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Abstract. An efficient hardware architecture for the acceleration of an inte-
grated 3D reconstruction method is presented, targeting demanding dynamic  
Integral Imaging applications. It exploits parallel processing and features mini-
mized memory operations by implementing an extended-access memory 
scheme. Its reduced data throughput, thanks to optimized data utilization, makes 
it suitable for single FPGA device implementation. Results reveal that the 
hardware system outperforms the software method by an order of magnitude. 
Moreover, its processing rate surpasses the typical rate of a dynamic Integral 
Imaging acquisition system, thus making a significant step towards real-time 
3D video reconstruction. 
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1   Introduction 

Three-dimensional (3D) object extraction in real world scenes is known as one of the 
major challenges in the stereoscopic vision field. Typical applications include video 
tracking and machine vision systems as well as virtual reality environments. [1,2]. A 
number of systems have been developed that perform these tasks, most of them based 
on classic two-view stereoscopic cameras or multiple cameras arranged in an array, or 
systems that use a combination of range finding sensors and laser beams along with 
high resolution cameras to capture the texture of the objects [3]. However these sys-
tems are fairly complex and require accurate calibration procedures. Moreover most 
of them are bulky and have high initial costs which make them prohibitive for uses 
other than large television or cinema  productions [3,4]. 

An alternative method that is characterized as the near ideal multiview technique [5] 
functions on the principle of Integral imaging (InIm) . InIm is based on Integral Pho-
tography which was initially proposed by Lipmann back in 1908 [6]. The operational 
principle of an InIm capturing setup is shown in Fig. 1. This technique uses a lens ar-
ray (LA) over a high resolution Charge Coupled Detector (CCD). Each lens in the lens 
array produces a part of the InIm, which is called Elemental Image (EI). The resulting 
image can be used for stereoscopic viewing using an appropriate Liquid Crystal Dis-
play equipped with a LA. The capturing devices can be made compact enough, without 
moving parts and hence ensuring portability with no need for calibration. Moreover as  
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Fig. 1. A typical InIm capturing setup 

sensor resolution increases and new materials can be used for optical components  
construction like LAs the technique can be made affordable for low-end applications. 

1.1   Motivation 

InIm has unique characteristics that can be used for several medical, educational and 
cutting edge applications, as it can provide a virtual environment with an enhanced 
perception of reality and allow real-time manipulation. High quality 3D object recon-
struction from dynamic InIm can further benefit these applications as 3D information 
can be efficiently represented, stored and retrieved. However, in order to target de-
manding real-time 3D video applications, such an approach must be combined with a 
robust acceleration method, notably hardware-oriented optimized solutions. This is 
necessary as the volume of information that is produced by a practical dynamic InIm 
system cannot be processed in real-time by the current generation of CPUs. 

1.2   Related Work 

The problem of 3D object reconstruction using Integral Images (InIms) has been ad-
dressed by several researchers [7-10]. Most of the proposed InIm reconstruction algo-
rithms are mainly applied to InIms of small objects that do not span many EIs because 
of their size. This limitation is enforced in order to avoid stitching problems during 
the reconstruction stage caused by abrupt discontinuities due to depth estimation er-
rors [7]. Moreover EI modification techniques are proposed in an effort to increase 
depth accuracy [8]. Note that in several works (such as Shin [11]) the term 3D object 
reconstruction is used to describe the generation of 2D images from multiple views 
and focus depths from a single Integral Image. 

A method that is focused on the reconstruction of a fully 3D surface model is pro-
posed in [12], where 3D shape and texture of real-life objects are reconstructed using 
the InIm technique. The method extends the classic stereo correspondence problem us-
ing horizontal and vertical parallax and multiple correspondences. The output of the 
process is the 3D polygonal representation of the object's shape and texture. This is 
shown in Fig. 2. To achieve this, the method utilizes a two-step strategy: it initially 
computes a rough grid and subsequently refines it. It has unique properties compared to 
previous works, such as configurable depth accuracy, direct and seamless triangulation 
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and the ability of handling cases where the field of view of the elemental lenses is less 
than the acquired object's size at a certain distance. 

