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A B S T R A C T

Objective: This paper proposes a novel approach for thyroid ultrasound pattern representation.

Considering that texture and echogenicity are correlated with thyroid malignancy, the proposed

approach encodes these sonographic features via a noise-resistant representation. This representation is

suitable for the discrimination of nodules of high malignancy risk from normal thyroid parenchyma.

Materials and methods: The material used in this study includes a total of 250 thyroid ultrasound

patterns obtained from 75 patients in Greece. The patterns are represented by fused vectors of fuzzy

features. Ultrasound texture is represented by fuzzy local binary patterns, whereas echogenicity is

represented by fuzzy intensity histograms. The encoded thyroid ultrasound patterns are discriminated

by support vector classifiers.

Results: The proposed approach was comprehensively evaluated using receiver operating characteristics

(ROCs). The results show that the proposed fusion scheme outperforms previous thyroid ultrasound

pattern representation methods proposed in the literature. The best classification accuracy was obtained

with a polynomial kernel support vector machine, and reached 97.5% as estimated by the area under the

ROC curve.

Conclusions: The fusion of fuzzy local binary patterns and fuzzy grey-level histogram features is more

effective than the state of the art approaches for the representation of thyroid ultrasound patterns and

can be effectively utilized for the detection of nodules of high malignancy risk in the context of an

intelligent medical system.

� 2010 Elsevier B.V. All rights reserved.
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1. Introduction

Ultrasound imaging presents a valuable modality that has come
to play an increasingly important role in the diagnostic evaluation
of soft tissues such as eyes, heart, thyroid, and other internal
organs. Recent advances in ultrasound technology lead to high
frequency transducers (5–15 MHz) which provide both deep
ultrasound penetration and highdefinition images, achieving
spatial resolution between 0.7 and 1.0 mm. It also combines a
set of unique virtues such as non-invasive, low cost, quick,
convenient, and with no side effects real time imaging.

The thyroid gland is located in the anteroinferior part of the
neck covered by a thin layer of muscle and dermal tissue. Due to
the superficial location of the thyroid gland, ultrasound technology
has become the most widely employed imaging method for the
diagnosis and follow-up of thyroid disorders such as nodules,
tumors and cysts [1–3]. Many thyroid diseases can present
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clinically with one or more thyroid nodules. Although in some
cases such nodules can be detected through palpation, the majority
of them are clinically occult (smaller than 1.5 cm), but can be
readily detected by high resolution sonography. Two of the most
useful sonographic features recognised by the radiologic commu-
nity for detection and malignancy risk assessment of thyroid
nodules are echogenicity and texture [4].

However, an inherent characteristic of ultrasound imaging is
the presence of speckle noise [5]. Speckle is a random, determin-
istic, interference pattern in an image formed by coherent
radiation of a medium containing many sub-resolution scatterers.
Speckle has a negative impact on ultrasound imaging, since it tends
to reduce the image effective resolution and contrast, inducing a
degree of uncertainty which can be consequently propagated to
medical diagnosis. Bamber and Daft [6] have showed that lesion
detectability decreases approximately by a factor of eight due to
the presence of speckle noise. Therefore, a methodology for the
representation of thyroid ultrasound patterns should not ignore
the noise-originated uncertainty.

Several endeavours have been undertaken to improve inter-
pretation of thyroid ultrasound images through quantitative
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criteria [7–15]. These approaches take no special consideration of
the noise-originated uncertainty. In order to obtain an uncertainty-
aware representation of thyroid ultrasound patterns we propose a
noise-resistant coding of both texture and echogenicity, based on
fusion of a fuzzy distribution of local binary patterns, referred to as
fuzzy LBP (FLBP) features, and ultrasound echogenicity repre-
sented by the fuzzy grey-level histogram (FGLH).

In this paper the performance of the proposed fusion scheme is
thoroughly investigated for the classification of nodular and
normal thyroid ultrasound patterns. The classification task has
been assigned to SVMs because of their robust performance even in
high dimensional feature spaces [16]. The experimental evaluation
is based on reliable performance metrics estimated from receiver
operating characteristics (ROCs) and involve comparisons with
several thyroid ultrasound pattern representation approaches.

