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Microarray Image Segmentation using Spot Morphological Model
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Abstract—The up-to-date segmentation techniques and
software programs for microarray image segmentation require
human intervention which in turn may detrimentally affect the
biological conclusions reached during microarray experiments.
In this paper, an automatic approach for segmenting
microarray images, based on the morphological modeling of
spots, is presented. The conducted experiments have shown
that the proposed approach is very effective even when it is
applied to noisy images as well as to images containing spots of
various shapes and intensities.

Index Terms— Microarrays, Image Analysis, Segmentation

I. INTRODUCTION

N the last decade, microarray technology has been

rendered a revolutionary tool for biomedical research as it
enables the simultaneous monitor of the expression levels of
thousands of genes [1]. The end product of a microarray
experiment is a high resolution digital image, containing
thousands of spots, whose intensities are proportional to the
expression levels of specific genes. Consequently, the
intensity of each microarray spot should be calculated.

The main process for measuring spot intensity includes
three stages [2]: In the first stage, called gridding, the
position of each spot is assigned; compartments of the image
containing one individual spot and background are therefore
defined. In the second stage, called spot-segmentation, the
contour of each spot is determined. In the third stage, called
intensity extraction, the intensity of each spot is calculated.

From the aforementioned stages, the spot-segmentation is
the most challenging one. Consequently, several techniques
and software programs have been proposed for this stage
[3]. Amongst them, there are methods which are based on
the assumption that the spot has a circular shape. For
example, ScanAlyze [4], and Dapple [5] software programs
match circular templates to the spots. Sarder et al [6] have
also proposed a method in which each spot is represented by
a parametric circle with one or two elliptical center holes.
Given that the shape of spots is not always circular, the
aforementioned methods fail to segment no circular spots.
To deal with the various shapes of spots, the seeded region
growing algorithm [7],[8] which can segment regions of
irregular shapes by implementing a watershed algorithm has
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been suggested. However, the performance of this method is
based on the appropriate selection of the starting points.

Intensity-based segmentation techniques have been also
developed. Amongst them, there are clustering techniques
such as k-means [9], hybrid k-means [10], and the model-
based segmentation algorithm [11]. The former two
algorithms may fail to segment poorly contrasted spots,
while the latter one is based on a threshold value. More
sophisticated methods are based on active contours [12], and
multiple snakes [13],[14]. However, these methods give
inaccurate results in the case that the image contains spots
with large variations or when the compartment is
contaminated with noise and artifacts.

Overall, the current microarray segmentation techniques
have several limitations whose main cause lies to the poor
quality of microarray images [15]. Indeed, these images are
contaminated with noise, and artifacts. Moreover, real spots
vary significantly from the ideal ones; they have not always
a circular shape and their intensity is not always high
enough to be clearly visible. As a result, segmentation
techniques require human intervention in order to specify
mandatory parameters or to correct their results. However,
this lack of automation can significantly affect biological
conclusions [16] and it is therefore their main disadvantage.

In this paper, a precise and automatic spot segmentation
technique for microarray image is presented. The proposed
approach optimally represents the morphological shape of a
real-spot with a spot-model. Consequently, the contour of a
microarray spot is depicted in the image plane by drawing
the contour of spot-model. The proposed approach improves
the ones reported in [17],[18] since it can effectively
segment all morphological types of microarray spots (Fig.
1). For this scope, an original spot-model is presented which
can be used for the representation of all types of real
microarray compartments. Experiments - over microarray
images containing thousands of spots - showed that the
proposed approach achieves an accuracy of more than 91%
in contrast to the corresponding accuracy of 85.3% found in
our previous approaches. Moreover, the experiments have
shown that the proposed approach can be very effectively
applied to images contaminated with noise as well as to
images containing low-intensity spots.

The remainder of this paper is structured as follows: In
section II, the proposed methodology for segmenting
microarray images is described, while in section III the
results of the proposed approach are presented. Finally, in
section IV the conclusions of this study are summarized.
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Fig. 1. Different morphological types of microarray spots in 2D and 3D dimensions: (a) a peak-shaped spot, (b) a volcano-shaped spot, and (c) a doughnut-
shaped spot.

II. METHODOLOGY

According to Kim et al [19], microarray spots can be
classified into three categories based on their shapes: peak-
shaped, volcano-shaped, and doughnut-shaped spots (Fig.1).

Based on the above remark, our proposed segmentation
method is conducted into two stages: (i) Firstly, the
morphological spot shape is represented by a spot-model,
and (ii) Secondly, the spot contour is depicted in the image
plane by drawing the contour of its spot-model.

A. Morphological Models for a Microarray Spot and its

Compartment

All the aforementioned spots categories can be
represented using: (i) a 3D-curve representing the main-
body S)p of the spot-model, and (ii) a 3D-curve representing
the inner-dip S;p of the spot-model.

Both the main-body and the inner-dip 3D curves are
expressed as the diffusion function C(x,y) proposed by
Bettens et al [20], and therefore resemble the 3D Gaussian
or plateau curve. Moreover, their orientation is opposite; the
base of the main-body of the spot-model is down and its
peak is up, while the base of the inner-dip of the spot-model
is up and its peak is down (Fig.2).

