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Abstract—We present an approach to the detection of tumors
in colonoscopic video. It is based on a new color feature extraction
scheme to represent the different regions in the frame sequence.
This scheme is built on the wavelet decomposition. The features
named as color wavelet covariance (CWC) are based on the covari-
ances of second-order textural measures and an optimum subset
of them is proposed after the application of a selection algorithm.
The proposed approach is supported by a linear discriminant anal-
ysis (LDA) procedure for the characterization of the image regions
along the video frames. The whole methodology has been applied
on real data sets of color colonoscopic videos. The performance in
the detection of abnormal colonic regions corresponding to adeno-
matous polyps has been estimated high, reaching 97% specificity
and 90% sensitivity.

Index Terms—Color texture, computer aided colonoscopy,
image analysis, medical imaging, polyp detection, wavelet fea-
tures.

I. INTRODUCTION

COLORECTAL cancer is the second leading cause of
cancer-related deaths in the United States [1], [2]. More

than 130 000 people are diagnosed with colon cancer each year
and about 55 000 people die from the disease annually. Colon
cancer can be prevented and cured through early detection,
so early diagnosis is of critical importance role for patient’s
survival. Screening is the current and most suitable prevention
method for an early detection and removal of colorectal polyps.
If such polyps remain in the colon, they can possibly grow
into malignant lesions. Colonoscopy is an accurate screening
technique for detecting polyps of all sizes, which also allows
for biopsy of lesions and resection of most polyps [3]. The
colonic mucosal surface is granular and demarcated into small
areas called nonspecific grooves. Changes in the cellular pat-
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tern (pit pattern) of the colon lining might be the very earliest
sign of polyps. Pit patterns can be used for a qualitative and
quantitative diagnosis of lesions. These textural alterations of
the colonic mucosal surface can also be used for the automatic
detection of colorectal lesions [4]–[6].

The scope of this work is the location of regions suspicious
for malignancy in video colonoscopy, regions that require more
thorough examination by medical experts for a second evalua-
tion. Tumor detection schemes using textural information have
been proposed for various tissues such as liver [7], prostate [8],
breast [9], brain [10], cervix [11], and cardiac [12]. Automated
classification and identification of colonic carcinoma using mi-
croscopic images and involving texture analysis compared with
geometric features based on statistical analysis has been pro-
posed by Esgiaret al. [13], [14]. The use of endoscopic video
frames for the identification of adenomatous polyps involving a
novel wavelet based color texture analysis scheme is a topic that
it has not been reported in the literature to the best of our knowl-
edge. In the proposed approach the video frame sequences are
transformed in scale and frequency by using the wavelet trans-
form since it has been observed that the textural information is
localized in the middle frequencies and lower scales of the orig-
inal signal [15]. Statistical color wavelet features have been en-
countered in this texture analysis scheme, for the discrimination
of normal and abnormal (i.e., tumor) regions. The construction
of the texture feature space follows the multiresolution approach
on the color domain. The resulted space is found to be discrim-
inant. A linear classification scheme was used to label image
regions with a low error rate. The novel proposed color wavelet
textural features are favorably compared to the rival approach
of wavelet correlation signatures [16].

The proposed detection scheme involves a) a novel feature
extraction technique based on a discrete wavelet decomposition
applied on different color spaces and b) statistical analysis of
the wavelet coefficients associated with the color bands. The
wavelet features are based on second-order textural information
estimated on the domain of the discrete wavelet decomposition
of each color band of a video frame. In this paper, the textural
characteristics estimated on the color discrete wavelet frame
transform and in the sequel processed by using correlational
analysis, give valuable information about the set of features that
produce the most discriminant subspaces for normal/abnormal
tissue regions. The proposed scheme was tested on real data sets
of color colonoscopic videos provided by the Gastroenterology
Section, Department of Pathophysiology, Medical School, Uni-
versity of Athens, Greece, and partially by the Section for Min-
imal Invasive Surgery, University of Tübingen, Germany. The
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video sequences used for evaluation were selected to contain
relatively small polyps, as physicians suggested. The sequences
were evaluated by endoscopy experts and compared with the
corresponding histological results, proving the accuracy of the
proposed methodology (this evaluation procedure with respect
to the histological data led to specificity ranging from 86% to
98% and sensitivity ranging from 79% to 96.5%).

The rest of the paper is organized as follows. Medical infor-
mation on colorectal polyps is provided in Section II. In Sec-
tion III, the fundamental properties of color and texture analysis
involved along with the proposed methodology are presented.
Section IV describes the evaluation approach and the results ob-
tained from the extensive experimentation. Finally, discussion
of the results as well as the conclusions of this study is presented
in Sections V and VI, respectively.