The rest of this paper comprises four sections. Section 2 review
today’s literature in interpretation of ultrasound thyroid images.
Section 3 describes the material used in this study and the
proposed methodology. Section 4, refers to the experimental
evaluation and the classification results obtained. A discussion
along with a summary of conclusions is provided in the last
section.

2. Related work

There have been various attempts towards less subjective
techniques for the evaluation of thyroid ultrasound images. Some
of the earliest approaches were based on the use of grey-level
histograms (GLHs). In [7] GLHs have been used for efficient
supervised and unsupervised classification of normal and abnor-
mal thyroid tissue. In [8] GLHs have been effectively used for the
discrimination of tissue with Hasimoto disease from normal
thyroid tissue. Morifuji [9] proposed an optimal combination of
statistical features extracted from GLH for malignancy determina-
tion of thyroid nodules. These features include: the difference of
mean, the standard deviation, the skewness, and the krutosis. In
another study [10], the 10% percentile of GLH has been utilized for
the quantification and classification of echographic findings in the
thyroid gland (Table 1).

The aforementioned studies show that GLH carries substantial
information for the characterization of thyroid tissue. However,
two ultrasound image regions may have the same histogram but
still different textures [17], since the GLH does not encode any
information related to the spatial distribution of image pixels. On
those grounds latter studies have incorporated second or higher
order statistical features for texture analysis of ultrasound thyroid
images. In [11], both Haralick’s co-occurrence features (CM) [18]
and Muzzolini’s spatial features [19] have been evaluated for the
discrimination of chronic inflamed from normal thyroid tissue.
Two feature selection schemes were employed; one based on the
Table 1
Summary of previous feature extraction approaches for thyroid ultrasound image

analysis, ordered by year of publication.

Category of features Feature extraction approach Year Ref

Echogenicity GLH 1985 [7]

GLH 1986 [8]

GLH mean, standard deviation,

skewness and krutosis

1989 [9]

GLH 10% 1989 [10]

Texture–echogenicity CM–M 2003 [11]

CM-MGL 2005 [12]

Texture CM 2006 [13]

Radon 2007 [14]

LBP 2007 [15]
compactness and the separability, and another based on the
classification error. Both schemes resulted in the same optimal set
of features.

In [12], three types of textural features were utilized for
malignancy risk assessment of thyroid nodules. Initially a set of
features were calculated from GLHs, CMs and run-length matrices
(RL) [20], but only the mean grey-level value of GLHs and the sum
variance from the co-occurrence matrix (CM-MGL) were selected
as most appropriate via exhaustive search of feature combinations
based on the minimum classification error as a criterion.

In [13] only co-occurrence matrix features have been utilized
for the characterization of thyroid tissue in ultrasound images.
Another study [14] proposes the use of Radon Transform features
for the discrimination between normal, low malignancy risk and
high malignancy risk nodular tissue. This effort has been based on
the hypothesis that tissues in thyroid ultrasound images may be
differentiated by directionality patterns, which can be encoded in
the Radon domain.

A recent study [15] provided promising results for thyroid
nodule detection with a two phase scheme based on local binary
pattern (LBP) features [21]. In the first phase of this scheme the
thyroid lobe boundaries are detected. These boundaries define a
region from which LBP features are extracted in the second phase.
The LBP feature vectors are then classified by a k-nearest neighbour
classifier.

This literature review shows that the previous approaches
use GLH and/or various textural descriptors for the representa-
tion of thyroid ultrasound patterns; however, none of them
takes any special consideration of the noise-originated uncer-
tainty in the ultrasound images. In order to obtain an
uncertainty-aware representation of thyroid ultrasound pat-
terns we propose a noise-resistant coding of both texture and
echogenicity, based on fusion of fuzzy statistical distributions.
Ultrasound texture is represented by a fuzzy distribution of local
binary patterns, referred to as fuzzy LBP (FLBP) features, and
ultrasound echogenicity is represented by the fuzzy grey-level
histogram (FGLH), which is well known for its insensitivity to
noise [22]. Some initial experimental studies indicate the
suitability of the FLBP features for ultrasound texture represen-
tation [23,24], and it’s resistance in the presence of additive
noise for the representation of natural textures from reference
databases [25,26].