The spot-model Sygq/(x,y) is constructed by combining
the Syp(x,y) and Spp(x,y) 3D-curves as the following
equation indicates:

Swope, (%) = Min[ S, (%, ), (x, )| - o))

A graphical explanation of eq. 1 is depicted in Fig. 2. The
resulting total-models (grey areas) depend on the 3D curves
of their corresponding Sy and S;p components. More
precisely, in the case of the distance between the Sy and S;p
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centers being large, the resulting total-model resembles a
peak-shaped spot (Fig.2a). In the case of the distance
between the Sy and Sjp centers being small, the resulting
total-model resembles a volcano-shaped spot (Fig.2b) or a
doughnut-shaped spot (Fig.2c), according to the height of
the S;p 3D curve.

Likewise, the morphological compartment-model can be
defined as:

Dyope (%, ¥) = Max[BAV’SMODﬂ,(x’y)] )

where B,y denotes the average background intensity of
the compartment-model and it corresponds to a threshold of
the lowest values of the Syopg(x,y). Pixels whose values are
lower than B,y belong to the background and their values
are set equal to Byy. A graphical explanation of eq. 2 for a
volcano-shaped spot is depicted in Fig. 3.

B. Optimum Spot-Model Representation and Definition of
Real-Spot Contour

A genetic algorithm determines the compartment-model
which optimally represents the real-one. For this scope, it
searches for the optimal values of the parameters of the
morphological compartment-model defined by (2). Its search
starts by the generation of an initial population (Pop;) of N
chromosomes. Each chromosome m represents a
morphological compartment-model ., . Consequently, it
is encoded as a numerical sequence consisting of three
segments: The first segment encodes the value of the
average background intensity Bj, of the compartment-
model. The second segment encodes the values of the
variables of the main-body S,;;, while the third segment

encodes the values of the variables of the inner-dip S, of
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Fig. 2. Sus and S;p components of the morphological models of: (a) a peak-shaped spot, (b) a volcano-shaped spot, (c) a doughnut-shaped spot. The total

morphological models are the grey areas.
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Fig. 3. Morphological model for a compartment containing a volcano-
shaped spot.

the spot-model Sy, -

Subsequently, the chromosomes constituting the Pop; are
evaluated. The higher the resemblance of the morphological
compartment-model I}, (represented by the chromosome
m) to the real-compartment Iz, is, the higher the value of
the fitness function of a chromosome m becomes. Therefore,
the relative intensity error E(x,y) between the intensity of the
compartment-model’s pixel (x,y) and the corresponding one
of the real-compartment’s pixel is calculated as follows:

|IA’;0DEL(x7y)_IREAL(x>y)|. (3)
Trey (%,9)

E(x,y)=

The fitness function F(m) of a chromosome m is defined by the
following equation:

Fmy=~ [

x,yeCompartment

E(x,y) dxdy. (O]

Thereafter, the genetic algorithm makes the population
Pop; evolve into a new population Pop,, the Pop; to a new
population Pop; and so forth as follows: The P,% of the best
chromosomes of Pop, is maintained in Pop,.;. The rest are
reproduced by applying: i) the joint application of the BLX-a
crossover and of the dynamic heuristic one and ii) the
wavelet mutation. Genetic algorithm finishes when a
maximum number of populations is reached, for which the
best fitness value has remained unchanged. Thus, the

Fig. 4. Spot segmentation results (b) in a good quality microarray subimage (a).

optimum compartment model with the higher resemblance to
the real-one is determined. The real-spot is obtained by
drawing the contour of this optimum spot-model.

III. RESULTS

Several experiments were performed in order to evaluate
our proposed approach for spot-segmentation. The
microarray images used for the evaluation were obtained on
the Internet. They have been produced by the microarray
simulator of Nykter which generates synthetic microarray
images with realistic characteristics and varied quality. Half
of the images have good quality; their noise level is
reasonably low, and they have low variability in spot sizes
and shapes. The rest of them are low quality images; their
noise level is high enough, and they contain spots whose
shape and size vary substantially. Finally, each image is
digitized at 330 x 750 pixels and contains 1000 spots. The
parameters of the genetic algorithm had been experimentally
adjusted once, and thus they remained unchanged during all
the experimental procedure. The population size N was set
to 100. The percentage P, was relatively small (P,=10%) as
the reproduction was used only for the best chromosomes of
the population to be preserved in the next population. The
termination criterion was satisfied when the best fitness
value remained unchanged for 200 populations.

The accuracy of the proposed method was analyzed by
means of a statistical analysis. More precisely, using the
proposed approach, 91.5% of spots were “very efficiently
segmented”, and no spurious spot were detected. A spot was
“very efficiently segmented” if at least 90% of the entire
spot area was enclosed in the contour of that spot. Fig. 4
illustrates the segmentation result of a microarray block
taken from a good-quality synthetic image. In this figure,
one can observe that the proposed method has optimally
segmented all the microarray spots. On the other hand, Fig.
5 illustrates the segmentation result of a microarray block
taken from a low-quality synthetic image. On its
segmentation results (Fig. 5b), it becomes obvious that the
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Fig. 5. Spot segmentation results (b) in a low quality microarray image (a).

proposed method has optimally segmented nearly all its
microarray spots.

IV. CONCLUSIONS

In this paper an original approach for segmenting
microarray images is described. The proposed approach is
based on the morphological shape of the microarray spots.
Its key concept is based on the idea that each microarray
spot can be represented with a morphological spot-model,
and therefore its contour can be depicted in the image plane
by depicting the contour of its morphological spot-model.

The proposed approach is automatic as all the needed
parameters were experimentally adjusted once and kept
stable during all experiments. Moreover, it can be applied to
images containing missing spots or containing spots of
various intensities, sizes and shapes. The experimental
results on synthetic microarray images - in which the ground
truth is known — confirm the validity and the effectiveness
of our method.
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