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Abstract—Active contours yield segmentation results which 
depend on an initial empirical parameterization stage. The latter is 
a tedious and time-consuming process that requires technical skills 
from the end user. Automated adjustment of active contour 
parameters is still a challenging issue. This survey reviews state-
of-the-art active contours which attempt to cope with the issue of 
empirical parameterization, so as to secure the objectivity and 
robustness of the segmentation results. Numerous attempts utilize 
information associated with contour evolution and shape priors, 
whereas others are hybrid, driven by both empirical and 
automatically obtained parameter settings. Most recent models are 
spatially varying and versatile regarding the application and the 
energy functional to be minimized.  
 
Keywords—Active Contours, Automated Parameter Adjustment, 
Segmentation. 

 
I. INTRODUCTION 

 
Empirical parameterization of active contours [1]-[8] is a 
laborious process which requires considerable time to be 
performed as well as technical skills from the end user. 
Moreover, the obtained segmentation results are highly 
subjective and reproducibility is complicated. Even though 
in most cases the segmentation quality is acceptable, it is 
controversial since it relies on the technical skills of the end 
user. 

Although a generally applicable framework for automated 
parameter adjustment that eliminates heuristic 
considerations is yet to be developed in active contour 
research, several approaches address this issue. Such 
approaches are of crucial importance since they are 
potentially capable of relieving users from the trial and error 
process as well as to endow segmentation results with 
objectivity and robustness. 

Region-based active contours are widely applied on 
image segmentation due to their inherent noise-filtering 
mechanism and their topological adaptability. Furthermore, 
they are robust to weak edges and intensity inhomogeneity 
[9]-[13]. They are guided by the minimization of an energy 
functional totalE  described as follows: 

 

dfdfregregtotal EwEwE ⋅+⋅=                                          (1) 

 
where  regE  and  dfE  are regularization and data fidelity 

energy terms, respectively, whereas  regw  and dfw   are the 

corresponding weighting parameters which are typically 
adjusted in an empirical manner. 

This survey reviews active contour parameter adjustment 
approaches, which aim to confront the challenging issue of 
automated parameterization. These approaches are classified 
according to the information utilized in the computation of 
parameters. To the best of our knowledge, such a review is 
missing in active contour literature.  
 

II. AUTOMATIC ACTIVE CONTOUR MODELS 
 

A. Time-Dependent Active Contour Parameterization  
 
Tsai et al. [14] proposed a region-based, shape-driven 

active contour model for medical image segmentation by 
applying principal component analysis to a collection of 
signed distance representations of the training data. 
According to this model, parameters are calculated by 
means of the gradient descent algorithm which minimizes an 
energy functional as follows: 
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where },...,{ kwwww 21=  are the shape weights for the k 
eigenshapes, },...,{ npppp 21=  pose parameters used to 
jointly align the n binary images, pw aa ,  positive step-size 

parameters and E the energy functional. The model is 
capable of embedding various region-based energy 
functionals to be minimized via the gradient descent 
algorithm and shape and pose parameters are updated 
dynamically within the iterative procedure of active contour 
evolution. However, cases of erroneous behavior of the 



active contour in the early evolution stages have not been 
encountered. Figure 1 depicts the block diagram of the 
pipeline of Tsai et al. model [14]. 

 

 
Fig. 1. Block diagram of the pipeline of Tsai et al. model [14]. 

 
Pluempitiwiriyawej et al. [15] proposed a stochastic 

active contour scheme for automated segmentation of 
cardiac MR images. The energy functional that is minimized 
combines both region-based and edge-based information by 
utilizing shape priors of the heart and is defined as follows: 
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where the first, second, third and fourth term incorporates 
region-based, edge-based, shape prior information and 
smoothness regulation, respectively and are described 
according to the following: 
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where 21 pp ,  are the assumed pdfs inside and outside the 
contour, σG  the two-dimensional Gaussian kernel with 

variance 2σ , 2D  the ellipse distance function and δ the 
Dirac function. Parameters 4321 λλλλ ,,,  control the strength 
of each of the terms 4321 EEEE ,,, , respectively. Aiming at 
automated parameter adjustment, the authors present an 
annealing algorithm through which parameters adapt their 
values as the segmentation evolves. The selected annealing 
schedules are defined as follows: 
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where n is the iteration number, N the total number of 
iterations and )(),( Nλλ ii 1 the initial and final values of iλ , 
respectively. It should be noted that 4λ  is selected to be 
constant. Similar to the model of Tsai et al. [14], parameters 
are updated during contour evolution. Hence, errors in the 
early stages of evolution will propagate to the later stages of 
contour convergence.  
 