3. Materials and methods

3.1. Thyroid ultrasound patterns

The material used in this study is a set of anonymized B-mode
thyroid ultrasound images accompanied with ground truth
information provided by the Euromedica Medical Center of
Athens in Greece with the approval of its ethical committee. All
ultrasound examinations were performed with a digital ultra-
sound system Philips HDI 5000. A broadband curved array
transducer with a frequency range of 2.0–5.0 MHz was used. All
the ultrasound images were stored in digital imaging and
communications in medicine (DICOM) format. The settings of
the ultrasound scanner that affect image attributes (e.g. overall
time-gain, near-field and far-field gain compensation) were kept
constant throughout the entire study. The ultrasound images
were digitized at 8-bit grey-levels with an effective resolution of
470 � 480 pixels.

In total, 75 patients who had ultrasonographic examinations of
their thyroid gland were enrolled in this study. Each of the 200
longitudinal ultrasound images obtained from these patients
contains one or more hypoechoic nodules classified as Grade 3 or
Grade 4 [27], by two out of three expert evaluators (Fig. 1(a and b)).



Fig. 1. (a, b) Representative thyroid ultrasound images with one visible nodule delineated and two square blocks selected from normal and nodular thyroid tissue; (c, e) square

block sampled from normal thyroid parenchyma; (d, f) square block sampled from nodular tissue.
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Our study focuses only on the discrimination of these types of
nodules because they are associated with a significantly higher
malignancy risk than isoechoic and hyperechoic nodules.

The ground truth boundaries of the nodules (Fig. 1(a and b))
were obtained by following the rule that a pixel belongs to the
nodule when it is included in at least two out of the three
delineations drawn by the experts [28].

From each image a balanced set of non-overlapping 32 �
32-pixel square block samples from normal (Fig. 1(c and e)) and
nodular (Fig. 1(d and f)) tissue of the thyroid gland was selected.



Fig. 2. (a) Example of LBP computation scheme and (b) example of the FLBP computation scheme. For both schemes Dp3 � 0, Dp5 < 0, for every i 6¼ 5, jDpij > F, and for i = 5,

jDpij < F.

Fig. 3. Membership functions m0( ) and m1( ) as a function of Dpi.
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The number of blocks sampled from each nodule was deter-
mined by the maximum number of blocks that could fit within
its boundaries, whereas an equicardinal set of representative
samples from the normal thyroid parenchyma was selected by
the experts. This sample selection process produced a total of
250 thyroid ultrasound patterns constituting a solid dataset for
experimentation.

3.2. Pattern representation

3.2.1. Local binary patterns

The local binary pattern (LBP) [21] is a popular approach to
texture representation that has provided excellent results in many
studies [29–32]. Derived from a general definition of texture, the
LBP is based on the concept of texture primitives, often called
texels or textons [17]. This approach provides a theoretically and
computationally simple and efficient methodology for texture
analysis.

To represent the formations of a textured image, the LBP
approach, models 3 � 3 textons as illustrated in Fig. 2(a). A 3 � 3
texton consists of a set of nine elements, P = {pc, p0, p1,. . ., p7},
where pc represents the grey-level value of the central pixel and pi

(0 � i � 7) represent the grey-level values of the peripheral pixels.
Each texton then, can be characterized by a set of binary values di

(0 � i � 7), where

di ¼
1 if D pi�0
0 if D pi <0

�
(1)

and Dpi = pi � pc.
For each 3 � 3 texton a unique LBP code can be derived by these

binary values, as follows:

LBP ¼
X7

i¼0

di � 2i (2)

Every pixel in an image generates such an LBP code. A single LBP
code represents the local microtexture information around a pixel
by a single integer code LBP 2 [0,255]. Then a histogram is created
to collect up the occurrences of different LBP codes from all pixels
in the image. This histogram forms the LBP feature vector, which
characterizes image texture.