II. M EDICAL BACKGROUND

A polyp is defined as any visible tissue mass protruding
from the mucosal surface. Polyps are characterized according
to their color, appearance of their mucosal surface, presence
of ulcers, their bleeding tendency, and above all the presence
of pedunculus (pedunculated or nonpedunculated). Their size
varies from barely visible transparent protrusions to penducu-
lated lesions with a diameter of 3 to 5 cm. Although there are
many histopathologic types of polyps, the majority of them
are adenomatous. Approximately 75% of the colonic polyps
are adenomatous [17]. Adenomatous polyps are neoplasms
that result from disordered cell proliferation, differentiation,
and apoptosis [18]. The evolution of an adenomatous polyp
to cancer is the result of a multistep process that involves
many molecular and genetic mechanisms including activation
of oncogenes and suppression of tumor genes [19]. The real
prevalence of colonic polyps in the general population is not
known. Polyps may be found in the colon of 30%–50% of
people older than 55 years old, while colonoscopy surveys
showed a lower incidence, at the level of 30% [20]. Today, the
international consensus for the treatment of polyposis dictates
removal of all polyps, regardless of the location, size or other
characteristics, in order to prevent a possible development
to cancer. Colonoscopy remains the best available procedure
to detect polyps, with many advantages such as the ability
to have simultaneous tissue biopsy or polypectomy [3]. A
competitive new generation technique used for the detection
of colorectal polyps is virtual colonoscopy based on computer
tomography (CT) or magnetic resonance (MR) data. This
technique utilizes specialized imaging software that allows for
a three-dimensional visualization of the colon and the rectum
by combining multiple volumetric tomographic data [21]–[24].
It has the advantage that it does not discomfort the patients
as the standard colonoscopy, but it is not so accurate for the
detection of small lesions and it can not easily discriminate
polyps among retained stool or thickened folds because they
can mimic their shape and density and does not allow for tissue
biopsy or polypectomy [23], [24].

Important research on the automated detection of polyps on
virtual colonoscopy data has been reported in the recent litera-
ture. Most of this research was concentrated on the use of geo-

metric features for the discrimination of polyps from normal
colonic regions [24]–[27].

III. COLOR TEXTURE ANALYSIS

Color texture analysis is based on the combined information
from both color and texture fields of the image. Texture
processing was mainly focused on the use of gray-level image
information for a number of years [28], [29]. Pioneering
studies exploiting the combination of both color and texture
information, have been presented by Caelli and Raye [31],
Sharkanskiet al. [32], and Kondepudyet al. [33]. More recent
studies involving color texture analysis, include the calculation
of chromaticity moments [34], a perceptual approach for the
segmentation of color textures [35], Gabor filtering of complex
hue/saturation images [36], moving average modeling [37] and
color and texture fusion by combining color and multireso-
lution simultaneous autoregressive models [38]. Drimbarean
and Whelan [39] performed experiments using grayscale and
color features based on discrete cosine transform, Gabor and
cooccurrence matrices in different color spaces. The results
of this study led to the conclusion that the introduction of
color information, especially by calculating grayscale texture
features on the different color channels, significantly improves
color texture classification. Other approaches that have taken
into account the correlation of texture measures between
the different color channels, have shown that color texture
information can also be found in the way color channels are
related to each other. Under this framework Paschos [40]
proposed a set of discriminative and robust chromatic correla-
tion features using directional histograms, Van de Wouweret
al. [41] achieved high classification results using correlation
signatures calculated on the wavelet coefficients of the different
color channels of the images and Vandenbrouckeet al. [42]
exploited the correlation of first-order statistical features
among the different color channels for unsupervised soccer
image segmentation. In this work, we propose the covariance
of second-order statistical features in the wavelet domain for
the characterization of colonic polyps.

A. Color Spaces

Color is a property of the brain and not of the outside world
[43]. The nervous system, instead of analyzing colors, uses the
information of the external environment, namely the reflectance
of different wavelengths of light and transforms this information
into colors [44]. The use of the red-green-blue (RGB) space is
very common in image and video-processing research, dictated
primarily by the availability of such data as they are produced
by most color image-capturing devices. Drawbacks in the use of
RGB in computer vision applications are: the high correlation
among RGB channels for natural images [45], the representation
of RGB is not very close to the way humans perceive colors [46]
and it is not perceptually uniform [47].

