
J. Vis. Commun. Image R. 21 (2010) 9–16
Contents lists available at ScienceDirect

J. Vis. Commun. Image R.

journal homepage: www.elsevier .com/ locate/ jvc i
A real-time FPGA architecture for 3D reconstruction from integral images q

D. Chaikalis *, N.P. Sgouros, D. Maroulis
Department of Informatics and Telecommuncations, National and Kapodistrian University of Athens, Ilisia 15784 Athens, Greece
a r t i c l e i n f o

Article history:
Received 4 March 2009
Accepted 6 September 2009
Available online 12 September 2009

Keywords:
Three-dimensional
Integral image
Image reconstruction
Image representation
Autostereoscopy
Architecture
Real-time
Hardware
FPGA
1047-3203/$ - see front matter � 2009 Elsevier Inc. A
doi:10.1016/j.jvcir.2009.09.004

q This work was realized under the framework
Programme of Human Research Manpower (‘‘PENED
25% by the General Secretariat for Research and Tec
European Social Fund, and by the private sector.

* Corresponding author. Fax: +30 2107275333.
E-mail addresses: dhaik@di.uoa.gr, dio.chaik@gma

uoa.gr (N.P. Sgouros), dmarou@di.uoa.gr (D. Maroulis
a b s t r a c t

In this paper, we present a hardware architecture for real-time three-dimensional (3D) surface model
reconstruction from Integral Images (InIms). The proposed parallel digital system realizes a number of
computational-heavy calculations in order to achieve real-time operation. The processing elements are
deployed in a systolic architecture and operate on multiple image areas simultaneously. Moreover, mem-
ory organization allows random access to image data and copes with the increased processing through-
put of the system. Operating results reveal that the proposed architecture is able to process 3D data at a
real-time rate. The proposed system can handle large sized InIms in real time and outputs 3D scenes of
enhanced depth and detailed texture, which apply to emerging 3D applications.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The demand for 3D imaging applications is continuously rising,
covering a wide variety of both specialized and everyday visual
communications. A great number of 3D capturing and display sys-
tems have been developed [1], which target in acquiring real world
objects or scenes and provide users with their 3D representations.
In general these systems can be divided in stereoscopic and autos-
tereoscopic systems [1]. In stereoscopic systems, the viewers need
glasses or other special viewing devices in order to experience the
3D effect, while most of the stereoscopic capturing setups use two
cameras in order to provide the correct input to each of the view-
er’s eyes. In autostereoscopic setups [2] the optics needed in order
to provide the 3D effect are embedded in the display and in most
cases a large number of cameras is used during the pickup process
in order to provide the user with the correct stereoscopic image as
the viewer moves in front of the display. The capturing systems in
these setups are usually bulky and in most cases prone to calibra-
tion errors after use. In recent years depth cameras are used in
order to capture the 3D objects and provide the necessary input
for stereoscopic or autostereoscopic displays [3]. However, current
ll rights reserved.

8.3 of the Reinforcement
2003”-03ED656), co-funded

hnology, Greece, 75% by the

il.com (D. Chaikalis), nsg@di.
).
cameras are too expensive for everyday and broad commercial use.
A complementary technique that provides high-quality autoste-
reoscopic content with 2D continuous parallax, reduced complex-
ity and significantly lower cost is Integral Photography (IP) which
was proposed by Lippmann [4] in 1908. Its digital counterpart,
Integral Imaging (InIm) has recently evolved as a robust alternative
to the afore-mentioned autostereoscopic setups as the Charged
Coupled Devices (CCDs) and Liquid Crystal Displays (LCDs) reached
adequate resolutions.

The operational principle of an InIm capturing setup is based on
the acquisition of images of small portions of an object through a
lens array (LA) placed in front of a CCD as shown in Fig. 1(a). Each
of these small images recorded on the CCD is called an Elemental
Image (EI). In the reconstruction stage, the EIs that form the InIm
are back-projected using an LCD, through an appropriate LA, to pro-
vide a 3D representation of the original object, as shown in Fig. 1(b).