Several attempts to accelerate 3D reconstruction applications utilize dedicated plat-
forms, most notably FPGA devices for the implementation of the digital architecture 
[13]. Other efforts turn to clustering for boosting performance [14]. They all target 
typical stereoscopic systems, and no attempt has been presented to accelerate a full 
3D surface model reconstruction method. 

   
(a)   (b)   (c) 

Fig. 2. Reconstruction of a dice: (a) Integral Image with f=3.3mm; (b, c) Reconstructed 3D ob-
ject rendered with triangulation superimposed 

1.3   Overview 

In this paper, an architecture is proposed for efficiently enhancing the performance of 
a 3D reconstruction method, such as the one presented in [12]. The proposed hard-
ware illustrates a significant speed improvement over the software method, by paral-
lelizing time-consuming and repetitive processing tasks that form the inner loop of the 
reconstruction algorithm and favor hardware implementation. Moreover, it demon-
strates optimized data utilization by applying specific memory data arrangements. 
Implementation results in an FPGA device reveal that the hardware system can proc-
ess 3D image data in a rate greater than 1 fps, outperforming the software application 
by at least one order of magnitude. 

The rest of the paper is divided into 4 sections. In section 2, the 3D reconstruction 
method [12] is outlined. In section 3, we describe the hardware system and present its 
main design considerations. The timing and implementation results are given in sec-
tion 4, along with comparison against the software system. Finally, the results are dis-
cussed and future work is presented in section 5. 

2   3D Reconstruction from InIm Algorithm 

The method proposed in [12], estimates the 3D shape and texture of an object from a 
single Integral Image. To this end a two step process is applied: first, 3D points (verti-
ces) on the surface of the object are computed and second, these points are connected 
in a polygonal (e.g. triangular) mesh. The reconstruction algorithm can be summa-
rized as follows: 



 Near Real-Time 3D Reconstruction from InIm Video Stream 339 

• Vertex Grid Computation: Vertices are computed using the central pixel of each 
lens, forming a rough regularly sampled vertex grid. 

• Grid Refinement and Triangulation: The grid is subdivided, new vertices are com-
puted and the refined grid is triangulated. 

• Post-Processing: The final grid is filtered in order to improve reconstruction qual-
ity (e.g. noise reduction). 

Given an Integral Image (produced by a lens array with known focal length f ), we 

first compute the 3D vertices that correspond to the central pixels of each EI. These 
vertices form a regularly sampled grid that is refined in the following step of the algo-
rithm. Note that all EIs have the same pixel resolution which is determined by the ac-
quisition device. 

We define the distance 1 2( , )D p p  between two pixels ( 1 1 1[ ]Tp u v=  and 

2 2 2[ ]Tp u v= ) from different EIs using a simple but effective 1L  metric: 

1 2 1 1 1 2 2 2( , ) ( , ) ( , )
W W

j W i W

D p p E u i v j E u i v j
=− =−

= + + − + +∑ ∑  (1) 

where 1E  and 2E  are the two EIs, and W  defines the size of the comparison window.  

We subsequently extend the above distance metric to more than two EIs. In prac-
tice, we use 2 1N +  neighboring EIs per direction, thus forming a symmetrical 

neighborhood area of radius N  around each EI (see Fig. 5). The best correspondence 
has the minimum sum of the distances over all neighbors: 

• For the central pixel ,k lp  of each EI ,k lE  

• Find the 3D vertex P  that minimizes the expression: 

, ,( , )
N N

total k l k i l j
j N i N

D D p p + +
=− =−

= ∑ ∑  (2) 

where ,k i l jp + +  is the projection of P  in EI ,k i l jE + +  

In order to refine the vertex grid, we introduce a subdivision parameter S , which 
defines how many vertices we will compute between the computed central vertices. 
The reason for separating this step from the previous one is to allow seamless triangu-
lation. As seen in Fig. 3 we can project the central pixels from neighboring EIs (com-
puted in the previous step) onto a specific EI. Additional vertices that we will use for 
refinement will be derived only from pixels between the central pixels of the lens and 
the correspondences of the central pixels of the neighboring lenses. The algorithm that 
subdivides the grid of a lens can be summarized as follows: 
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• Let the current lens be denoted by 00L , and its up, right and diagonal neighbors by 

01L , 10L  and 11L  respectively. Let the 3D vertices computed using the central pixel 

of the above lenses (in the previous step) be denoted by 00V , 10V , 01V  and  11V . 

