
ORIGINAL RESEARCH PAPER

Real-time compression architecture for efficient coding
in autostereoscopic displays

D. P. Chaikalis Æ N. P. Sgouros Æ D. E. Maroulis Æ
M. S. Sangriotis

Received: 12 November 2008 / Accepted: 14 May 2009 / Published online: 6 June 2009

� Springer-Verlag 2009

Abstract Integral imaging is a promising technique for

delivering high-quality three-dimensional content. How-

ever, the large amounts of data produced during acquisition

prohibits direct transmission of Integral Image data. A

number of highly efficient compression architectures are

proposed today that outperform standard two-dimensional

encoding schemes. However, critical issues regarding real-

time compression for quality demanding applications are a

primary concern to currently existing Integral Image

encoders. In this work we propose a real-time FPGA-based

encoder for Integral Image and integral video content

transmission. The proposed encoder is based on a highly

efficient compression algorithm used in Integral Imaging

applications. Real-time performance is achieved by real-

izing a pipelined architecture, taking into account the

specific structure of an Integral Image. The required

memory access operations are minimized by adopting a

systolic concept of data flow through the core processing

elements, further increasing the performance boost. The

encoder targets, real-time, broadcast-type high-resolution

Integral Image and video sequences and performs three

orders of magnitude faster than the analogous software

approach.

Keywords Integral imaging � Disparity estimation �
3D image compression � FPGA � Real-time processing

1 Introduction

Depth perception is a highly desired feature in specialized

and everyday applications. A large number of stereoscopic

goggles and autostereoscopic displays [25] exist in the

market nowadays in order to fulfill the needs for high-

resolution three-dimensional (3D) viewing. The variety of

stereoscopic and autostereoscopic methods is large, rang-

ing from classic two-view to current multi-view systems.

A simple technique for producing high-resolution full

parallax 3D images is Integral Imaging (InIm) which was

initially proposed by the Nobelist G. Lippman back in

1908. The advances in optics and digital sensors revived

the interest in the technique characterized as a near ideal

autostereoscopic 3D display solution [12]. The technique

allows continuous movement of the point of view in any

direction, providing 2D parallax to the viewer, without the

need for special glasses, while it allows multiple viewers to

experience the 3D effect.

In order to acquire an InIm, a two-dimensional (2D)

arrangement of lenses called a Lens Array (LA) is placed at

an appropriate distance in front of a Charge Coupled

Detector (CCD). In the acquisition stage numerous small

elemental images (EIs) are created on the CCD plane by

the lenses of the LA as shown in Fig. 1a. In the repro-

duction stage depicted in Fig. 1b, an appropriate LA is

placed in front of the display device (typically a high-res-

olution LCD monitor) and a 3D representation of the
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original object is formed in the space between the observer

and the display.

One of the main concerns in all 3D systems is the

amount of information required for the representation of

objects and scenes. The increased storage capacity and

bandwidth requirements for transmission of InIm and

Integral video content can be sustained for certain types of

applications but remain a prohibiting factor for broadcast

type applications or everyday person-to-person communi-

cations. For this reason, compression of the information in

3D images or 3D video sequences is essential [28] for both

storage and transmission purposes. Moreover, the time

efficiency of robust compression algorithms is a pre-

requisite for real-time applications.

Three-dimensional images as well as 3D video sequen-

ces involve multiple highly correlated views of objects in a

3D scene. The information redundancy in such represen-

tations leads to the need for highly efficient compression

schemes in order to reduce the high data volumes produced

during acquisition. The overall redundancy is usually

system dependent but all stereoscopic systems share inter-

pixel redundancy among neighboring pixels and high inter-

view redundancy amongst different views contained in the

representation. These two types of redundancies are

expressed in an InIm as inter-pixel redundancy within each

EI and a 2D intra-EI redundancy between neighboring EIs

in the 2D array of EIs. An InIm of an object along with the

original 3D object and a magnified InIm portion exhibiting

high 2D correlation among neighboring EIs is depicted in

Fig. 2.

