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Abstract. This paper presents a novel adaptive vision system for accurate seg-
mentation of tissue structures in echographic medical images. The proposed vi-
sion system incorporates a level-set deformable model based on a modified 
Mumford-Shah functional, which is estimated over sparse foreground and 
background regions in the image. This functional is designed so that it copes 
with the intensity inhomogeneity that characterizes echographic medical im-
ages. Moreover, a parameter tuning mechanism has been considered for the ad-
aptation of the deformable model parameters. Experiments were conducted 
over a range of echographic images displaying abnormal structures of the breast 
and of the thyroid gland. The results show that the proposed adaptive vision 
system stands as an efficient, effective and nearly objective tool for the seg-
mentation of echographic images. 

1   Introduction 

Echographic medical images provide a means for non-invasive in-vivo diagnostics. 
However, they are inherently characterized by noise, speckle, spatial aliasing and 
sampling artifacts, causing the boundaries of tissue structures to appear indistinct and 
disconnected. The shape of these boundaries can be a substantial clue in differential 
diagnosis, as it is often correlated with malignancy risk [1-2]. A vision system for 
automatic segmentation of echographic images would be an aid in medical diagnosis, 
even to experienced radiologists, by providing a nearly objective second opinion 
based on explicit image features.  

A variety of vision systems incorporating different image processing and pattern 
recognition methods have been proposed for the segmentation of echographic medi-
cal images. These include, minimum cross entropy thresholding [3], region growing 
methods [4-5], classification methods [6], clustering methods [7], wavelet analysis 
[8], mathematical morphology [9], genetic and fuzzy algorithms [10-11]. State of the 
art vision systems based on deformable models [12] exhibit advantageous perform-
ance in echographic medical image segmentation [13-15]. They are capable of ac-
commodating the complexity and variability of such images by an inherent self-



adapting mechanism that leads to continuous, closed or open, curves without requir-
ing edge-linking operations.  

Two-dimensional deformable models involve a contour deformation process which 
is realized by the minimization of an energy functional designed so that its local mini-
mum is reached at the boundaries of a target object. The energy functional in its basic 
form comprises of a term that controls the smoothness of the contour and an image 
dependent term that forces the contour towards the boundaries of the objects. Mum-
ford and Shah [16] formulated an energy functional that contributes to noise resis-
tance by incorporating integrals over image regions. Based on that functional, Chan 
and Vese [17] developed a level set deformable model that allows the detection of 
objects whose boundaries are either smooth or not necessarily defined by gradient. 
The level set approach was introduced to allow for topological changes of the contour 
during its evolution and it is therefore capable of detecting multiple objects in an 
image. However, Chan-Vese model assumes that image intensity is piecewise con-
stant, which is hardly true for echographic medical images. This assumption is vio-
lated because of single or multiple intensity spikes in such images, attributed to the 
characteristics of the tissue being examined, to the presence of artifacts such as calci-
fications, or to external causes such as speckle, usually related to the echographic 
imaging devices used.  

A drawback in the application framework of deformable models to echographic 
medical image segmentation is that it is device dependent; meaning that for the seg-
mentation of images acquired from different echographic imaging devices, or from 
the same echographic imaging device using different settings (e.g. dynamic range), a 
set of different parameter values is required. In most cases parameter tuning requires 
technical skills and time-consuming manual interaction, which could hardly be per-
formed by radiologists.  

In this paper we present a novel vision system for accurate segmentation of echo-
graphic images. It incorporates a level-set deformable model based on a modified 
Mumford-Shah functional estimated over sparse foreground and background regions 
in the image in order to cope with the presence of inhomogeneity. Moreover, the 
proposed system utilizes a genetic algorithm to adapt its parameters to the settings of 
the echographic imaging device used. The performance of the proposed system is 
evaluated for the segmentation of abnormal structures in breast and thyroid echo-
graphic images. 