One significant issue in a 3D system’s pipeline is the suitability
of the acquired data for other applications such as 3D object recon-
struction, recognition and 3D tracking of moving objects in pres-
ence of occlusions. The afore-mentioned characteristics designate
InIm as a promising candidate for all the above applications [2].
The robustness of an InIm system relates with the fact that none
or elementary calibration issues arise during use, in contrast with
multi-camera setups. In addition the technique provides both tex-
ture and shape reconstruction of an object without the use of
structured light illumination as used in many 3D cameras. How-
ever, as in all 3D cameras, the 3D object reconstruction or tracking
algorithms use estimations of projections of the object in a large

http://dx.doi.org/10.1016/j.jvcir.2009.09.004
mailto:dhaik@di.uoa.gr
mailto:dio.chaik@gmail.com
mailto:nsg@di. uoa.gr
mailto:nsg@di. uoa.gr
mailto:dmarou@di.uoa.gr
http://www.sciencedirect.com/science/journal/10473203
http://www.elsevier.com/locate/jvci


Fig. 1. InIm (a) capturing and (b) display setup.

10 D. Chaikalis et al. / J. Vis. Commun. Image R. 21 (2010) 9–16
number of images, which usually causes delays in the processing
pipeline. The potential of creating high-quality 3D object recon-
structions from InIms leads to hardware implementation of time-
consuming algorithms in an effort to provide real-time character-
istics for the processing pipeline.

Several attempts for 3D object reconstruction using InIms have
been reported in the literature [5–8]. In some works, such as Shin
et al. [9] the term 3D object reconstruction is used to describe the
generation of 2D images from multiple views and focus depths
from a single InIm. Most of the proposed InIm reconstruction algo-
rithms are targeted to small object InIms, that are represented on a
limited number of EIs. This is mostly done to avoid stitching prob-
lems during the reconstruction stage caused by abrupt discontinu-
ities due to depth estimation errors [9]. Moreover EI modification
techniques are proposed in an effort to increase depth accuracy [6].

A method that is focused on the reconstruction of a fully 3D sur-
face model is proposed in [10], where 3D shape and texture of real-
life objects are reconstructed using the InIm technique. The meth-
od addresses the classic stereo correspondence problem, where a
set of points in one view must be identified as the same points in
another view, using horizontal and vertical parallax and multiple
correspondences. The output of the process is the 3D polygonal
representation of the object’s shape and texture. This is shown in
Fig. 2. To achieve this, the method utilizes a two-step strategy: it
initially computes a rough grid and subsequently refines it. It has
unique properties compared to previous works, such as configura-
ble depth accuracy, direct and seamless triangulation and the abil-
ity of handling cases where the field of view of the EIs is less than
the acquired object’s size at a certain distance.

Several attempts to accelerate 3D reconstruction applications
utilize dedicated platforms, most notably FPGA devices for the
implementation of the digital architecture [11] while other
researchers use clustering for boosting performance [12]. However,
all these implementations target typical two-view stereoscopic
Fig. 2. Reconstruction of a dice: (a) integral Image with f ¼ 3:3 mm. (b and
systems and there is no implementation for accelerating a full 3D
surface model reconstruction method.

In this paper, a robust, parallel digital system for 3D object
reconstruction acceleration is presented. By efficiently exploiting
the properties of the reconstruction algorithm, the implemented
architecture demonstrates extensive processing capability. The
Processing Elements (PEs) operate simultaneously on multiple im-
age areas, thus maximizing processing throughput and reducing
idle PE time. Memory reads are minimized by reutilizing EI data
when appropriate. Data reutilization has a positive effect on pro-
cessing time, since consecutive calculations can proceed simulta-
neously. Timing results reveal the real-time capabilities of the
architecture, which can be integrated in a robust contemporary
3D reconstruction system in order to target a wide range of
applications.
2. 3D reconstruction from InIm algorithm outline

The method proposed in [10] estimates the 3D shape and tex-
ture of an object from a single InIm. The reconstruction process
consists of the computation of 3D points (vertices) on the surface
of the object and their connection in a polygonal (e.g. triangular)
mesh. Based on this process, the reconstruction algorithm can be
summarized to the following three steps: vertex grid computation,
grid refinement and triangulation, and post-processing.

The computational core of the first two steps is based on pixel
distance calculations, which are used to determine the best corre-
spondence among several candidates. The distance Dðp1; p2Þ be-
tween two pixels p1 and p2 from different EIs is defined using a
simple but effective metric:

Dðp1; p2Þ ¼
XW

j¼�W

XW

i¼�W

jE1ðu1 þ i; v1 þ jÞ � E2ðu2 þ i;v2 þ jÞj ð1Þ
c) Reconstructed 3D object rendered with triangulation superimposed.



W

2 1z W= +

Central pixel 

z

Fig. 3. Definition of the comparison window size.

Right EI

Down 
EI

Up EI 

Left EI 

Search 
area

L

L

Central 
window 

(ZxZ)

Search 
area

Search 
area

Search 
area

Central 
EI

Fig. 5. Algorithm search area outline. For depiction clarity, N ¼ 1.