The effectiveness of the video compression algorithms

over JPEG in InIm compression is extensively studied in

[15, 16, 27, 34]. A number of different scanning topolo-

gies for transforming the 2D EI structure to a sequence of

images is proposed that further enhance the quality of the

compressed InIm. However, this technique is not opti-

mized for real-time applications. The large number of EIs

in an InIm indicates that low complexity disparity esti-

mation schemes would favor real-time InIm and Integral

video applications over a complete motion estimation

scheme.

Sgouros et al. [26] have previously proposed an InIm

compression scheme that extends the MPEG-2 [20] func-

tionality and fully exploits the inherent redundancy in an

InIm. This is achieved by minimizing the computational

complexity of the disparity estimation scheme using a pri-

ori knowledge of the geometric characteristics of the lenses

of the LA. The low complexity of this disparity estimation

scheme allows the use of the exhaustive search method for

the disparity vectors thus improving the overall quality of

the reconstructed InIm. Additionally, the geometrical

constraints, imposed by the LA structure, further simplify

the disparity estimation scheme as the required vectors and

the search window size can be determined beforehand

reducing the overall computational load. The different

scanning topologies proposed in [27] along with MPEG-2

specific motion estimation features can be integrated with

minimal adaptations to the robust InIm orientated disparity

Fig. 1 A 3D capturing and display setup based on the principles of

Integral Photography, (a) the capturing and (b) the display setup

Fig. 2 An InIm of a physical 3D object along with the original object

and a magnified portion of a 5 9 5 EIs neighborhood
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estimation scheme developed in [26] in order to further

enhance the performance of the encoder.

The innovative InIm compression methodology pre-

sented in [26] achieves significant results in terms of

compression efficiency and image quality. A hardware

encoder for InIm can lead to a robust system capable of

dealing with real-time delivery of InIm image and video

content.

The high-quality demands of InIm encoding require

exhaustive Motion Estimation (ME) schemes that corre-

spond to the most computationally intensive task in a video

compression algorithm [4, 7]. Accelerating the ME stage of

the proposed InIm encoding algorithm will provide a sig-

nificant performance boost and target real-time InIm

applications. An FPGA device is selected over ASIC as the

acceleration platform because the former offers increased

flexibility, sufficient performance, faster design time, por-

tability and scalability [21, 22].

Recent FPGA implementations of MPEG-2 components

offer increased performance, but extended modifications

are needed in order to effectively address real-time InIm

compression issues. Up to now, hardware optimizations for

compression schemes based on motion estimation either

demonstrate impractical high bandwidth demands [32, 33]

or are insufficient for real-time 3D applications [10].

Currently proposed simplifications on MPEG-2 compo-

nents are constrained to specific 2D applications [11, 19,

24, 35].

Hardware implementations for 3D applications either

address classic stereoscopic video [14] or autostereoscopic

systems. In the latter case, they mainly focus on two-

camera systems [23], or they address the acceleration of

multi-camera rendering [29]. Although InIm coding and

representation algorithms are time-consuming because of

full parallax compared to other autostereoscopic tech-

niques, there are no hardware implementations that address

the acceleration of these processes.

In this paper we propose an integrated novel hardware

encoder for real-time compression of InIm data, based on

the algorithm presented by Sgouros et al. [26]. The archi-

tecture takes into account the bandwidth limitations

imposed by a single FPGA implementation, since for

completely parallel computations multiple FPGAs are

required [32]. Memory access is significantly reduced by

adopting a systolic concept of data flow through the core

processing elements and computationally intensive calcu-

lations are pipelined through several stages in order to

maximize speed results.

The proposed implementation is based on a hardware

module for the calculation of disparity vector matrices

presented in [3]. With respect to our previous work, the

disparity vector calculation architecture has undergone

extensive pipelining in the adder tree stages, which allows

achieving a higher operating frequency although more

modules are added on the device. These added modules

implement successive coding stages in order to exploit the

remaining device surface and further accelerate the InIm

coding procedure.