The LBP approach is based on Boolean logic through hard
thresholding of peripheral pixels. This characteristic makes the LBP
texture representation sensitive to small variations of the pixel
intensities such as those usually caused by noise. In the following,
the LBP approach will also be referred to as crisp LBP so as to
differentiate it from the fuzzy LBP approach.

3.2.2. Fuzzy local binary patterns

In order to enhance the LBP approach so as to cope with the
uncertainty introduced by the speckle noise in ultrasound images,
fuzzy logic modeling has been considered. Fuzzy logic has certain
major advantages over traditional Boolean logic when it comes to
real world applications such as texture representation of real
images. Introduced by Zadeh [33], fuzzy theory excels in producing
exact results from imprecise data. The main difference between the
fuzzy and the classic logic is that statements are no longer 0 or 1,
but assume any real value between 0 and 1, that allows more
human-like interpretation and reasoning.

The incorporation of fuzzy logic into the LBP approach includes
the transformation of the input variables to respective fuzzy
variables, according to a set of fuzzy rules. We define two linguistic
rules to describe the relation between the intensity values of the
peripheral pixels pi and the center pixel pc of a 3 � 3 neighbour-
hood in a more human-like fashion, as follows:

Rule 0: The more negative Dpi is, the greater the certainty that
di is 0.

Rule 1: The more positive Dpi is, the greater the certainty that di

is 1.
Based on these two rules two membership functions m0( ) and

m1( ) can be defined. Let function m0( ) define the degree to which
Dpi is negative, i.e. the degree to which di is 0. As a membership



Fig. 4. Histograms obtained by LBP and FLBP approaches applied on images presented on Fig. 1(c and d). (a) LBP histogram from normal thyroid tissue. (b) FLBP histogram from

normal thyroid tissue for F = 5. (c) LBP histogram from nodular thyroid tissue and (d) FLBP histogram from nodular thyroid tissue for F = 5.
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function m0( ) we consider a decreasing function (Fig. 3) defined as
follows:

m0ðiÞ ¼
0 if D pi� F
F �D pi

2 � F if �F <D pi < F

1 if D pi � �F

8>><
>>:

(3)

Similarly m1( ) is an increasing function that defines the degree
to which Dpi is positive, i.e. the degree to which di is 1. As
membership function m1( ) we consider the following (Fig. 3):

m1ðiÞ ¼
1 if D pi� F
F þD pi

2 � F if �F <D pi < F

0 if D pi � �F

8>><
>>:

(4)

For both m0( ) and m1( ), F 2 [0,255] represents a parameter that
controls the degree of fuzziness. Contrary to what stated above for
the original LBP operator, where a single LBP code characterize a
3 � 3 texton, in the proposed FLBP approach, a texton can be
characterized by more than one LBP codes. Fig. 2(b) presents an
example of the FLBP approach, where two LBP codes (A and B)
characterize a 3 � 3 texton. The degree to which each LBP code
characterize a texton (CA, CB), depends on the values of the
membership functions m0( ) and m1( ) that correspond to each
peripheral pixel. For a 3 � 3 texton, the contribution CLBP of each
LBP code in the FLBP histogram is defined as:

CLBP ¼
Y7

i¼0

mdi
ðiÞ (5)

where di 2 {0,1} and the LBP code can be obtained from Eq. (2).
Each 3 � 3 texton contributes to more than one bins of the FLBP
histogram and always the total contribution of a single neighbour-
hood is

X255

LBP¼0

CLBP ¼ 1 (6)

Fig. 4(a and c) illustrates two LBP histograms calculated from
the normal and nodular thyroid tissue samples illustrated in
Fig. 1(c and d). It can be observed that in these histograms 125 and
114 out of 255 bins have zero value, respectively. This results in a
small set of significant peaks that can be identified for each
histogram. The corresponding FLBP histograms are illustrated in
Fig. 4(b and d). These histograms do not have bins with zero values
and there are more spikes, though limited in magnitude. This
indicates that FLBP histograms are more informative than LBP
histograms. Considering that entropy is defined as [34]

F ¼ �
X255

LPB¼0

pLBP � logðpLBPÞ (7)

where pLBP is the membership degree of the LBP-th pattern, the
more diversified the histogram signal, the higher the entropy, and
the more the actual information. If all the bins have equal
probability, the maximum entropy will be reached. Apparently, the
entropy of the FLBP histograms is always greater than the entropy
of the crisp LBP histograms.