• Project 00V , 10V , 01V  and  11V  in 00L  as 00p , 10p , 01p  and 11p  respectively. 

• For j  from 1 to 1S −  do 

For i  from 1 to 1S −  do 

' 2 2 2 2
00 10 01 11( )( ) ( ) ( )p S i S j S p i S j S p S i j S p i j S p= − − + − + − + ⋅  

Compute the reconstructed vertex V' using the vertex grid computa-
tion algorithm and add it to the grid. 

       
(a) (b) 

Fig. 3. EIs from a real-life object (f=3.3mm): (a) A 3x3 neighborhood with central pixels 
marked yellow. The correspondences of the central pixels in the bottom-left EI are marked red. 
(b) Triangulation of the same neighborhood using only central pixels, superimposed over the 
image. 

Finally, to improve the quality of the final reconstruction, a series of post-
processing filters are applied on the grid of vertices, in order to remove possible 
spikes and white noise. A sub-sampling filter can also be applied if the object is re-
constructed at a higher resolution than required. 

3   FPGA Implementation 

As detailed in the previous section, the pixel distance metric 1 2( , )D p p  constitutes 

the core of the algorithm. The calculation of the metric in software is time-consuming 
due to the complex nature of the absolute value calculation procedure and the subse-
quent multitude of additions. Moreover, the repetitive nature of the metric computa-
tions favors hardware implementation in order to improve performance. Furthermore, 
an optimized architecture can sufficiently eliminate the redundant memory accesses 
of the algorithm, imposed by the traversal of the comparison window area. 
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In the proposed hardware system that targets real-time InIm reconstruction, the dis-
tance metric is implemented using the Sum of Absolute Differences (SAD) metric. A 
detailed description of the SAD architecture can be found in [15, 16]. The SAD met-
ric involves summation of pixel intensity values. This way, its hardware implementa-
tion causes no resolution loss, since all its intermediate and final products are integer 
values. Immediate access to arbitrary EIs is achieved by using application-specific 
look-up tables and an optimized memory organization architecture. 

3.1   Implementation Considerations 

The implementation of a completely parallel SAD Unit for simultaneous pixel com-
parisons of the entire window area can offer the most significant speed increase. Such 
an implementation though poses the problem of high memory bandwidth demands, 
and multiple FPGAs should be used [17]. In the proposed implementation, a 
(2 1)W +  SAD Unit is designed as the core processing element in order to target a 

single FPGA device. This unit can perform pixel comparisons and additions using a 
row or a column of the comparison windows (blocks) in every clock cycle. The in-
termediate results are accumulated and the final SAD value for the 
(2 1) (2 1)W x W+ +  block comparison is available after 2 1W +  clock cycles. The 

outline of this SAD Unit is depicted in Fig. 4.  
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Fig. 4. The implemented SAD Unit outline 

The structure of the SAD Unit can be exploited in an array of M units, where M is 
equal to the number of block comparisons in the search area of the EIs. If the input 
pixel lines are set to be perpendicular to the direction of the search (e.g. for a horizon-
tal search area, set the block columns as the input), then each unit in the array can 
start its operation one clock cycle after the previous one, when the next line of pixels 
is read from the search area. In this manner, by propagating the pixels of the search 
area through the array, memory access is significantly minimized. 

The successive operation of the SAD Units in an M-unit array also removes the 
need for a parallel comparison unit, which would aggravate area coverage and opera-
tion speed of the system. The SAD values of such an array are available at the outputs 
of the SAD Units in successive clock cycles, and they can be compared in order to  
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determine the smallest value using a sequential comparator. The comparisons impose 
only one clock cycle delay on the process, since they begin when the first unit of the 
array outputs its SAD value and end one clock cycle after the last unit of the array 
outputs its SAD value. The total delay of this design is (2 1) 1W M+ + + . 