In RGB space, each color is represented as a triple (R, G, B),
where R, G, and B represent red, green, and blue signals corre-
sponding to different wavelengths of the visible spectrum. As-
suming dichromatic reflection and white illumination, a color
transform that is independent of the viewpoint, surface orienta-
tion, illumination direction, and illumination intensity, has been
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proposed by Gevers [48]. A first-order invariant instantiation of
this transform, which is also more robust to noise comparing to
other invariant instantiations, has proven to be the normalized
RGB space (Appendix I-A). Normalized has been used for
automatic lip reading [49] and other face detection applications
[52].

A variety of other color spaces are used in different appli-
cations. The international committee on colorimetry, Commis-
sion Internationale de l’Eclairage (CIE), established the XYZ
color space as standard, based on the response curves of the
eyes and statistics that were performed on human observers
[47]. Normalizing the XYZ (Appendix I-B), the occurring
space, has been proven to be noise robust for texture recognition
using chromatic correlation features [40]. All of the above color
spaces have the advantage of isolating the luminance compo-
nent from the two-chrominance components [53].

The Karhunen–Loeve (K–L) transformation applied on im-
ages, has been proved to be best for color texture characteriza-
tion as reported by Van De Wouveret al. [41], and for the anal-
ysis of skin lesions [54]. K-L transform is formed by the eigen-
vector of the correlation matrix of an image, which remains ap-
proximately the same for a large set of natural color images [41],
[55]. It transforms an image to an orthogonal basis in which the
axes are statistically uncorrelated. In that sense, the information
presented in RGB space is decorrelated. Practically, it that can
be produced as a linear transformation of the RGB coordinates
(Appendix I-C).

Perceptual uniformity has been considered to form color
spaces that describe color similarity to the way humans perceive
color. Generally, a system is perceptually uniform if a small
perturbation to a component value is approximately equally
perceptible across the range of that value [47]. CIE-Lab is a
perceptually uniform color space that has proved to perform
better than for color texture analysis, but not in the
presence of noise [53]. It has been applied for several color
texture classification tasks such as: the retrieval of color
patterns using textural features [56], analysis of skin lesions
[54] and segmentation of human flesh [57], with a performance
that has been considered high. The coordinates of CIE-Lab as
a function of are given in Appendix I-D.

Another, approximately perceptually uniform color space is
defined in terms of hue, saturation and value (HSV), a phenom-
enal color space[58]. Phenomenal color spaces attempt to clas-
sify colors in relation to how they are perceived and interpreted
by the human brain and they are more “intuitive” in manipu-
lating color. HSV has led to higher classification performance
than CIE-Lab and RGB in both noisy and noise-free conditions
for color texture analysis [53]. On the other hand, Palmet al.
[36] showed that HSV performs equivalently to for color
texture classification using different features. Another common
alternative similar to HSV is hue, lightness, saturation (HLS)
space [46], [59]. HLS has been applied to represent the color of
the tongue for medical diagnosis [60].

B. Second-Order Statistics on the Wavelet Domain as
Grayscale Textural Features

As it has already been noted, the size of the lesions to be de-
tected using the proposed framework varies. The image resolu-
tion cannot be defined so as to cover the majority of the lesions
sizes. It will be useful to face the problem in a way that detects

the information in different resolutions by exploiting the inter-
mediate scales for the final decision. Multiresolution analysis of
an image can be achieved by using the discrete wavelet trans-
form.

Texture is the discriminating information that differentiates
normal from abnormal lesions [4]–[6]. Since texture is essen-
tially a multiscale phenomenon, multiresolution approaches
such as wavelets perform well for texture analysis. A character-
ization of texture is usually based on the local information that
appears within a neighborhood distribution of the gray levels.
The proposed methodology focuses on a single scale in order
to extract the relevant information. Recent studies have come
to the conclusion that a spatial/frequency representation, which
preserves both global and local information, is adequate for
the characterization of texture. The wavelet transform offers a
tool for spatial/frequency representation by decomposing the
original images to the corresponding scales. When decompo-
sition level decreases in the spatial domain, it increases in the
frequency domain providing zooming capabilities and local
characterization of the image. Since the low-frequency image
produced by the transformation does not contain major texture
information and the most significant information of a texture
often appears in the middle-frequency channels, we choose to
use discrete wavelet transform (DWT) for the decomposition
of the frequency domain of the image [61], [16], [63]. Wavelet
frame representation of the image offers a representation of the
frequency domain. Such representations have been proposed
because they have greater robustness in the presence of noise,
can be sparser, and can have greater flexibility in representing
the structure of the input data. The dimensionality and the
representation of input is not a unique combination of basis
vectors. The two-dimensional (2-D) DWT transformation is
implemented by applying a separable filterbank to the image
[64].