Table 1
Search area sizes according to central EI location.

Cental EI pixel ðx; yÞ

Left neighbors ðxþ 3; yÞ to ðL�W; yÞ
Right neighbors ðx� 3; yÞ to ðW; yÞ
Up neighbors ðx; yþ 3Þ to ðx; L�WÞ
Down neighbors ðx; y� 3Þ to ðx;WÞ

D. Chaikalis et al. / J. Vis. Commun. Image R. 21 (2010) 9–16 11
In the above equation, E1 and E2 are the two EIs, u and v are the
corresponding pixel coordinates and W defines the size of the z� z
comparison window, where z ¼ 2W þ 1, as depicted in Fig. 3.

The above distance metric is subsequently extended to more
than two EIs. In practice, 2N þ 1 neighboring EIs per direction are
used, thus forming a symmetrical neighborhood area of radius N
around each EI (see Fig. 4).

The first algorithmic step involves the computation of the 3D
vertices that correspond to the central pixels of each EI. These ver-
tices form a regularly sampled grid that is refined in the following
step of the algorithm. The best correspondence has the minimum
sum of the distances over all neighbors. Specifically, for the central
pixel pk;l of each EI Ek;l, the 3D vertex P that minimizes the
expression:

Dtotal ¼
XN

j¼�N

XN

i¼�N

Dðpk;l;pkþi;lþjÞ ð2Þ

is determined, where pkþi;lþj is the projection of P in EI Ekþi;lþj.
Fig. 5 outlines the search areas used in the algorithm for N ¼ 1

and EI size of L� L pixels. These areas are defined by the search
method [10], and their sizes are summarized to Table 1. It should
be noted that only the z� z windows that are entirely inside the
EIs are used for the comparison.

In order to refine the vertex grid, we introduce a subdivision
parameter S, which defines how many vertices we will compute
between the computed central vertices. The reason for separating
this step from the previous one is to allow seamless triangulation.
As seen in Fig. 4 we can project the central pixels from neighboring
EIs computed in the previous step onto a specific EI. In this way,
additional vertices that are used for refinement will be derived
only from pixels between the central pixels of the EI and the corre-
Fig. 4. Part of an InIm forming a neighborhood of EIs ðN ¼ 1Þ: (a) the central pixels for ea
same neighborhood using only central pixels, superimposed over the image.
spondences of the central pixels of the neighboring EIs. After the
additional pixels are determined in this step, the above distance
metric is used in order to compute the reconstructed vertex and
add it to the grid.

Finally, to improve the quality of the final reconstruction, a ser-
ies of post-processing filters are applied on the grid of vertices, in
order to remove possible spikes and white noise. A sub-sampling
filter can also be applied if the object is reconstructed at a higher
resolution than required.
3. FPGA implementation

As it is evident from the algorithm description, the pixel dis-
tance metric Dðp1; p2Þ imposes the most significant processing
strain, since it is used for every pixel comparison of every window
ch EI and their correspondences in the central EI are dotted. (b) Triangulation of the



Accumulator
SAD
Unit 

z
pixel 
pairs

Fig. 6. The implemented SAD Unit outline.

Sub.

Inv. 

Add

Mux 

‘1’

Add

Add

Inv.

Inv.

Inv.

AddOnly once 
per block 

‘1’

Fig. 7. Example of the absolute difference calculation architecture using (a)
subtraction (2’s complement) and (b) addition (1’s complement). Note that in this
case the final addition is performed only once per block comparison.

SAD
Unit 

SAD
Unit 

SAD
Unit 

SAD
Unit 

M M
ux

 

Comp. 

Fig. 8. Depiction of the M-unit array and the sequential comparison.

12 D. Chaikalis et al. / J. Vis. Commun. Image R. 21 (2010) 9–16
in every neighborhood. Moreover, software calculation of such a
metric is time-consuming due to the complex nature of the abso-
lute value calculation and the subsequent multitude of additions.
Addressing these concerns, hardware implementation of the calcu-
lation can significantly improve performance. The repetitive nature
of the metric computations favors a parallel architecture where
many PEs can operate simultaneously. In addition, an optimized
implementation can sufficiently minimize the redundancy in data
access, imposed by most exhaustive or detailed search methods
that aim for high-quality results.