B. Active Contour Parameterization using Shape Priors 

 
Keuper et al. [16] proposed a probability-based method 

for dynamic adjustment of active surface parameters for the 
segmentation of cell nuclei. The method utilizes the total 
energy of an active surface defined as: 
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where X is the function of the active surface, extEEint, the 

internal and external energies, respectively and a,b 
weighting parameters. The method is based on 2-sphere- 
like objects of gray value profiles l

x Rr
i
∈  of surface 

vertices iv  in radial direction, where l is the number of 
sampling points on the profile. The weighting parameters 
which are assigned to vertices iv  are calculated as follows: 
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where P(B) is the only high level parameter. The method is 
beneficial compared to standard active surfaces with 
constant weighting parameters, yet it is primarily dependent 
on the shape of the target region. 

Liu et al. [17] proposed a localized active contour model 
for lip contour extraction in which proper parameters are 
automatically selected. The proposed approach utilizes a 
minimum-bounding ellipse in order to initialize the evolving 
curve. The final energy functional to be minimized is given 
as follows: 
 



duuuφδλ

dvduvφvIFvuuφδφE

v

v v

||)(||))((

))(),((),(Β))(()(

Ω

Ω Ω

∇⋅⋅+

⋅⋅=

∫

∫ ∫
             (14) 

 
where ),( vuB is a characteristic function, F is a localized 
region-based force formed by substituting local means for 
global ones described as: 
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and λ a weighting parameter. The level set is initialized as a 
minimum-bounding ellipse defined as: 
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where ( cc yx , ) is the origin center of the minimum-
bounding ellipse, θ  the inclined angle defined to be positive 
in the counter-clockwise direction and baba VVLL ,,,  the left, 
right, upper, lower corner, respectively. The parameters of 
the ellipse are selected automatically; however λ is still 
empirically determined. Additionally, the proposed 
approach hinges on the shape of the target region.  
 
C. Hybrid Active Contour Parameterization using both 
Empirical and Automatically obtained Parameter Settings  
 

Hsu et al. [18] proposed an active contour model called 
Poisson Gradient Vector Flow (PGVF) which employs a 
genetic algorithm for automated segmentation of liver PET 
images. The original liver PET image is imported and its  
edge map is generated by Canny edge detection. The 
parameters of the latter are calculated by the design of the 
fitness function, which is defined as follows: 
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where L,N are the length and total pixel number of the 
contour line obtained by the binary edge map, which is 
detected by Canny edge detection, and a a weighting 
number.  

Yushkevish et al. [19] developed an open source active 
contour-based application, called ITK-SNAP, for automated 
segmentation of medical images by clinical users, who are 
unfamiliar with the intrinsic mechanisms of active contour 
algorithms. ITK-SNAP implements the three-dimensional 
geodesic active contour model written as: 
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where ),( utCt  is the contour at time t parameterized by u, k 
the mean curvature of the contour,  N the contour normal, 

Ig  a function that decreases monotonically with the 
gradient magnitude of image I and a, b, γ modulating 
weights. To assist the user in setting these parameters, ITK-
SNAP employs a structured wizard segmentation workflow 
and feedback mechanisms. Although performed in a more 
intuitive manner, parameter settings are still empirically 
determined. 
 
D. Machine Learning and Spatially Varying Models 
 

Iakovidis et al. [20] proposed a framework for thyroid 
ultrasound image segmentation which encompasses an 
automatic parameter tuning mechanism based on genetic 
algorithms.  The proposed framework implements the 
Variable Background Active Contour (VBAC) model [21], 
which extends the energy functional of the Chan-Vese 
model [9] by defining the difference )),(( yxφD as follows: 
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where a is a positive constant. Parameters dfreg ww ,  and a 

are automatically adjusted through a genetic optimization 
problem. Parameters are encoded into a single bit-string, 
called chromosome. Their values are constrained within 
discrete, worst-case ranges. The minimum and maximum 
values of these ranges as well as the sampling rate 
considered are experimentally determined. This heuristic 
approach converges slowly in locally optimal solutions. 

Allili et al. [22] proposed an automatic estimation of the 
weighting parameters for segmentation combining boundary 
and region-based information. Boundary information is 
formulated using a multi-band edge detector, whereas 
region-based information is formulated using a mixture of 
Gaussians. Let ),...,( nuuuU 21=  be a multi-valued image 
defined on Ω and kk Ω,Ω ∂  are the region and its boundaries, 
respectively. The energy functional that is minimized is 



described as follows: 
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where M is the number of regions, Θ the mixture of 
parameters kθ  of each pdf, )(|( xUθpt kk =  and a,b 
weighting parameters. According to this method, the latter 
establish adaptive values as follows: 
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where W(x) is a square window which surrounds pixel x. 
This method provides better convergence and robustness to 
oversegmentation compared to the one utilizing fixed 
parameters. 