In [26], the problem of compressing single InIms is

addressed. In this paper, we show that the proposed hard-

ware system can sustain real-time performance by coding

consecutive InIm frames in the case that the above algo-

rithm is used in a manner similar to motion JPEG. Clocked

to a maximum frequency of 20 MHz, the system can pro-

cess high-resolution InIms up to 2,048 9 1,576 pixels

suitable for a number of different applications in a rate

greater than 30 images per second, which is a practical

real-time constraint for high-quality video systems.

The rest of the paper is divided into four sections. In

Sect. 2 we briefly describe the algorithm on which the

proposed architecture is based and we introduce some

essential terms of the corresponding method. In Sect. 3 we

analyze the proposed hardware design for the encoder, the

results of which are apposed in Sect. 4. The conclusions

and prospects of this study are summarized in the last

section.

2 Algorithm description

The InIm compression algorithm described in [26] treats

the EIs of the entire image as a spatial sequence of frames

with a known disparity pattern due to the LA structure

which resembles a 2D array of perfectly calibrated cam-

eras. In this fashion, the algorithm was developed having in

mind several modules used in standard video compression

schemes like MPEG-2, but differentiates itself in the sub-

stitution of all time-dependent quantities with equivalent

spatial ones. The main components of the MPEG-2 algo-

rithm as the discrete cosine transform (DCT) and quanti-

zation modules are used, while motion estimation is

replaced by a disparity estimation scheme proposed in [26].

As opposed to MPEG-2, the search area can be defined

beforehand based on the specific InIm characteristics, to a

smaller region instead of typical search windows. This fact,

along with the prior knowledge of the directionality of the

disparity vectors, reduces the computational cost of dis-

parity estimation.

In particular, the significantly reduced size of the search

area along with the unidirectionality of the motion vectors

imposed by the InIm structure allows for a unidirectional

exhaustive block search method to be applied, which retains

a relatively low computational cost while targeting high-

quality compressed images. The scanning topology used in

the technique has either horizontal or vertical parallax, so a

unidirectional search is sufficient for producing high-quality
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results. Moreover, the computational cost of searching

another direction if a different scanning topology is used

cannot balance the quality gain of the technique. The

computational cost for an exhaustive 2D search used in

MPEG-2 is O(p2), where p is the size of the unidirectional

search window. Using an 8 9 8 block size over a 32 9 32

search area, 1,024 block comparisons are needed for the

exhaustive MPEG search. In juxtaposition, the search area

for the proposed unidirectional technique spawns over one

direction and only 32 comparisons are required, reducing

the cost to O(p). Moreover, extended optimization is applied

to vector calculation precision and coding, in order to

maximize quality.

Figure 3a illustrates an InIm segmentation in EIs (I-type

and P-type) along with the search method followed. Using

a reconstructed I-type EI, an estimation of two neighboring

predicted EIs (P-type) of 32 9 32 pixel size is formed by

evaluating the proper disparity vectors for each 8 9 8 P

block in an I-type EI area of 8 9 32 pixel size. In an InIm,

the two P-type EIs are positioned one to the left and the

other to the right of the I-type EI, as shown in Fig. 3b.

These three EIs form what will hereafter be referred to as a

P-I-P EI triplet or P-I-P triplet. The P-I-P triplet maximizes

compression efficiency for high-disparity elemental image

sequences where correlation between neighboring regions

radically deteriorates [30]. The P-I-P scheme ensures best

results for the matching process as three contiguous EIs are

used. This results in high Peak Signal-to-Noise (PSNR)

ratios for the reconstructed image and reduces the vari-

ability of the PSNR ratio [27] noticed in the frame

sequences of MPEG-2. For an InIm it is crucial to maintain

low PSNR variability as the EIs that form an InIm are

simultaneously projected to the viewer and large deviations

in the PSNR values can lead in diminishing the perceived

3D effect. Finally the transmission sequence has changed

to I-P-P in order to maximize decoding efficiency.

In order to determine the ‘‘best match’’ of each P block

in the I-type EI, an efficient metric must be used. Several

candidates such as the sum of squared differences (SSD),

the matching pixel count (MPC), the normalized correla-

tion coefficient (NCC) and the sum of absolute differences

(SAD) exist [6, 8, 17]. Although metrics such as SSD and

MSE offer higher accuracy with respect to SAD, their

computational complexity is also much higher due to the

multitude of multiplications involved in the calculations.