The design of the FPGA memory takes into account the need for immediate access 
to arbitrary blocks in an EI, which is useful for the grid refinement stage. The block 
positions are pre-determined and stored in a look-up table. For each pixel comparison, 
the appropriate block positions are fetched from the look-up table and are translated 
into address words. The memory modules are designed with the ability to uninterrupt-
edly feed the SAD array with image data at the needed rate, regardless of the block 
position of the central EI. On this account, 2 1W + memory modules are used for 
every EI. Each of these memory modules stores pixel lines of the EI, in intervals of 
2 1W +  lines. For example, in the first memory module, lines 

0, 2 1, 2 (2 1), 3 (2 1) ...W W W+ ⋅ + ⋅ +  etc are stored. This way, 2 1W +  pixels 

of each line can be accessed in every clock cycle regardless of the pixel’s coordinates 
(and hence block position) in the EI. 

Moreover, the horizontally adjacent EIs (i.e. left and right neighbors) must be 
stored row-wise and the vertically adjacent EIs (i.e. up and down neighbors) column-
wise. This arrangement favors fast calculations of the sums regardless of the direction 
of the search area. Due to the implemented search method, the central EI must be 
stored in two different ways, both row- and column-wise. The total memory size is 
dependent on the EI size and the block size W . 

3.2   Practical Dynamic Acquisition System  

A practical dynamic InIm acquisition system was considered as a case study. Using 
the typical InIm configuration, the lens arrays is positioned between the camera’s ob-
jective lens and the CCD. Assuming a contemporary CCD, a resolution of 16 
megapixels is possible at approximately 1 fps. For a square CCD, this resolution cor-
responds to 4096x4096 pixels. This system is considered practical as it can provide 
dynamic EI with sufficient resolution using contemporary hardware. Given the tight 
space inside a camera, only a lens array with a low focal length can be used. For such 
a lens array (with focal length 3.3mm) the best setup would correspond to 64x64 pix-
els per lens, resulting in 64x64 lenses (and corresponding EIs). For 64x64pixels per 
EI, the optimal window is 11x11 ( 5W = ). For this configuration, typical values for 

the remaining parameters are 3N =  and 2S = . 
The algorithm is divided into 2 steps, the initial grid computation and grid refine-

ment. For the first step, we only compute the 3D position of the central pixel of each 
EI. For the second step, we compute the 3D position of 3 additional pixels for each EI 
(for 2S = ). For the utilized configuration, there are 64x64 EIs, but we use only the 
inner 58x58 (so that each central EI has 3 neighbors per direction). Thus, the maxi-
mum size of the search area is 30M = (this is correlated with the EI resolution), 
which also defines the size of the SAD Unit array. An outline of the search areas for 
neighboring EIs is depicted in Fig. 5.  
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Fig. 5. Elemental Image (EI) size, block size and search area outline for the practical acquisi-
tion system. For depiction clarity, N=1. 

The proposed architecture which is depicted in Fig. 6 implements a SAD Array 
with 30 11x1 SAD Units, each one having the ability to perform calculations on a 
11x11 block of 8-bit pixel values in 11 clock cycles. Each unit’s output is connected 
to an accumulator where the final summation takes place. Each unit begins its calcula-
tions one clock cycle after the previous one, so that the pixels of the central EI can be 
correctly delayed by propagation, until the last unit. In this fashion, the 30 SAD Units 
produce 30 values that correspond to the same number of comparisons of one central 
EI block with one of the four neighboring EIs. The calculated values are produced in 
a sequential manner, which justifies the single output data bus of the SAD array. 

These values are stored as temporary results in a 30-cell memory, in order to be 
added to the values of the next three SAD calculations of the remaining neighbors. In 
every calculation cycle, the previously stored values are added to the new ones, and 
the result is stored. After the calculations for the last block, there is no need to store 
the outcome of the final additions. Instead, they are compared in order to determine 
the minimum value. It is this value that corresponds to the best match of the central EI 
block to its neighbors ones. Once the smallest value is determined, the positions of the 
pixels in the neighboring EIs are defined. These pixels are the best matches to the 
pixel of the central EI. 