This filtering procedure convolves the image with a lowpass
and bandpass filter , which produces a low-resolution

image at scale and the detail images at scale
. The repetition of this filtering procedure

results in a decomposition of the image at several scales. The
final set consisting of the low resolution image and all the
detailed images along the scale is the multiscale
representation of the image at a specific depth defined by
the total number of scales. This filtering procedure can be
described by the following recursive equations [16]:

(1)

where the arrow denotes the subsampling procedure, the
asterisk is the convolution operator, and and are the
two filters for all .

The cooccurrence matrices approach has been considered
in this work for the description of a statistical model of the
texture encoded within the decomposed subimages. It captures
second-order gray-level information, which is mostly related
to the human perception and discrimination of textures [65].
For a coarse texture these matrices tend to have higher values
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near the main diagonal whereas for a fine texture the values
are scattered. The cooccurrence matrices encode the gray level
spatial dependence based on the estimation of the second-order
joint-conditional probability density function ,
which is computed by counting all pairs of pixels at distance
having gray levels and at a given direction . The angular
displacement is usually included in the range of the values

. Among the 14 statistical measures, orig-
inally proposed by Haralick [28], [66], that derive from each
cooccurrence matrix we consider only four. Namely, angular
second moment, correlation, inverse difference moment and
entropy

(2)

(3)

(4)

(5)

where is the th entry of the normalized cooccurrence
matrix, is the number of gray levels of the image, and

and are the means and standard deviations of the
marginal probability obtained by summing up the rows
of matrix . These measures provide high discrimination
accuracy which can be only marginally increased by adding
more measures in the feature vector [67].

In addition to the features (2)–(6), Esgiaret al.proposed the
use of contrast [14] or the use of both contrast (also known
as difference moment) and dissimilarity [13], for microscopic
image analysis of colonic tissue

(6)

(7)

In Section IV, we experimentally show that the use of these fea-
tures do not provide additional textural information that is sig-
nificant for the analysis of the macroscopic video images used
in our application.

C. Second-Order Color Wavelet Covariance (CWC) Features

The proposed approach is based on the extraction of color
textural features. These features are estimated over the second-
order statistical representation of the wavelet transform of the
color image. Since each feature represents a different property
of the examined region, we consider as valuable information
the covariance among the different statistical values between the
color channels of the examined region.

According to the definition of texture, it is mainly related to
the distribution of the intensities [28], [61]. It is then expected
that similar textures will have close statistical distributions and

consequently they should appear to have similar feature values
of the features. This similarity property of the selected features
can be described by measuring the variance in pairs of them.
By using the covariance between two features, we can have a
measure of their “tendency” to vary together. The texture co-
variance has been proposed in the literature [29] as a measure
that is used directly on the image intensities or among the color
intensities of the examined region. Our method uses the covari-
ance in order to rank the changes in the statistical distribution
of the intensities between the examined regions in the different
color channels. By noticing the way the features of examined
texture regions covary it will be an easy task to decide if they
belong to the same texture class since in similar textures we ex-
pect measures to covary.

By considering the original image, we obtain its color trans-
formation. Color transformations result in three decomposed
color channels

(8)

A three-level discrete wavelet frame transformation is conse-
quently applied on each color channel . This transformation
results in a new representation of the original image, according
to the corresponding equations of wavelet decomposition (1).
This decomposition procedure produces a low-resolution image

at scale and the detail images and .
In our case, we have

(9)

where is the decomposition level.
Since the textural information is better presented in the

middle wavelet detailed channels, we consider the second level
detailed coefficients. Thus, the image representation that is
finally considered is the one consisting of the detail images
produced from (9) for the values . This results in a
set of nine different subimages

(10)

For the extraction of the second-order statistical textural infor-
mation, we use cooccurrence matrices calculated over the above
nine different subimages. These matrices reflect the spatial in-
terrelations between the intensities within the wavelet decompo-
sition level. The cooccurrence matrices are estimated in four dif-
ferent directions of intensities’ relation, 0, 45 , 90 , and 135,
resulting to 36 matrices

(11)

Finally the four statistical measures, namely angular second
moment, correlation, inverse difference moment, and entropy
are estimated for each matrix resulting in 144 wavelet features

(12)

where is the respective statistical measure.
In the proposed scheme, we consider as a textural measure

the covariance of the same statistical measure be-
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tween color channels at wavelet bandwhich is defined ac-
cording to the following equations:

(13)

where represents the different angles for the cooccurrence
matrices .

Since the covariance (13) relates pairs of features, the
proposed set of features is a set of 72 components. The 36 of
them are the variances as they relate features of the same color
channel and the rest 36 represent features of different color
channels estimated by the corresponding covariance values.
We call this set of the 72 components color wavelet covariance
features, the CWC feature vector.