Hardware implementations of the SAD metric [33] are

shown to offer a very good trade-off between computa-

tional complexity and accuracy in the determination of the

best match. The SAD calculation adds up the absolute

differences between corresponding elements in the prede-

termined macroblocks. For an m 9 n pixel block, the SAD

value is calculated by the formula:

SADðU;VÞ ¼
Xm

i¼0

Xn

j¼0

Uði; jÞ � Vði; jÞj j

where i, j are spatial coordinates in the pixel domain and U,

V represent m 9 n pixel blocks in adjacent image blocks.

The actual coordinates of these blocks in the corresponding

macroblocks are determined by the search algorithm used.

3 Hardware design

The hardware modules are implemented in FPGA using a

Celoxica RC1000-PP PCI board [2] based on a Xilinx

Virtex XCV-2000E chip, with an equivalent area of two

million logic gates. All the design and most of the simu-

lation files are written in VHDL using the Xilinx ISE 5

development software. The memory capacity of the board

is 8 MB, while the FPGA device implements 640 KB

(80 KB) of dedicated memory. The basic memory modules

have a size of 256 9 16 bits and they can be combined in

the design process to create bigger modules both in cell and

bit-width count. For simulation purposes, the ModelSim

simulator software was used. The encoder is implemented

using the following constraints for a typical InIm applica-

tion: EI size 32 9 32 pixels, estimation block size 8 9 8

pixels and DCT block size 8 9 8.

3.1 System overview

Figure 4 presents a block diagram of the encoder as it is

implemented on the development board.

The block RAM is organized into three separate banks:

one for the I-type EIs and two for the two P-type EIs that are

adjacent to each I-type EI. A total of 16 P-I-P EI triplets are

stored in FPGA memory, according to the FPGA’s maxi-

mum dedicated memory capacity. The disparity estimation

Fig. 3 (a) The arrangement of I-type and P-type EIs in an IP image

and the P block search area outline, (b) Arrangement of EIs in an

InIm
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unit (DEU) uses the image data from the Block RAM to

generate the disparity vectors. The difference generation

unit (DGU) calculates the differences between the blocks in

P-type EIs and the estimated blocks in the I-type EIs, using

the results from the DEU. The compression unit (CU)

generates the final compressed blocks that will be used at

the reconstruction stage. It is also responsible for com-

pressing and decompressing the I-type EIs used in the

disparity estimation procedure. The CU consists of 3 two-

dimensional Discrete Cosine Transform (2D-DCT) mod-

ules, one 2D Inverse-DCT (2D-IDCT) module and the

appropriate Quantization and Inverse Quantization modules

(see also Sect. 3.4). The Address Generation Unit (AGU)

and the control unit are necessary for synchronizing the data

transfers; the control unit exchanges control signals with

every other unit in the FPGA and also with the board

components and the host PC, while the AGU provides the

address words to the FPGA and board memory modules. On

the development board, the four board memory modules are

used to store the initial image data and the final results and

the FPGA system communicates with them with address

and data buses and other control signals.

In the next paragraphs, we present the functional details

of the aforementioned units that comprise the encoder.

3.2 Disparity estimation unit

The disparity vectors, which form the disparity vector

matrices of the P-type EIs, are calculated in the DEU. The

values that describe these vectors are deduced by deter-

mining the minimum SAD value for each 8 9 8 P-type

block, according to the method illustrated in Fig. 3. In this

section, we describe the hardware architecture of the DEU

and focus on the method by which the disparity vectors are

created.

Systolic arrays are shown to maximally exploit block

match operations’ regularity in an exhaustive search strat-

egy [13]. Parameters like search range and block size are

used to decide on the number of Processing Elements (PEs)

in the systolic structure [5]. In our implementation, the PEs

(SAD Units) are arranged in the form of a one-dimensional

systolic array [31] in order to accommodate for the unidi-

rectional exhaustive search and minimize memory access.