3.3. Fuzzy grey-level histograms

The echogenicity of B-mode thyroid ultrasound images carries
substantial information on the pathology of the examined tissue
and can be represented by grey-level histograms (GLH) [35].

Given an ultrasound image region, its normalized histogram
represents the empirical probability density function of pixel
values and can be defined as H(g) = hg/n where hg is the number of
pixels with grey-level g, and N ¼

PG�1
g¼0 hg .

To cope with the uncertainty introduced in the pixel intensities
in the presence of noise, we consider the use of fuzzy histograms as
a noise-resistant representation of thyroid ultrasound image
regions [36]. The definition of a fuzzy grey-level histogram (FGLH)
requires that a membership function mg(pi) is specified for each
grey-level g 2 [0,G], where G is the maximum number of grey-
levels in the ultrasound image. Each membership function defines
the degree of membership of image pixel pi to histogram bin g. The
exact type and shape of membership functions mg( ) can greatly
vary, and in general it depends on the specific problem [37]. The
triangular function is commonly used as a membership function



Fig. 6. AUC classification results for LBP (F = 0) and FLBP with F 2 [1,15].

Fig. 5. Histogram and fuzzy histogram (F = 5) for image presented on Fig. 1(d).

Fig. 7. ROC curves obtained with LBP feature vectors and polynomial kernel SVM

(AUC = 73.1%) and with FLBP feature vectors (F = 13) and Gaussian kernel SVM

(AUC = 91.4%).
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and can be defined as

mgð piÞ ¼
F � gi � gj j

F2
gi � gj j< F

0 otherwise

8<
: (8)

where gi is the grey-level value of pixel pi and F 2 [0,G] is the
fuzzification parameter. Other, higher order membership func-
tions such as the quadratic or cubic functions could also be used
[37].

Then, the normalized fuzzy histogram of an image region can be
defined as (Fig. 5):

HðgÞ ¼ 1

N

XN

i¼1

mgð piÞ (9)

4. Results

Comprehensive classification experiments were conducted for
the evaluation of proposed thyroid pattern representation
approach using linear, 3rd-degree polynomial (l = 3) and Gaussian
SVMs [38]. The SVM parameters considered were in the range of
2�5 to 215 for the cost parameter c and 2�15 to 23 for the parameter
g as these have been proposed in [39].

The classification performance was investigated using ROC
analysis. The ROC curve presents a convenient way of visualizing a
classifiers performance in order to select a suitable operation point,
or decision threshold. The area under ROC curve (AUC) offers a
reliable single figure measure of the classification performance
[40,41]. It represents the probability of correctly distinguishing
between nodular and normal thyroid ultrasound patterns. In all the
experiments the AUC was estimated by 10-fold cross-validation
[42].

The results are organized in two sections. In the first section we
evaluate the FLBP features along with various textural features
previously proposed for thyroid ultrasound pattern representa-
tion. Thereinafter in the second section, we present the results
obtained with the proposed feature fusion approach and compare
them with the ones obtained with state of the art fusion
approaches.
4.1. Evaluation of textural features

The classification performance of the FLBP features was
investigated for F = 1,2. . .,15. The results obtained with various
SVM kernel functions are illustrated in Fig. 6. For F = 0 the depicted
performance corresponds to the one obtained with the crisp LBP
features. It can be noticed that the maximum AUC obtained with
the crisp LBP approach is 73.1% with polynomial kernel SVM. For
each kernel SVM, the AUC obtained with the FLBP features, for all
the values of F parameter tested, is higher than the corresponding
AUC obtained with LBP features. The maximum AUC of the FLBP
features reaches 91.4% for F = 13 with the Gaussian kernel SVM.
The performance improvement offered by the FLBP approach is
clearly depicted by the corresponding ROC curves illustrated in
Fig. 7.