The extraction of the CWC vector can be described in the
following steps.

a) The original color image (video frame) is decomposed
into three separate color bands.

b) Each band is scanned across with fixed size sliding square
window.

c) Each window is then transformed according to a three-
level 2-D discrete wavelet transform by using decompo-
sition functions that follow the properties of the wavelet
frames. The detail coefficients of the middle decomposi-
tion level are considered for further processing. This step
results to a set of nine subimages.

d) The cooccurrence matrices, for each image of the previous
step, are estimated into four directions, producing 36 ma-
trices that are a second-order statistical representation of
the original image.

e) Four statistical measures (angular second moment, en-
tropy, inverse difference moment, and correlation) are cal-
culated for each matrix, resulting in a set of 144 compo-
nents. Each of the measure carries different information
about the texture.

f) Covariance values of pairs of the estimated features
(e) constitute the 72-dimensional CWC feature vector,
to be used for the classification of the image regions
(windows).

IV. EXPERIMENTS AND RESULTS

The experimental study of this paper outlines the series of the
conducted experiments and the obtained results in order to eval-
uate the proposed novel feature-extraction methodology, along
with its associated parameters in the problem of tumor detection
using color colonoscopic video sequences.

A. Data Acquisition and Processing

The colonoscopic data used in the following experiments was
acquired from different patients with an Olympus CF-100 HL

Fig. 1. Three-level wavelet decomposition scheme of the original image for
color channeli.

TABLE I
HISTOLOGICAL CHARACTERIZATION OF THE AVAILABLE DATASET

endoscope. The major interest for the tumor detection problem,
as the experts have suggested it, has led us to the use of video
frames mainly of small size adenomatous polyps. Since they are
not easily detectable, they are more common and more likely to
become malignant compared to the hyperplastic polyps [17].

Sixty-six patients having relatively small polyps were exam-
ined within a period of eight months. The results of the histo-
logical evaluation of these polyps are presented in Table I [62].
The mean diameter of the adenomatous polyps was estimated to
be mm. A total number of 60 video sequences cor-
responding to the different adenomas with a duration ranging
between 5 to 10 s, were used for the evaluation of the proposed
methodology. The video frame sequences were recorded during
the clinical examination of the patients and then digitized by
using a commercial RGB-color frame grabber at a rate of 25
frames per second, a resolution of 1 K1 K pixels and 24 bits
per pixel color depth (eight bits for each color channel). Each
one of these video frame sequences, selected by the physician
as indicative cases, illustrates small size lesions of interest at
different position, scale and lighting conditions (Fig. 2). In the
experiments outlined in the following section training and test
set of frames have been considered. The training set comprised
of 180 frame images (up to three frames per video sequence)
shown by the experts group. The selection of the frame images
to be incorporated in the training set has been very carefully per-
formed by the experts group in order to minimize the bias intro-
duced in the training procedure. Each one of the five members of
the expert group has independently selected 200 image frames
as representative of the image frames encountered in the normal
subject of the video-sequences as well as 400 image frames as
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Fig. 2. Representative sample of the dataset.

representative of the different types of polyps encountered in
the total of 66 patient corresponding video sequences. In the
sequel, considering the different sets of frame images obtained
by each expert, an automated statistical analysis has been per-
formed in order to select a final set of training frame images
achieving a very high interrater agreement (Spearman’s corre-
lation coefficient, ). Such an inter-rater
agreement could be safely considered to lead to the construc-
tion of a training set of image frames with reduced bias intro-
duced in the evaluation procedure [71]–[73]. The test set used
for evaluation of the recognition performance was comprised of
1200 (up to 20 frames per video sequence) randomly selected
frames from the video sequences. In order to improve the reli-
ability of our experimentation we have chosen nonoverlapping
training and test sets.

A 1.4 GHz Pentium IV processor-based workstation with 512
Mb RAM was used for the video processing and the execution
of the previously described algorithms. A special purpose soft-
ware suite implementing these algorithms was developed on Mi-
crosoft Visual C++, and many modules incorporate calls to Intel
Performance Library functions [71], which provides optimum
performance for Intel Pentium processors.

B. Experiments

The experimental procedure generated a large volume of re-
sults that can be classified into the following five categories:

1) Benefits of the second-order statistics on the wavelet do-
main of grayscale endoscopic video frames.

2) Comparison of the second-order CWC features with color
correlation signatures.

3) Determination of the most suitable color space trans-
formation, which enhances the textural properties of
the colonic mucosal surface and increases detection
accuracy.