According to the memory scheme explained in subsection 3.1, eleven memory 
modules are designed for every EI. Each of these memory modules stores pixel lines 
(rows or columns, depending on the position) of the EI, in intervals of eleven lines. 
For example, in the first memory module, lines 0, 11, 22, 33 etc are stored. 

Moreover, the horizontal neighbors are stored row-wise and the vertical neighbors 
column-wise. The central EI is stored in two different ways, both row- and column-
wise. A schematic representation of the position of pixel rows or columns in each 
memory module is illustrated in Fig. 7. 
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Fig. 6. Architecture of the hardware system 
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Fig. 7. EI line positioning in each FPGA memory module 

In total, 66 memory modules of this type are needed, namely 22 for the two central 
EI instances and 11 for each of the four neighboring EI. The number of memory cells 
for each memory module is proportional to the EI size – for a 64x64 EI, 378 memory 
cells are needed. For the sake of clarity, the 11 memory modules for each EI are 
grouped in a single memory block in Fig. 6. 

4   Results 

The initial grid computation requires each EI and its neighbors up to N to be loaded to 
the input FPGA memory modules. The calculation for the 3D position of the central 
pixel of each EI takes place in three stages, one for each quadruplet of neighbors, and 
costs 175 clock cycles (cc) for N=1. The memory transfer cost is 256 cc for each 4 
EIs. For N=1, the central EI and 4 neighbors are transferred, so the cost for this trans-
fer is 512cc. For successive neighborhood radii, only the 4 neighbors are swapped, 
and the cost is 256 cc for each of these stages. Respectively, for the grid refinement, 
three more pixels must be determined for each EI. For the utilized configuration, there 
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are 64x64 EIs, but we use only the inner (64 2 ) (64 2 )N N− × −  (so that each cen-

tral EI has N  neighbors per direction). The cost for processing the whole 4096x4096 

image is dependent on the neighborhood radius N . 
Implementation of the proposed hardware system on a Celoxica RC1000 develop-

ment board fitted with a Xilinx Virtex-E 2000 device [18] determine that the maxi-
mum operating frequency is 43Mhz. The hardware performance is compared to the 
software process of vertex grid computation and grid refinement, when executed on a 
PC with a Pentium 2.4GHz CPU and 512MB of RAM. The specification of the PC 
and FPGA are of the same technological era. 

Performance comparison for a 4096x4096 InIm
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Fig. 8. Hardware/software performance comparison for an 4096x4096 InIm for varying N 

As revealed in Fig. 8, the performance of the hardware is approximately one order 
of magnitude better than the software algorithm. For example, for N=3, more than 3  
4096x4096 images can be processed by the FPGA per second, while in software no 
more than 27% of an image of this size is processed. Moreover, the hardware system 
operates at a rate greater than 1 fps even for large values of N . This rate surpasses 
the estimated acquisition rate of a dynamic InIm acquisition system, and therefore 
poses no bottleneck to a robust integrated system. 

5   Conclusions 

This paper presents an efficient hardware architecture for an integrated 3D reconstruc-
tion system based on InIm. The architecture features extensive pipelining and minimizes 
data reutilization by incorporating a specific data memory arrangement. Moreover its 
reduced data throughput leads to the successful implementation of the digital system in 
a single FPGA device. The results reveal that the implemented hardware system can 
successfully process InIm data of significant resolution at a rate of 6 fps, outperforming 
the processing rate of a typical InIm acquisition system. The acceleration compared to 
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the corresponding software implementation is more than one order of magnitude. The 
performance increase offered by the architecture  contributes significantly towards real-
time 3D video reconstruction. 

Future work involves the development of other time-consuming tasks of the 3D re-
construction process in hardware. The migration of the hardware system to a larger 
FPGA device will be considered, which will allow us to implement more processing 
elements and explore architecture enhancements that can offer even greater perform-
ance gain. 
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