lower PSNR achieved for the sur‐
veillance video sample can be explained due to the higher complexity of the scene compared
to the video conference sample. More complex scenes contain higher frequency content, a
portion of which is then discarded by dropping the contourlet coefficients.

(a) Video conference sample (b) Video surveillance sample

PSNR (dB) PSNR (dB)

Contourlet

coefficients

retained (%)

YCoCg YCbCr Greyscale

Contourlet

coefficients

retained (%)

YCoCg YCbCr Greyscale

10 45.11 44.77 52.04 10 44.18 44.03 50.11

5 44.53 44.29 49.71 5 43.54 43.45 47.88

3 43.88 43.70 47.72 3 42.96 42.89 46.33

1 42.30 42.23 44.28 1 41.57 41.50 43.45

0.5 41.62 41.56 43.10 0.5 40.80 40.76 42.17

0.2 41.30 41.25 42.60 0.2 40.17 40.14 41.21

0 39.15 39.13 39.82 0 39.59 39.55 40.39

Table 2. PSNRs achieved for the (a) video conference and (b) video surveillance samples, retaining various percentages
of contourlet coefficients and utilizing the YCoCg. YCbCr and Greyscale colour spaces.
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Video conference sample

Contourlet

coefficients

retained (%)

Compression ratio

YCoCg YCbCr Greyscale

Only

keyframes

Keyframes &

Internal frames

Only

keyframes

Keyframes &

Internal frames

Only

keyframes

Keyframes &

Internal frames

10 4.96:1 11.06:1 4.93:1 12.05:1 2.09:1 3.49:1

5 6.44:1 14.39:1 6.44:1 16.31:1 2.94:1 4.44:1

3 7.36:1 16.39:1 7.37:1 18.98:1 3.56:1 5.02:1

1 8.71:1 19.46:1 8.70:1 23.15:1 4.57:1 5.85:1

0.5 9.07:1 20.24:1 9.06:1 24.33:1 4.87:1 6.07:1

0.2 9.22:1 20.62:1 9.21:1 24.81:1 5.00:1 6.17:1

0 11.71:1 25.84:1 11.71:1 32.89:1 7.65:1 7.53:1

Table 3. Compression ratios achieved for the video conference sample, retaining various percentages of contourlet
coefficients and utilizing the YCoCg. YCbCr and Greyscale colour spaces.

Video surveillance sample

Contourlet

coefficients

retained (%)