The rest of this paper is organized in three sections. Section 2 describes the pro-
posed system, whereas the results from its application on echographic medical images 
are apposed in Section 3. Finally, Section 4 summarizes the conclusions of this study 
and suggests future research perspectives. 

2   The Proposed System 

The proposed echographic image segmentation system has two modes of operation: 
adaptation and testing. During the adaptation mode the parameters of the deformable 
model are tuned so that the system adapts to the settings of the echographic imaging 
device, based on ground truth information provided by expert radiologists. The test-



ing mode refers to the segmentation of echographic medical images by a tuned de-
formable model. In what follows we describe the deformable model and the genetic 
algorithm used. 

2.1   Deformable Model based on Modified Mumford-Shah Functional 

Mumford-Shah functional is defined as follows [16]: 
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where C is an evolving curve in Ω, where Ω is a bounded open subset of 2R , and µ, 
λ are positive parameters. The segmentation of an echographic image Ru →Ω:0  can 
be formulated as a minimization problem: We seek for the infimum of the functional 
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The solution image u(x, y) obtained by minimizing this functional is 

formed by smooth regions with sharp boundaries. In the level set method [18], 
Ω⊂C  is represented by the zero level set of a Lipschitz function ,: R→Ωφ  such 

that: 
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Considering that u(x, y) is defined as: 
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 Eq. (1) becomes: 
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where +c  and −c  are average intensities of only a subset of pixels in the foreground 
(inside C) and in the background (outside C) respectively. This subset is selected so 
that the pixels contributing most to local inhomogenity are excluded. It is worth not-
ing that the Chan-Vese model considers the average intensities from all the pixels in 
the respective regions [17]. The values of +c  and −c  are estimated by the following 
equations:  
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where H is the Heaviside function. The differences ),(1 yx∆  and ),(2 yx∆  are intro-
duced for the cases of foreground and background respectively, as: 

)),(()),((),( yxHayxHyx ii φφ −+=∆  (7) 

where i = 1, 2 and 1α , 2α  are constants, negative in the case of the foreground and 
positive in the case of background. Their value is determined so that ],0[ 1a  and 

]0,[ 2a−  define the acceptable ranges of ),( yxφ  for a point ),( yx  to be included in 
the calculations for the sparse foreground and background region, respectively. Equa-
tion (6) implies that the points ),( yx  for which ),( yxφ  does not belong in the ac-
ceptable range result in 0),( ≈∆ yxi . These points correspond to intensity inhomoge-
neity and cause abrupt changes of φ , resulting in )),(()),(( yxHayxH i φφ =+ .  

Moreover, we assume that the initial contour as traced by 0φ  corresponds to the 
region of interest and we employ )( 0φH

 to restrict the calculation of the average 
foreground and background intensities +c  and −c  over this region. 

Keeping +c  and −c  fixed, and minimizing F  with respect to φ , the associated 
Euler-Langrange equation for φ  is deduced. Finally, φ  is determined by parameteriz-
ing the descent direction by an artificial time 0≥t , and solving the following equa-
tion 
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where Ω∈∞∈ ),(),,0( yxt  and δ is the one-dimensional Dirac function. 

2.2   Genetic Algorithm 

The genetic algorithm used in the adaptation mode aims at parameter tuning of the 
deformable model. Genetic algorithms are stochastic non-linear optimization algo-
rithms based on the theory of natural selection and evolution [19-20]. They have been 
the optimizers of choice in various artificial intelligence applications, exhibiting bet-
ter performance than other non-linear optimization approaches to parameter tuning 
[21-24]. 