In the proposed encoder, the SAD Units are composed

of eight AD modules, an adder tree and an accumulator [3].

Each block comparison is completed in eight clock cycles,

one for each pixel column comparison. The ‘‘best match’’

search method proposed in [26], which is from left to right,

favors the pixel column comparison method.

The unidirectional search method is implemented by

partitioning the P-type and I-type EI into 8 9 32 pixel areas

and traversing these areas column-wise in a left-to-right

direction, as shown in Fig. 5. In what follows, an 8 9 32

partition of an EI will be referred to as a four-block area.

For all of the horizontally adjacent 8 9 8 P blocks in the P-

type EI, I blocks are used from the corresponding I-type EI

four-block area. It is clear that many I blocks are over-

lapped and it is efficient to try enhancing the parallelism by

minimizing the pixel reads in each four-block area. Fig. 6a

illustrates the P blocks in a P-type EI four-block area. In

Fig. 6b, the numbers of reads Ni for each pixel column are

drawn, in case the SAD value calculation was performed

by sequentially comparing an 8 9 8 P block with the I

blocks. These numbers (Ni) are easily derived by estimat-

ing of how many I blocks each pixel column is a part and

how many times each I block is read. For a four-block area,

it holds that
P31

i¼0 Ni ¼ 408:

Instead of reading each pixel column one time whenever

it is needed for a SAD calculation, the DEU reuses the pixel

values of the columns that are already fetched from the

FPGA memory modules to calculate successive SAD

values. Thus, three minimum SAD values and the corre-

sponding disparity vectors for a four-block area are com-

puted with a single simultaneous read of the four-block

I-type EI and the four-block P-type EI area. Thus, in this

case, the EIs are only transferred once from the FPGA

memory to the DE Unit for each four-block comparison and

the number N 0i of pixel column reads is N 0i ¼ 1; 0� i\32;

Fig. 4 An overview of the FPGA encoder
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summing up to
P31

i¼0 N 0i ¼ 32 pixel column reads for a four-

block area. This results to
P31

i¼0 Ni �
P31

i¼0 N 0i ¼ 376 less

memory read cycles for each four-block area, compared to

the simplest approach of comparing the I blocks sequen-

tially to each P block, which translates to 92% less memory

accesses needed for performing the SAD calculations.

In total, 51 SAD values have to be computed for the 3 P

blocks of the P-type four-block area, due to the unidirec-

tional exhaustive search method used [9]. Aiming to

minimise memory access and the time during which each

SAD unit stays idle, it was concluded that we can use only

25 units in the one-dimensional systolic array, by inserting

a ‘‘clear’’ cycle each 8 clock cycles, during which a syn-

chronous clear signal is rippled through the SAD units,

starting with SAD unit #0. The minimum SAD value for

each P block derives from the comparison of the SAD

values calculated for it and takes place in the Comparison

module, which is illustrated in Fig. 7. The outputs of the 25

SAD units are the inputs of the Comparison module and the

outputs of the Comparison module are the disparity vectors

for the 3 P blocks of the four-block area. The disparity

vectors virtually represent the relative distances between

the position of the P block in the P-type EI and the ‘‘best

match’’ of this block in the I-type EI search window.

On each clock cycle, the Comparison module receives

one SAD value for each P block, compares it with the one

previously stored and keeps the smaller of the two values.

The comparison between two values requires only one

clock cycle and it can be performed simultaneously with

the SAD calculations, as each SAD unit provides as a result

one clock cycle after the previous one.

3.3 Difference Generation Unit

The disparity vector matrices are essential to the decoding

process, so they are stored to the board memory. They are

Fig. 5 The four-block pixel areas forming the EIs and their read

sequence

Fig. 6 (a) The P blocks in a

P-type EI four-block area,

(b) diagram depicting the

number of reads (Ni) for each

pixel column in an I-type four-

block area and the total number

of reads
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also forwarded to the Difference Generation Unit (DGU)

where they are used for creating the difference blocks.