4) Selection of the least correlated second-order CWC fea-
tures for the tumor detection problem.

5) Effect of the size of the training set to the generalization
performance of the proposed methodology.

The whole experimentation procedure was based on two
major criteria. The first criterion is related to the classification
task and the second is related to the evaluation of system’s
performance.

The classification task is based on stepwise linear discrimi-
nant analysis (LDA). It is a simple model involving a minimum
set of parameters and has been used in medical decision support
tasks providing increased sensitivity [75], [13]. The utilization
of a more complex classifier would increase the number of pa-
rameters associated with the evaluation of the proposed feature
set. The details of the application of LDA include the use of
Fisher’s function coefficients and computation of the prior prob-
abilities from group sizes, and statistic for inser-
tion/remove variable has been set at 3.87. As in many medical
applications, the data sets consisting of normal and abnormal
regions are highly unbalanced [78]. In our experimentation the
proportion of abnormal to normal patterns for each of the avail-
able frames is about 10% average. Instead of measuring the ac-
curacy, i.e., the rate of successfully recognized patterns, more
reliable measures for the evaluation of the classification perfor-
mance can be achieved by using the sensitivity (true positive
rate) and the specificity (100 minus false positive rate) mea-
sures [76], [77]. These two measures can be calculated by the
following formulas:

% (14)

% (15)

where is the number of the true negative patterns,is the
number of the false positive patterns,is the number of the false
negative patterns, andis the number of the true positive pat-
terns. The classification performance is high when both sensi-
tivity and specificity are high, in a way that their tradeoff favors
true positive or false positive rate depending on the application.
In the following paragraphs, we summarize the results on the
above five categories.

1) Second-Order Statistics on the Wavelet Domain of
Grayscale Endoscopic Video Frames:Primarily, the color
video frames were transformed to eight-bit intensity maps
and the optimal window size for the detection of polyps was
investigated. Each frame is raster scanned by a sliding window,
with a step of eight pixels in order to ensure detailed scanning
since the regions that possibly contain lesions are expected to
be small. A three-level wavelet frame transform was applied on
each window. The size of the cooccurrence matrix was set at
64 64, since the classification performance does not improve
significantly for larger sizes. According to the second-order
statistics on the wavelet domain methodology and (2)–(7), the
total number of the gray level features used is 72 (six cooccur-
rence measures3 wavelet bands 4 directions). This feature
set was analyzed by using Pearson correlational analysis [79],
which can be used as a classifier-independent feature selection
method, by discarding the features with absolute correlation
exceeding a given threshold [80]. The analysis showed that
contrast (6) and dissimilarity were highly correlated to the
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Fig. 3. MCE with respect to the window size.

inverse difference moment (4) exceeding 90% in all wavelet
bands. Similarly, high correlation exceeding 85% was also
observed between contrast and entropy. The features (2)–(5)
were selected as the least correlated in all wavelet bands,
having a correlation less than 71% on average. The resulted
feature set consists of a total of 48 features (four cooccurrence
measures 3 wavelet bands 4 directions).

Different window sizes, including 32 32, 64 64, 96 96,
and 128 128, were tested to determine which one provides the
lowest mean classification error rate (MCE), estimated on the
whole population of the available video frames. The resulted
MCE for the various window sizes, is illustrated in Fig. 3. MCEs
are depicted on the vertical and the window sizes on the hori-
zontal axis respectively. The error bars correspond to the un-
certainty estimated in terms of standard deviation. The lowest
average MCE and uncertainty % correspond to a
window size of 128 128, which is the one chosen for the ex-
perimentation. The smaller the window size set, the higher the
MCE and the uncertainty achieved. This indicates that a large
population of pixels is required to characterize tumor regions
using second-order statistical features on the wavelet domain.
Such result can be justified if we consider the tumor dimensions
within the given images, which in most cases reach or exceed
128 128 pixels.

The proposed approach was also tested by omitting the
wavelet transform. The second-order statistical features (2)–(5)
were calculated directly from the intensity values of the corre-
sponding windows, and the average classification performance
was estimated % and % in terms of specificity
and sensitivity, respectively. As it is illustrated in Fig. 4, the
introduction of wavelets increases significantly both specificity
(white column) and sensitivity (gray column) at %
and %, respectively.

2) Second-Order CWC Features Versus Color Correlation
Signatures: We compare the proposed second-order CWC fea-
tures with the corresponding correlation signatures proposed by
Van de Wouwer [16], on the color space. The latter fea-
ture extraction scheme uses the correlation of the wavelet coef-
ficients of the different color bands, while our method involves
covariance of textural features on the color wavelet domain. The
comparison was held by using the complete set of frames. Fig. 5,
illustrates the results of the comparison between the CWC fea-

Fig. 4. Comparative results for grayscale video frames.