In the proposed hardware system that targets real-time InIm
reconstruction, the Sum of Absolute Differences (SADs) is used as
the distance metric. A detailed description of the SAD architecture
can be found in [13,14]. The SAD metric involves summation of
pixel intensity values. This way, its hardware implementation
causes no resolution loss, since all its intermediate and final prod-
ucts are integer values. Immediate access to arbitrary comparison
windows is achieved by using look-up tables for their locations
and optimized memory organization architecture.

3.1. Implementation considerations

The SAD is a very effective distance metric which has been
shown to be efficiently implemented in hardware [13,15]. Aiming
for a practical system, attention must be drawn to the integration
feasibility of such a component in a contemporary yet reasonably
low-cost device, in coordination with all peripheral systems. Thus,
processing speed must be combined with relatively low data
throughput and reasonable gate count. The low data throughput
allows for low pin-out count and the limited gate count in an FPGA
device is translated to limited area coverage, both parameters
determining the feasibility of the design.

Taking the above into concern, a completely parallel SAD Unit is
ruled out mostly because of its high memory bandwidth demands
[15], which would require more than one of modern FPGA devices.
Since the calculations are performed on 2D data, it is straightfor-
ward to decompose the SAD calculation in two steps: performing
the calculation in one dimension, so many times as the next
dimension imposes, and summing up the intermediate results un-
til the final SAD value is produced.

In the proposed implementation, a z-sized SAD Unit is designed
as the core PE, in order to target a single FPGA device. This unit can
perform pixel comparisons and additions on a row or a column of
the comparison windows (blocks) in every clock cycle. The inter-
mediate results are accumulated and the final SAD value for the
z� z block comparison is available after z clock cycles. The outline
of this SAD Unit is depicted in Fig. 6.

In order to perform the Absolute Difference (AD) calculation of
two operands, the smaller is determined and inverted, then both
operands are passed to an adder tree. Finally, a correction term is
added, in order to compensate for the initial inversion error. This
architecture favors parallel AD implementation, because it avoids
dealing with 2’s complement values. The subtraction operation
and 2’s complement calculation are replaced by one addition and
two inversions, as shown in Fig. 7. The specific components in
Fig. 7(b) have more hardware cost for a single PE, but this cost is
inverted by using the 2’s complement correction term only at the
final stage of the value additions, rather than after every value cou-
ple subtraction.

The structure of the SAD Unit can be exploited in an one-dimen-
sional systolic array [16] of M units as depicted in Fig. 8, where M is
equal to the number of block comparisons in the search area of the
EIs. If the input pixel lines are set to be perpendicular to the direc-
tion of the search (e.g. for a horizontal search area, set the block
columns as the input), then each unit in the array can start its oper-
ation one clock cycle after the previous one, when the next line of



Table 2
The parameters of the practical system and their values.

Parameter name Symbol Implementation value(s)

Neighboring area radius N 1–4
Subdivision S 2
Comparison window radius W 5
Comparison window size z 11

D. Chaikalis et al. / J. Vis. Commun. Image R. 21 (2010) 9–16 13
pixels is read from the search area memory. In this manner, by
propagating the pixels of the search area through the array, mem-
ory access is significantly minimized.

The successive operation of the SAD Units in an M-unit systolic
array also removes the need for a parallel comparison unit for the
outputs, which would aggravate area coverage and operation
speed of the system. The SAD values of such an array are available
at the outputs of the SAD Units in successive clock cycles, and they
are compared using a sequential comparator in order to determine
the smallest value. The comparisons impose only one clock cycle
delay on the process, since they begin when the first unit of the ar-
ray outputs its SAD value, and end one clock cycle after the last
unit of the array outputs its SAD value. The total delay of this de-
sign is zþM þ 1.

The design of the FPGA memory takes into account the need for
direct access to arbitrary blocks in an EI, which is useful for the grid
refinement stage. The compared block positions are pre-deter-
mined and stored in a look-up table. For each pixel comparison,
the appropriate block positions are fetched from the look-up table
and are translated into address words. The memory modules are
designed with the ability to uninterruptedly feed the SAD array
with image data at the needed rate, regardless of the block position
of the central EI. On this account, z memory modules are used for
every EI. Each of these memory modules stores k pixel lines of the
EI, in intervals of z lines, where k is dependent on EI size. For exam-
ple, in the first memory module, lines 0; z;2z;3z; . . . ; kz are stored.
In this way, z pixels of each line can be accessed in every clock cy-
cle regardless of the pixel’s coordinates (and hence block position)
in the EI. The memory arrangement is depicted in Fig. 9.