These blocks derive by subtracting the I-type EI estimated

blocks by the P-type EI blocks, using the disparity vectors

in order to determine the location of the former. The dif-

ference blocks, along with the disparity vector matrices,

will be used at the decoder for the reconstruction of the

P-type EIs using the I-type EIs.

The calculation of the difference blocks is performed by

subtracting one P-type pixel column from one I-type col-

umn on each clock cycle. This way, it is performed in the

DGU right after the disparity vector calculation for a four-

block area by accessing the same image data using the

same addressing scheme. In total, each I-type four-block

area must be swept-read three times: the first one for the

P(left) disparity vector calculation, the second one for the

P(right) disparity vector calculation and the P(left) differ-

ence generation, and the third one for the P(right) differ-

ence generation. A scheduling diagram of the DEU and

DGU operation is depicted in Fig. 10 in the result’s

section.

3.4 Compression unit

In order to achieve more efficient compression rates, the

I-type EIs undergo a compression and decompression

process at the first part of the encoder’s operation phase by

passing through the Compression Unit, which is illustrated

in the block diagram of Fig. 8 using dashed arrows. This is

done in order to assure that the image used as reference

frame at the encoding procedure is actually the same image

as that used at the decoding procedure, which evidently

produces the optimal results. Doing so, the disparity

vectors are calculated by comparison of the P-type EIs to

the I-type reconstructed EIs, that will eventually be avail-

able at the decoder. The I-type EI pixels are read from the

board memory and are transmitted to the I-type EI Com-

pression Unit, where they are initially coded using a

Fig. 7 Block diagram of the

DVC Unit showing the

additional data buses and the

delay registers in order to feed

each SAD unit with the

appropriate image data
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forward 8 9 8 2D-DCT transform and quantized according

to the standard JPEG luminance table [18]. At the decoding

stage, the values are inverse-quantized followed by an

8 9 8 inverse 2D-DCT. After the inverse transform, the

decoded I-type EI pixels are stored in block RAM.

The 2D-DCT and 2D-IDCT cores are composed of 1D-

DCT cores and a transpose memory, using a row–column

decomposition approach [1]. The implemented core

outputs one sample per clock cycle, with an initial 87 clock

cycles latency. The internal calculations are performed

with an accuracy of 15 bits, providing an efficient trade-off

between image quality and area coverage.

At the quantization stage, each DCT coefficient is

divided by a defined quantization value. The function that

describes this process is

Qði; jÞ ¼ DCTði; jÞ
QLUTði; jÞ � qfactor

� �

where Q(i, j) denotes the quantized value, DCT(i, j) the

compressed value, QLUT(i, j) the quantization value and

qfactor the quantization factor.

The quantization values are stored in a look-up table

(LUT). Several LUTs are implemented in order to obtain

different quality levels, according to the quantization fac-

tor. In order to overcome the complexity of hardware

division in the quantization stage, the values are instead

multiplied by the reciprocal of the quantization value of the

selected JPEG quantization table. The values are repre-

sented in the quantization look-up tables (LUTs) with 12

bit precision, leading to an accuracy of 2-12, and the

decimal bits are truncated. In the inverse-quantize stage,

the quantized values are multiplied with the integer values

of the standard JPEG inverse quantization tables, in order

to produce the final reconstructed DCT values. Two more

2D-DCT and Quantization modules are used for the com-

pression of the difference blocks before they are stored to

the board memory. The compression process of the dif-

ference blocks is depicted in Fig. 8 using solid arrows.

3.5 Encoder operation

Before the encoder starts its operation phase, 6 MB of

image data are transferred from the host PC to the board

memory. Using three memory modules for the image data,

the FPGA system can access one pixel of each of the EIs

forming the P-I-P EI triplets on each clock cycle, thus

increasing the parallelization of the overall procedure.

The hardware’s operation phase can be divided into two

main parts. The first part involves the transfer of the image

data from the board memory to the FPGA block RAM.

This transfer is necessary for rearranging the image data in

a way that the DEU can process them quickly. Moving of

the data is also needed in order to exploit the speed and

flexibility advantages of the block RAM and its dual-ported

ability. The first part also includes the processing of the

I-type EIs by the Compression Unit, as explained in

Sect. 3.4.