Motivated by these studies, we transcribed the parameter tuning optimization 
problem of the level-set deformable model into a genetic optimization problem. Con-
sidering that µ , +λ , −λ  are weight terms of the energy functional that regulate the 



relative influence of the terms comprising Eq. (1), and that 0>µ , (6) can be rewritten 
as follows: 
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and by setting 
µ
λ+

+ =k  and  
µ
λ−

− =k , (7) can be rewritten as follows: 
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The parameters +k , −k , 1α  and 2α  are encoded into a single bit-string, called 
chromosome. Their values are constrained within discrete, worst-case ranges deter-
mined experimentally. Two 6-bit variables with integer values ranging from 0 to 64, 
are used to hold +k  and +k , and two 4-bit variables are used to hold the exponents of 

1α  and 2α , enumerating the values 01415 10,...,10,10 −− . The length l of the resulting 
chromosome sums a total of 20-bits.  

In the adaptation mode the genetic algorithm searches for the chromosome associ-
ated with the optimal parameters ( k , 1α  and 2α ) which maximize the overlap value f  
between a contour A and a given ground truth segmentation T of the target tissue 
structure. The ground truth segmentation comprises of all pixels falling within at least 
N/2+1 segmentations out of N segmentations drawn by N radiologists [25]. The bias 
introduced in the ground truth segmentation is reduced as N increases. The overlap 
value f  between two delineated areas A and T is defined as in [5]: 
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In case of a perfect match between the two delineated areas A and T, the overlap 
value is maximized (f = 1). 

The genetic algorithm of the adaptation mode proceeds to the reproduction of an 
initial population of R chromosomes by following the steady state approach [26]. The 
fittest individuals are maintained in the population and they are used to generate off-
spring individuals by multi-parent diagonal crossover [27]. Following crossover, a 
mutation operator is applied, flipping the bit content of the chromosomes at random 
positions from 1 to 0, and vice versa, with very low probability [28]. This operation 
provides a mechanism to keep the solution away from local minima [24]. 

The genetic algorithm can be summarized in pseudocode as follows (where G is 
the current generation): 

 
Step 1. Initialize 0←G , 0FITTEST ←f  

  Generate Population of R Chromosomes at random 
Step 2. For each Chromosome 

Execute deformable model on input image 
 Calculate f(G) 
 If FITTEST)( fGf ≥  Then  



)(FITTEST Gff ←  
Register fFITTEST 

 End If 
 End For 

Step 3. 1+← GG  
Step 4. Begin Reproduction 

  Select Fittest Chromosomes 
  Maintain Fittest Chromosomes in the Population 
  End Reproduction 

Step 5.  Crossover Fittest Chromosomes to Generate new Chromosomes 
Step 6.  Mutate Fittest Chromosomes to Generate new Chromosomes 
Step 7. Repeat Steps 2 to 6 Until G = Gmax 
 
The parameter tuning procedure, described above, will result in a registered opti-

mal set of parameters ( k , 1α  and 2α ). This set of parameters can be used for the 
segmentation of similar tissue structures in other medical images acquired from the 
same imaging device with the same settings. 

3   Results 

Experiments were performed aiming at the assessment of the proposed vision system 
for the segmentation of echographic medical images. The dataset used in the experi-
ments comprised of 38 breast and thyroid echographic images (Table 1), containing 
abnormal tissue structures. The images were digitized at 256×256-pixel dimensions 
and at 8-bit grey level depth. 

The proposed vision system was implemented in Microsoft Visual C++ and exe-
cuted on a 3.2 GHz Intel Pentium IV workstation. The parameters of the genetic algo-
rithm were kept constant during the experimentation. A typical population of R = 30 
chromosomes was considered in agreement with [29]. The crossover probability was 
set at 0.6 [30] and the mutation probability was set at 1/l = 0.05, where the length of 
the chromosome was l = 20 [31]. A number of Gmax = 50 generations was considered, 
as it allows for convergence to the highest attainable fitness value. 

The adaptation mode accepts a single echographic image for parameter tuning. In 
order to avoid the sample selection bias that would be introduced if the performance 
evaluation process used a single image for parameter tuning, arbitrarily selected from 
the available set of images, a cross-validation scheme was employed [32]. This 
scheme involved multiple experiments that use independent images for parameter 
tuning and testing. In each experiment, a different image was drawn from the dataset 
and used for parameter tuning, whereas the rest of the dataset was used for testing. 