Fig. 5. Comparative results between CWC and correlation signatures.

tures and the color correlation signatures. The specificity and
the sensitivity achieved using the CWC features reached

% and %, respectively, while the color correlation sig-
natures led to a % specificity and an % sensitivity.
The higher average classification performance of the CWC fea-
tures and the nonoverlapping uncertainty estimates, show that
CWC features are more appropriate for the characterization of
the tumor regions.

These results also show that the CWC features provide
improved results compared to the grayscale wavelet domain fea-
tures (Fig. 4) in terms of sensitivity. Thus, we expect that color
contribute to additional information for tumor detection.

3) Optimal Color Space for CWC Textural Features:The
color video frame sequences were transformed into different
color spaces in order to determine the transformation con-
tributing to the highest classification performance. These
results are illustrated in Fig. 6.

The specificity is high in all cases and the small perturbations
that are present fall within the uncertainty range. The variations
of sensitivity are significant, which means that in this case
sensitivity should be the selection criterion of the optimal color
space for the discrimination of colorectal polyps and healthy
tissue. In the following specificity and sensitivity estimates are
given in parentheses in the form of (specificity, sensitivity) for
each case. Normalized %
and % , resulted the lowest
overall sensitivity. HSV % % ,
HLS % % and the perceptually uniform
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Fig. 6. Comparative results for CWC features in various color spaces.

TABLE II
HIGHLY CORRELATEDCWC FEATURES. THE NOTATION IS ACCORDING TO(13)

CIE-Lab % % color spaces give higher
sensitivity than RGB % % . The highest
overall accuracy was achieved using the- space, reaching

% specificity and % sensitivity, which
means that its inherent characteristics enhance the covariance
of the textural properties of the colonic mucosal surface
between color bands. It should be noted at this point that the
achieved rates in specificity and sensitivity have been judged
as significantly compared with the literature.

4) Selection of Least Correlated Second-Order CWC
Features for Tumor Detection:Highly correlated features
often lead to the degradation of the overall classification
performance. It is also worth noting that our major aim is to
determine a set of features that produces separable subspaces
and do not select the optimal feature subset for the current
classifier. In order to investigate the correlation between the
features of the - CWC feature set, we have performed
Pearson correlational analysis. The application of correlational
analysis showed that the maximum correlation reached 96.5%
between the inverse difference moment CWC features listed in
Table II in all wavelet bands. Furthermore the angular second
moment, entropy and correlation CWC features which are also
listed in Table II, are correlated by 80–90% in wavelet bands

.
Since the left column of Table II consists only of feature vari-

ances, it can be concluded that higher correlation is observed
between variance and covariance features and not between the
different covariance features.

Fig. 7. Selection on CWC features using different correlation thresholds.

Fig. 8. Effect of the training set to the Generalization performance of the
proposed method.

For different correlation thresholds, namely 95%, 90%,
85%, and 80%, discarding the variance features that exceed the
threshold, we considered the different feature spaces of different
dimensions produced. The classification results illustrated in
Fig. 7 show that the sensitivity decreases as the correlation
threshold falls below 90%. Discarding all variance features
leads to approximately 3% reduction of sensitivity, which
means that the textural information contained in variances is
not negligible. The fact that the sensitivity at 90% correlation
threshold falls within the uncertainty range of the complete set
of features (100% correlation threshold), suggests that the first
four features (Table II) can be omitted, leading to the reduction
of the feature space dimension by nine features, without any
harmful implication in the resulted overall sensitivity.

5) Indicative Experiment on the Generalization Performance
of the Proposed Methodology:From each of the video frame
sequences, a set of frames was selected to train/test the linear
classifier and have an additional estimation of its generaliza-
tion performance. Three tests were performed using a different
number of frames for training and evaluation. The test results,
in terms of average specificity and sensitivity are presented in
Fig. 8. The last category of this diagram corresponds to the con-
trol case where a set of 20 frames was used for both training
and testing.

This diagram shows that two training frames provide slightly
better generalization performance ( % specificity and
% sensitivity), because the average specificity and sensitivity

are higher and the corresponding uncertainty ranges are shorter
than in training with one frame. Fig. 9, illustrates the recon-
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Fig. 9. Classification results for the five different colonoscopic video
sequences illustrated in Fig. 2. Average sensitivity and specificity over each
set is presented on the left of each row.

structed video frame sequences that correspond to the repre-
sentative sample of frames of Fig. 2, as they were produced
by the classifier’s output, by using the first two frames of each
set for training and the rest four for testing. White areas cor-
respond to abnormal and black areas to normal regions of the
mucosal surface.