The second part of the hardware’s operation phase

includes the creation of the disparity vectors by the DEU

and the calculation of the difference blocks by the DGU.

The image data are read from the block RAM and are

used to compare image blocks, calculate SAD values and

determine the I-type EI blocks for which the SAD value

for each P-type EI block is minimum. The results of

these calculations are the disparity vectors, which form

the disparity vector matrices for each P-type EI. The

matrices are simultaneously stored in the board memory

and forwarded to the DGU. In the DGU, the difference

of the image blocks is calculated according to the vec-

tors’ information. The resulting difference blocks are

compressed by the CU before storing to the board

memory.

When the last block is stored to the board memory, the

FPGA system returns to its initial state, waiting for a start

signal from the host PC. This final transfer completes the

operation phase of the encoder, and the host PC retrieves

the data from the board memory for further processing.

Fig. 8 A block diagram

representing the Compression

Unit for the I-type EIs along

with the required transfer of the

EIs from the board to the FPGA

memory
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4 Results

The implementation results of the Xilinx ISE 5 develop-

ment software reveal that the encoder occupies 18 187

FPGA slices, which correspond to 95% of the Virtex XCV-

2000E programmable area. Table 1 presents the distribu-

tion of the FPGA resources over the main system

components. Timing results show that the encoder can be

clocked with a maximum frequency of 20.3 MHz. This

value is justified by the almost complete area usage and the

specifications of the device. In total, 8,405 clock cycles

are need for the processing of 16 P-I-P triplets as shown in

the simplified timing chart for the main units comprising

the hardware processor, presented in Fig. 9.

The timing of the units is selected so as to minimize idle

clock cycles. The board-to-FPGA memory transfer is

accelerated by increasing the Compression Unit’s clock rate

to double the clock rate of the remainder system. The DEU

is enabled when there will be valid image data in the FPGA

memory modules to process without stall until all disparity

vectors are computed. The DGU begins its operation when

the first disparity vectors are available. Finally, the CU is

capable of processing the image data as soon as they are

available by the DGU. Appropriate buffering is imple-

mented for efficient transfer of the compressed data to the

board memory. A simplified circuit scheduling diagram for

the above units is presented in Fig. 10.

For actual operation, the FPGA clock is set to 20 MHz

and approximately 0.42 ms are required for the creation of

32 disparity vector matrices. This timing easily derives by

dividing the 8,405 clock cycles for the 16 P-I-P triplets by

the operational frequency of 20 MHz. These disparity

vector matrices correspond to 32 P-type EIs of the InIm.

The overall time for processing an entire image is pro-

portional to the image size.

4.1 FPGA encoder performance

Complete evaluation of the encoder’s performance is

achieved using different resolution InIms. This is done in

order to evaluate the encoder for both everyday applica-

tions like entertainment or educational environments that

require 3D content delivery and high-resolution demanding

applications like medical intra-operative environments or

simulators with strict quality and robust performance

considerations. Hence, InIms with different resolutions

were downloaded to the board memory and the encoder has

processed them iteratively for several seconds. The mean

processing time for each image is considered as the pro-

cessing performance of the encoder. Figure 11 depicts the

total number of processed InIms per second of operation

versus InIm resolution.

As shown in Fig. 11, the encoder achieves real-time

performance in all standard cases while real-time perfor-

mance is also maintained for high-resolution InIms. The

high throughput of the encoder for low-resolution InIms

makes it suitable for processing a large number of Integral

video streams in real-time, while rates above the threshold

of 30 InIm images per second of operation for high-reso-

lution InIms show that it is a robust solution in cases where

quality cannot be compromised to achieve real-time

performance.