The average overlaps obtained by the proposed vision system and the individual 
radiologists are summarized in Table 1. These results provide an estimate of the gen-
eralization ability of the system. The obtained segmentation accuracies are compara-
ble to or even higher than the segmentation accuracies obtained by individual radi-
ologists. The latter case can be attributed to the subjectivity induced in the segmenta-



tions obtained by individual radiologists, which is associated with interobserver vari-
ability. 

Table 1. Average segmentation accuracy with respect to the ground truth, for the individual 
radiologists and the proposed system. 

Subject Images Radiologists 
v (%) 

Proposed 
System 
v (%) 

Breast findings 20 89.1±1.7 92.7±1.1 
Thyroid findings 18 90.7±2.3 94.4±1.7 

The interobserver variability as quantified by the coefficient of variation [33] 
ranges between 2.1% and 11.8%. The coefficient of variation of the overlap values 
obtained with the proposed vision system ranges between 0.9% and 3.0%, and in all 
the cases, it was lower than the coefficient of variation of the radiologists. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 1. Echographic medical images and segmentation results, (a) echographic image of a 
breast nodule, (b) echographic image of a thyroid nodule, (c-d) segmentations obtained by 
individual expert radiologists, (e-f) segmentations obtained by the proposed segmentation 
approach.  

 



Figure 1 illustrates two indicative echographic medical images used in the experi-
ments. The first image (Fig. 1a) illustrates an echographic image of a breast nodule. 
The overlap obtained with the proposed vision system is 94.5% (Fig. 1c), whereas the 
overlap obtained by an individual radiologist is 92.1% (Fig. 1e) respectively. The 
second image (Fig. 1b) illustrates an echographic image of a thyroid nodule. The 
overlap obtained with the proposed vision system is 98.9% (Fig. 1d) whereas the 
overlap achieved by an individual radiologist is slightly higher reaching 97.0% (Fig. 
1f).  

The average time required for the execution of the segmentation algorithm is of 
the order of a minute. The maximum time required in the adaptation mode of the 
proposed vision system reaches approximately the 18h, but it needs to run only once 
for a particular imaging device. It should be noted that if one had to follow the naive 
approach of exhaustive search in the parameter space, the execution time required 
would be up to three orders of magnitude higher. The resulting set of optimal parame-
ters ( +k , +k , 1α  and 2α ) may be applied for the segmentation of abnormal tissue 
structures in other similar echographic images acquired from the same echographic 
imaging device with the same settings. This means that for each new image, only the 
execution time of the deformable model is required. 

4   Conclusion 

We have introduced a novel vision system, which embodies a level-set deformable 
model tuned by a genetic algorithm. The deformable model is based on a modified 
Mumford-Shah functional, which is estimated over sparse foreground and back-
ground regions in the image, so as to cope with the intensity inhomogeneity charac-
terizing echographic medical images. The genetic algorithm has been employed for 
efficient tuning of the parameters of the deformable model to an optimal set of values 
for the particular settings of the imaging device used. This adaptation of the deform-
able model allows accurate segmentations of tissue structures in echographic medical 
images. The segmentation accuracy provided is comparable to or even higher than the 
segmentation accuracies obtained by individual radiologists. 

The results show that the interobserver variability of the individual radiologists is 
higher than the variability of the overlap values obtained with the proposed vision 
system. Therefore, this vision system offers a tool for nearly objective clinical as-
sessment of tissue structures. Moreover, it provides the radiologists with a second 
opinion, without requiring technical skills or time-consuming manual interaction for 
parameter tuning.  

Future research perspectives include speed up of the proposed system, and its em-
bedment into an integrated system that will combine heterogeneous information to 
support diagnosis. 
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