Mylona et al. [23] proposed a framework for self-
adjustment of region-based active contours, based on texture 
cues. The latter are mined by filtering methods characterized 
by multi-resolution, anisotropy, localization and 
directionality. This information is encoded by entropy-based 
image “heatmaps”, which are able to weight the 
regularization and data fidelity terms appearing in the 
region-based energy functional. Parameters are spatially 
varying, so as to reflect regional image features, and are 
calculated as follows: 
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where N, M are the rows and columns of the input image, 
respectively, jkI  the band-pass directional subband obtained 

by the contourlet transform [24] representing the local 
feature space and jkIE  the information entropy of the kth 
direction in the jth level of the transform defined by: 
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The framework of Mylona et al. can be applied to various 
image modalities, such as biomedical, textured and real-
world images and does not require a priori knowledge on 
the shape of the target region. Moreover, it is versatile i.e. 
can be embedded in various active contour variations. 
 

III. CONCLUSIONS 
 

This survey reviews current active contour parameterization 
approaches. Their key objective is to relieve domain users 
from the cumbersome process of empirical 
parameterization, as well as from extensive developer 
support, endowing segmentation results with robustness and 
reproducibility.  

The existing automated parameterization approaches 
attempt to adjust either weighting parameters navigating 
contour evolution or other types of parameters, which come 
with supporting algorithms, such as Canny edge detection or 
Gaussian mixtures, which are integrated into an active 
contour model. 

Several parameterization approaches, as the model of Tsai 
et al. [14] and Pluempitiwiriyaweg et al. [15], calculate 
parameters without encountering possible erroneous 
behavior of the contour in the early evolution stages. Other 
approaches, including those of Keuper et al. [16] and Liu et 
al. [17], focus on specific applications and are highly 
dependent on a priori knowledge, considering the size and 
the shape of the target region. Alternatives, like the models 
of Hsu et al. [18] and Yushkevish et al. [19] aim on specific 
applications, whereas they introduce new fixed parameters.  

A number of state-of-the-art parameterization approaches, 
like those of Ma et al. [25] and McIntosh et al. [26], try to 
solve the trade-off between energy terms without adjusting 
each individual parameter separately. Kokkinos et al. [27], 
Iakovidis et al. [20] and Erdem et al. [28] utilize machine 
learning algorithms. Nevertheless, these approaches still 
require technical skills from the end user.  

On the other hand, the approaches of Allili et al. [22] and 
Mylona et al. [23] are spatially varying, reflecting regional 
image features, and versatile with respect to the application. 
Additionally, they do not depend on the shape of the target 
region. 

Table 1 summarizes active contour parameter adjustment 
approaches and compares them with respect to: 1) the level 
of automation, 2) time-dependency, 3) use of shape priors, 
4) spatial variability and 4) use of machine learning. By and 
large, a ‘wish list’ of desired features for automated active 
contour parameterization contains: 1) full automation, 2) 
time-independency, 3) versatility with respect to the energy  



Table 1. Summary of active contour parameter adjustment approaches
Model Year Methodology Automation Time 

Dependency 
Shape 
Priors 

Spatial 
Variance 

Machine 
Learning 

Tsai et al. 2003 Principal component 
analysis 

Full Yes Yes No Yes 

Pluempitiwiriyaweg 
et al. 

2005 Annealing schedules Full Yes Yes No Yes 

Keuper et al. 2010 Probability-based Full No Yes Yes Yes 
Liu et al. 2010 Minimum-bounding 

ellipse initialization 
Semi No Yes No No 

Allili et al. 2008 Multi-band edge 
detector and mixture 

of Gaussians 

Semi Yes No No No 

Hsu et al. 2008 Genetic algorithm Semi No No No No 
Yushkevish et al. 2005 Geodesic active 

contour model 
Semi Yes No No No 

Ma et al. 2010 Morphological 
approach 

Semi No No No No 

McIntosh et al. 2007 Balance of trade-off 
between terms 

Semi No No No No 

Kokkinos et al. 2009 Probabilistic 
modeling 

Semi No No No Yes 

Erdem et al. 2009 Approximation of the 
Mumford-Shah 

model 

Semi No No No Yes 

Iakovidis et al. 2007 Genetic algorithm Semi No No No Yes 
Mylona et al. 2013 Multi-directional 

texture cues 
Full No No Yes No 

 
functional, 4) general applicability with respect to the 
application and the shape of the target region, 5) spatial 
variability, and 6) user-friendly deprived of developers 
support. 
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