4.2 Hardware/software comparison

For further evaluation of the performance of the encoder, a

comparison with the homologous software approach is also

presented. It is worth noting that the present architecture

was developed as a hardware implementation of a software

method already proposed for robust InIm compression

[26]. Accordingly, a direct timing performance comparison

with the respective software parts can clearly demonstrate

Table 1 Distribution of the FPGA resources over the main archi-

tectural components

Component Slices BRAMs

DEU 9,552 0

DGU 85 2

CU 6,036 16

Control 1,943 0

AGU 563 0

Block RAM 8 102

Total 18,187 120

Fig. 9 Timing chart of the main units comprising the hardware

processor. The clock cycle count corresponds to a processing phase of

16 P-I-P triplets

Fig. 10 Circuit scheduling for the DEU, DGU and CU
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the performance gain of the hardware approach adopted in

our encoder.

The timing performance of the software parts that pro-

duce the same results as the encoder has been measured

using an Intel-based 2.4 GHz desktop computer, equipped

with 512 MB of RAM, which is of the same technological

era as the FPGA development board, and a Quad-Core

2.33 GHz desktop computer, equipped with 2 GB of RAM,

which represents a robust contemporary PC solution. The

software was created in C programming language and

compiled using the Visual Studio standard compilation

libraries. With this software, the same measuring method

as the one used for the encoder was applied. In other words,

InIms of various dimensions were processed for a fixed

number of iterations and the mean processing time for each

InIm group was derived.

The results have shown that software processing requires

several seconds, even for images at the low end of the tested

dimensions. More than a second is needed for a typical

resolution of 720 9 576 pixels and more than 10 s for the

higher tested resolution of 2,048 9 1,576 pixels. In addi-

tion, compared to the software approach, the implemented

encoder has demonstrated an acceleration factor lying in the

range of 300–370 for the processing time. Figure 12, which

illustrates the timing performances for the software

and hardware approaches, reveals the high acceleration

achieved when using the proposed architecture.

5 Conclusions

The use of 3D stereoscopic and autostereoscopic systems

leads to a more natural perception of objects in a scene.

This can benefit applications where user experience heavily

relies on the 3D representation quality of the objects.

Typical applications include everyday communication

needs, ranging from entertainment and standard broad-

casting environments to more specific and demanding

applications such as specially designed simulators for

medical or other uses. As the need for high resolution of

the 3D representation grows, numerous challenges in

design and implementation of robust real-time performing

systems emerge. The amount of data contained in the dif-

ferent views of a 3D system leads to excessive bandwidth

and storage requirements. These problems can be alleviated

using efficient compression schemes that properly exploit

the particular characteristics of the 3D image data.

In the present paper, an integrated FPGA-based InIm

and Integral video encoder has been proposed that targets

real-time performance in high-quality InIm applications.

This digital system is based on an efficient compression

algorithm [26] which exploits the high volumes of redun-

dant information enclosed in this type of images. The

encoder uses the notion of disparity estimation between

neighboring EIs and specific image features such as prior

knowledge on the directionality of the disparity vectors to

reduce the computational load introduced by the motion

estimation modules in MPEG-2. In addition, exhaustive

search methods that improve the quality of the encoded

InIms can be used without greatly increasing the com-

plexity of the algorithm. The proposed single-FPGA

encoder’s features are focused on reduced memory opera-

tions and extensive pipelining where applicable in order to

efficiently address a wide variety of real-time InIm and

Integral video applications.

The obtained results demonstrate that the proposed

hardware implementation can successfully process in real-

time InIms and integral video streams suitable for typical

3D broadcast applications, such as mobile and network

communications, as well as for desktop applications with

Fig. 11 The processing performance (in InIm images/s) of the

encoder measured as a function of the image resolution in pixels

Fig. 12 FPGA encoder versus software performance comparison

measured in processing time per InIm for several image dimensions

54 J Real-Time Image Proc (2010) 5:45–56

123



demanding resolutions. The acceleration rate achieved with

this implementation, compared to the current software

solution, ranges from 300 to 370 times for several InIm

resolutions. This verifies that the proposed system can be

used as an acceleration component for robust real-time 3D

InIm and integral video compression applications.
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15. Olsson, R., Sjöström, M.: A Depth dependent quality metric for

evaluation of coded integral imaging based 3D-images. In: Pro-

ceedings of the 3DTV-Conference 2007, pp. 1–4 (2007)
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