Compression ratio

YCoCg YCbCr Greyscale

Only

keyframes

Keyframes &

Internal frames

Only

keyframes

Keyframes &

Internal frames

Only

keyframes

Keyframes &

Internal frames

10 4.35:1 21.55:1 4.35:1 22.73:1 1.78:1 7.26:1

5 5.89:1 28.74:1 5.92:1 31.06:1 2.63:1 9.68:1

3 6.85:1 32.89:1 6.89:1 35.97:1 3.23:1 11.09:1

1 8.14:1 38.02:1 8.18:1 42.19:1 4.15:1 12.79:1

0.5 8.58:1 39.53:1 8.61:1 44.05:1 4.48:1 13.30:1

0.2 8.89:1 40.65:1 8.92:1 45.45:1 4.74:1 13.70:1

0 11.71:1 49.26:1 11.71:1 56.50:1 7.65:1 16.58:1

Table 4. Compression ratios achieved for the video surveillance sample, retaining various percentages of contourlet
coefficients and utilizing the YCoCg. YCbCr and Greyscale colour spaces.
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Figure 5. Sample frame of the encoded video-conference video for each setting using the YCoCg colour space. The
frame has been resized and cropped to fit the figure.
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Figure 6. Sample frame of the encoded video-conference video for each setting using the YCbCr colour space. The
frame has been resized and cropped to fit the figure.
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Figure 7. Sample frame of the encoded video-conference video for each setting using the Greyscale colour space. The
frame has been resized and cropped to fit the figure.
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Figure 8. Sample frame of the encoded video surveillance video for each setting using the YCoCg colour space. The
frame has been resized and cropped to fit the figure.
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Figure 9. Sample frame of the encoded video surveillance video for each setting using the YCbCr colour space. The
frame has been resized and cropped to fit the figure.
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Figure 10. Sample frame of the encoded video surveillance video for each setting using the Greyscale colour space.
The frame has been resized and cropped to fit the figure.
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Considering the YCoCg and the YCbCr colour spaces, for the two video samples tested, it is
shown on Tables 2-4 and Figures 11 and 12 that the YCoCg colour space achieves slightly
better visual quality (higher PSNR), while the YCbCr colour space provides better compres‐
sion (higher compression ratio). The Greyscale examples cannot be directly compared to the
colour samples since the calculated PSNR characterizes the original and encoded greyscale
samples. Nevertheless, it is clear that in the case of Greyscale colour space, compression suf‐
fers greatly compared to the other colour spaces.
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Figure 11. Compression ratio vs percentage of contourlet coefficients retained diagram, for the video conference
sample, utilizing the YCoCg. YCbCr and Greyscale colour spaces. K refers to using only keyframes, while K&I refers to
using both keyframes and internal frames.
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Figure 12. Compression ratio vs percentage of contourlet coefficients retained diagram, for the video surveillance
sample, utilizing the YCoCg. YCbCr and Greyscale colour spaces. K refers to using only keyframes, while K&I refers to
using both keyframes and internal frames.
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Average execution times for the basic operations of the encoding and decoding algorithm
for a frame of the video conference sample are presented on Table 5. Parameters were kept
the same as in the previous examples and the computer utilised for the performance tests
was equipped with an Intel Core i3 CPU, 4 GB of memory and a NVIDIA GeForce 430
graphics card with 1 GB of memory.

Operation Time (ms)

Transfer of RGB frame to GPU memory 1.385

Transfer of encoded frame to main memory 1.050

Conversion from RGB to YCoCg 1.067

Conversion from YCoCg to RGB 0.402

Contourlet transform decomposition 59.040

Contourlet transform reconstruction 57.102

Run-length encoding of directional subbands 2.424

Run-length decoding of directional subbands 7.008

Contourlet coefficients dropping 0.492

Table 5. Average execution times (in milliseconds) for the basic operations of the algorithm for a 640x480 video
frame. The chrominance channels were subsampled by a factor of 4 and the video stream contained the original VGA
(640x480) as well as the lower QVGA (320x240) resolution.

5. Conclusions

In this chapter, a low complexity algorithm for real-time video encoding based on the con‐
tourlet transform and optimized for video conferencing applications and surveillance cam‐
eras has been presented and evaluated. The algorithm provides a scalable video
compression scheme ideal for video conferencing content as it achieves high quality encod‐
ing and increased compression efficiency for static regions of the image, while maintaining
low complexity and adaptability to the receivers resources. A video stream can contain vari‐
ous resolutions avoiding the need for reencoding at the source. The receiver can select the
desired quality by dropping the components referring to higher quality than needed. Fur‐
thermore, the algorithm has the inherent ability to suppress the noise induced by low-quali‐
ty sensors, without the need of an extra denoising or image enhancement stage, due to the
manipulation of the structural characteristics of the video through the rejection of insignifi‐
cant contourlet transform coefficients. In the case of long recordings for surveillance sys‐
tems, where higher compression is needed, the visual quality degradation is much more
eye-friendly than with other well established video compression methods, as it introduces
fuzziness and blurring instead of artificial block artifacts, providing smoother images and
facilitating image rectification/recognition procedures. Additionally, due to the relatively
small GOPs, the algorithm is more resistant to frame losses that can occur during transmis‐
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sion over IP networks. Another advantageous characteristic of the presented algorithm is
that its most computationally intensive parts are calculated on the GPU. The utilization of
the usually “dormant” GPU computational power lets the CPU to be utilized for other tasks,
further enhancing the multitasking capacity of the system and enabling the users to take full
advantage of their computational capabilities. The experimental evaluation of the presented
algorithm provided promising results. Nevertheless, in order to compete for compression ef‐
ficiency with state of the art video compression algorithms, a highly efficient entropy encod‐
ing scheme has to be incorporated to the algorithm. Modern entropy encoding methods
tend to be complex and computationally intensive. As a result, the optimal trade-off be‐
tween compression rates and complexity has to be decided in order to retain the low com‐
plexity and real time characteristics of our algorithm.
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