Three more thyroid texture representation approaches pro-
posed in the literature were implemented and included in the
experimental evaluation presented in this study. The different
approaches are:

a. The co-occurrence matrix (CM) feature representation sug-
gested in [11,43].

b. The Radon (R) domain features proposed in [14].
c. Muzzolini’s (M) spatial features initially proposed in [19] and

applied on thyroid ultrasonography in [43],



Fig. 8. AUC accuracies obtained by five thyroid texture representation approaches.
Fig. 9. AUC accuracies obtained by four feature fusion approaches to thyroid pattern

representation.

Fig. 10. ROC curves obtained by 3rd-degree polynomial kernel SVMs and four

feature fusion approaches to thyroid pattern representation.
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The best AUCs obtained with these approaches on the
available dataset using various SVM classifiers are illustrated in
Fig. 8. It can be noticed that the FLBP features (for F = 13) provide
the best discrimination between the nodular and the normal
thyroid ultrasound patterns with the Gaussian SVMs. The
discrimination capability of the Radon and of the spatial
features is slightly lower.

Comparing the results obtained with the different classifica-
tion schemes it can be derived that only the spatial features
are approximately linearly separable. The lowest AUC was
obtained with the crisp LBP approach. This can be attributed to
the fact that it does not involve any noise suppressive
mechanism such as integral operations or fuzzy modeling in
feature computation.

4.2. Evaluation of feature fusion approaches

By introducing fuzzy luminance information into the fuzzy
texture representation obtained by the FLBP approach we aim to
enhance the discrimination of the nodular from the normal thyroid
patterns, since both ultrasound texture and echogenicity provide
substantial cues to the clinical assessment of thyroid nodules [2].
To validate this theoretical argumentation we proceeded to
extensive experiments investigating the classification perfor-
mance of the proposed approach in comparison with the following
fusion approaches:

a. Fusion of crisp LBP and GLH.
b. The mean value of the local grey-level histogram and the sum

variance estimated from the co-occurrence matrix (CM-MGL), as
proposed in [12].

The fusion of Muzzolini’s spatial features and grey-level co-
occurrence matrix features (CM–M) proposed in [11].

The crisp and the fuzzy grey-level histograms considered were
of 16, 32, 64, 128 and 256 bins. The histograms with less than 256
bins were obtained by uniform grey-level quantization.

The results of the experimental evaluation are summarized in
Fig. 9. The proposed approach outperformed all the other
approaches by achieving an AUC of 97.5% with the 128-bin FGLH,
with F = 13 and the polynomial SVM. The best classification
performance achieved with the fusion of the crisp LBP and GLH is
significantly lower, reaching only 89.0%. The large difference in
these two thyroid pattern representation approaches indicates the
significance of fuzzy modeling in the representation of ultrasound
patterns.

The fusion methodology CM–M provided the second best AUC
(93.1%) with the polynomial SVM. However, this is still much lower
than the maximum AUC obtained by the proposed approach. The
fusion of the simple features CM-MGL provided the lowest overall
classification performance.

A more detailed view of the results for various decision
thresholds is presented in Fig. 10. The depicted ROC curves validate
that the proposed approach achieves the best tradeoff between the
true positive and false positive rates.

For the evaluation of the statistical significance of the pairwise
differences between the AUCs obtained by 10-fold cross-valida-
tion, a 1-way ANOVA [42] was applied. The results obtained for the
case of the polynomial kernel SVMs are summarized in Table 2.
Pairs 1–3 show that the proposed feature fusion approach
performs significantly better than the other three fusion
approaches investigated, with p-value � 2.5 � 10�2 and F-
ratio � 5.9.

In order to provide a visual cue on the discrimination of
the thyroid ultrasound patterns by the proposed feature
fusion approach we randomly selected a balanced set of 50
samples from the available dataset and used Sammon’s mapping
[44] to project the extracted feature vectors into a three-
dimensional space. The resulting space is illustrated in Fig. 11,
where it can be observed that the vectors belonging to the
different classes are indeed separable but in a non-linear
way.