V. DISCUSSION

The results in this paper showed that the use of CWC features
led to rather high specificity (14) and sensitivity (15) values,
( % and %, respectively) estimated on the
classified image regions. The validation of the results was ex-
perts based since highly experienced physicians (see acknowl-
edgment) reviewed the data in comparison with the histological
findings. This gold standard allows us to know if the detected
polyps are true polyps or not. Expert endoscopists have defined
manually on the original video sequences all the image regions
that correspond to polyps and normal tissue. This was done by
creating artificial black and white images in which the two pos-
sible classes are indicated. These images were used as refer-
ence images for the evaluation procedure. Comparing the result
of the classifier, which in our case is the discriminant analysis
methodology with the characterization of the examined region
in the reference image we validated the sensitivity and speci-
ficity values. It is worth noting at this point that the expert endo-
scopists did not utilize any preprocessed image data for review,
but they relied only on their reading experience and histolog-
ical findings. This evaluation procedure is commonly used to
similar computer-aided systems for the detection of colorectal
polyps [24].

The use of discrete wavelet frame transform contributed to a
significant increase of the classification performance by a factor
of 2.4% and 12.2% to the values of specificity and sensitivity.

The contribution of the color textural information involved
led to additional increase to the value of sensitivity without
sacrificing the specificity measure. This increase estimated in
a percentage of 7.8% compared to the results obtained using
grayscale images. Comparing different color spaces for the de-
tection of tumors we have shown that- color space resulted
to the best classification performance with an increase of 5.9%
in sensitivity compared to the RGB space.

The proposed methodology can be easily applied in clinical
routine. The hardware used for the experiments is a low-cost
personal computer with standard configuration. By using such
equipment the time performance reaches 1.6 min per selected
color video, as the ones used in this work. The algorithm is
fully parallelizable and thus it can be executed in parallel on
different image regions. The use of special hardware will dras-
tically speed-up the performance of the final system, by a factor
that depends on the number of processing elements (PEs) in-
volved. For example, a parallel architecture, which uses 100 of
PEs, will accelerate the system by a factor of 100 times and the
1.6 min is estimated to be less than 20 ms. Such implementa-
tion could be used during the colonoscopy to increase the physi-
cian’s capability to detect polyps faster, and thus reduce the du-
ration of the examination, which is rather uncomfortable for the
patients. Our group today is working to the direction of the de-
velopment of such a high-performance embedded system.

VI. CONCLUSION

We have presented a novel methodology for the extraction
of color image features that utilize the covariances of the
second-order statistical measures calculated over the wavelet
frame transformation of different color bands. It has been
applied on the detection of colorectal polyps in colonoscopic
video frame sequences, and it has been found that the feature
subspaces corresponding to normal and abnormal tissue are
highly discriminant. Classification was performed using step-
wise LDA and the results of the experimental study have led to
the following conclusions.

1) The use of second-order statistical features on the wavelet
domain results in higher classification accuracy in terms
of specificity and sensitivity.

2) The proposed CWC features perform significantly better
than correlation signatures for tumor detection.

3) - was found to be the most suitable color space for
the detection of colorectal polyps using CWC features,
resulting to a % and % specificity
and sensitivity, respectively.

4) The majority of the proposed CWC features show low
correlation, as this has been reached according to the cor-
relational analysis performed.

5) The reconstructed images using classifiers output verified
that the polyps were well located.

Future extension of this work will be to determine a more
robust classification scheme. The overall system could be en-
hanced under a classifier fusion scheme for the identification of
different types of colorectal polyps.

APPENDIX I
COLOR TRANSFORMATIONS[47], [59]

A. RGB to rgb (Normalized RGB)

where .
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B. RGB to K–L

where , and the coordinates of the - color space.

C. RGB to

D. RGB to

E. RGB to CIE-Lab

If then

else

If then

else

where correspond to the coordinates of a reference
white as defined by CIE standard illuminant and are ob-
tained by setting in to trans-
formation, and .

F. RGB to HSV

1) coordinates are normalized to [0, 1]

2) Value

3) Saturation

if then and

if then

4) Hue

if then

if then

if then

if then

if then

G. RGB to HLS

The normalized RGB values (Step 1) and hue (Step 4) are
calculated in the same way as in the RGB to HSV conversion
algorithm. Lightness and saturation are calculated as follows.

1) Lightness

4) Saturation

if then and

if then

if then
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