Table 2
1-way ANOVA results.

Pair Approach 1 Approach 2 p-Value F-ratio Confidence interval 95%

1 FLBP–FGLH LBP–GLH 2.5�10�2 5.90 [�0.222, �0.016]

2 FLBP–FGLH CM-MGL 8.3�10�3 8.77 [0.034, 0.203]

3 FLBP–FGLH CM–M 2.2�10�2 6.48 [�0.084, �0.008]

4 LBP–GLH CM–M 1.5�10�1 2.17 [0.177, 0.031]

5 LBP–GLH CM-MGL 9�10�2 3.19 [�0.012, 0.159]

6 CM-MGL CM–M 1.8�10�2 5.12 [�0.128, �0.020]

Fig. 11. Visualization of the proposed fused fuzzy feature space. The diagram is

plotted with Sammon’s mapping of the multidimensional vectors produced by the

proposed feature fusion approach into a three-dimensional space.
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5. Discussion and conclusions

The present work proposed a novel thyroid ultrasound pattern
representation approach for the discrimination of high malignancy
risk nodules from normal thyroid parenchyma. Sonographic
features that characterize high risk thyroid nodules include
hypoechogenicity due to high density of cells and microcalcifica-
tions appearing as tiny, punctuate hyperechoic foci. On those
grounds we proposed a novel approach that co-evaluates both
ultrasound texture and echogenicity. Based on that ultrasound
images are inherently characterized by speckle noise we consid-
ered fuzzy logic as a means to cope with noise-originated
uncertainty. The proposed approach encodes ultrasound texture
into FLBP distributions, and echogenicity into FGLH.

Supervised classification analysis based on support vector
machines was applied. Comprehensive classification experiments
were conducted to investigate the discriminativity between
nodular and normal thyroid ultrasound patterns using various
feature extraction methodologies and various kernel functions.
The ROC and the corresponding AUC have been estimated as
performance evaluation criteria more reliable than classification
accuracy.

The conclusions derived from this study can be summarized as
follows:

� Thyroid nodules of high malignancy risk can be discriminated
from normal thyroid parenchyma using textural ultrasound
image features.
� The FLBP feature extraction method provides better descriptors

of thyroid ultrasound texture than previous methods.
� The classification performance obtained with the FLBP descrip-

tors is significantly enhanced by the proposed fusion of FGLH into
the FLBP feature vector. This approach leads to the best
discrimination of the high malignancy risk nodules from the
normal thyroid parenchyma, as compared to state of the art
methods.
� The proposed fusion approach results in high dimensional
feature vectors, however their derivation does not involve
complex computations. This suggests that the vector classifica-
tion should be treated by algorithms that are not easily affected
by the ‘‘curse of dimensionality’’, such as SVMs.
� Support vector classification experiments testing various kernel

functions indicate that the feature space produced by the
proposed fusion features approach is non-linearly separable. The
polynomial function was indicated as more suitable for the
approximation of the decision surface separating the nodular
from the normal thyroid ultrasound patterns.

The results of this study indicate that the proposed FLBP–FGLH
approach exhibits resistance to ultrasound speckle since it
performs better than the fused crisp equivalent LBP–GLH
approach. Moreover, preliminary experiments [25] on Gaussian
noise-degraded textures have showed that the FLBP approach
outperforms the original LBP for various noise levels and that the
advantage of the FLBP over the LBP approach becomes more
evident for lower signal to noise ratios. These results amplify our
expectations about the resistance of the proposed approach to
different levels of speckle noise. However the investigation of this
issue requires extensive experimentation with images degraded
with various levels of artificial speckle noise and could be the topic
of a future study.

The features developed in this research promise to improve the
management of thyroid cancer by providing a second, more
objective, assessment of the thyroid nodules during ultrasound
examinations. Future work includes research on the quantification
of the malignancy risk of thyroid nodules and integration of the
developed methodology into an integrated intelligent medical
system.
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