Moreover, the horizontally adjacent EIs (i.e. left and right neigh-
bors) must be stored row-wise and the vertically adjacent EIs (i.e.
up and down neighbors) column-wise. This arrangement favors
fast calculations of the sums regardless of the direction of the
search area. Due to the implemented search method, the central
EI must be stored in two different ways, both row- and column-
wise. The total memory size is dependent on the EI size L and
the block size z.
PE number M 50
EI dimension L 64

Right EI

Up EI 

Left EI 

64

Search 
area

Central 
3.2. Implementation details

A practical dynamic InIm acquisition system was considered as
a case study. Using the typical InIm configuration, the lens array is
positioned between the camera’s objective lens and the CCD. Using
a square contemporary CCD, an image resolution of 2048� 2048
pixels can be used for acquisition so that it can provide sufficient
dynamic InIm using contemporary devices. Given the tight space
inside a camera, only a lens array with a low focal length can be
used. For such a lens array (with focal length 3.3 mm) the best set-
up would correspond to 64� 64 pixels per lens, resulting in
32� 32 lenses (and corresponding EIs). For 64� 64 pixels per EI,
the optimal window is 11� 11 ðW ¼ 5Þ, since it provides relatively
0 z kz

1 z+1 kz+1

2 z+2 kz+2

z-1 2z-1 (k+1 )z-1

0

1

2

…
z-1 

Sub-module 
number EI line 

L pixels 

Fig. 9. The number of memory modules and EI data arrangement.
stable results with respect to different texture detail. The neighbor-
ing area is restricted to sizes of N ¼ 1—4, since for larger sizes the
reconstruction accuracy gain is relatively small compared to the
computational cost, especially for medium and large depths. For
the same reason, the subdivision parameter is set to S ¼ 2 accord-
ing to practical system considerations. Further analysis on the
selection of the parameter values can be found in [10]. The param-
eter values are summarized in Table 2.

For the evaluation of the architecture performance, the system
was implemented using the Xilinx ISE tools on a PLDA PCI-Express
development board using the Xilinx Virtex-5 LX110T FPGA device
[18]. The implemented algorithm is divided into two steps, the ini-
tial grid computation and grid refinement. For the first step, we
only compute the 3D position of the central pixel of each EI. For
the second step, we compute the 3D position of three additional
pixels for each EI (for S ¼ 2). For the utilized configuration, there
are 32� 32 EIs, but we use only the inner ð32� 2NÞ � ð32� 2NÞ
(so that each central EI has N neighbors per direction). The maxi-
mum size of the search area is correlated with the EI resolution
and it also defines the size of the SAD Unit array. An outline of
the search areas for neighboring EIs is depicted in Fig. 10.

In the current framework, we implement M ¼ 5011� 1 SAD
Units for parallel operation on two neighbors. This scheme is based
on the observation that, when considering opposite neighbors to-
gether, the total number of calculations remains constant. This is
due to the definition of the search area which depends on the posi-
tion of the block in the central EI. As this block’s position moves
away from the center, the size of the search area in one neighbor
Down 
EI

Search 
area

64

Central 
window 
(11x11) 

Search 
area

Search 
area

EI

Fig. 10. Elemental Image (EI) size, block size and search area outline for the
practical acquisition system. For depiction clarity, N ¼ 1.



Table 3
The EI line arrangement in the memory modules for the left neighbor.

Memory sub-module number (left) EI line number

0 0, 11, 22, 33, 44, 55
1 1, 12, 23, 34, 45, 56
2 2, 13, 24, 35, 46, 57
3 3, 14, 25, 36, 47, 58
4 4, 15, 26, 37, 48, 59
5 5, 16, 27, 38, 49, 60
6 6, 17, 28, 39, 50, 61
7 7, 18, 29, 40, 51, 62
8 8, 19, 30, 41, 52, 63
9 9, 20, 31, 42, 53

10 10, 21, 32, 43, 54

14 D. Chaikalis et al. / J. Vis. Commun. Image R. 21 (2010) 9–16
increases as in the opposite neighbor is reduced in the same
amount. The sum of opposite search areas, which also defines the
size M of the SAD Unit array, can be calculated based on Table 1
to M ¼ L� 2W � 4. For the specific values of L and W in the prac-
tical system, it is derived that M ¼ 64� 10� 4 ¼ 50.

Compared with the single-neighbor approach [17], this
scheme requires extra circuitry that allows the array of 50 SAD
Units to operate as two sub-modules of variable size each. The
central EI’s block arrives at the input of each sub-module, and
the neighboring blocks are also distributed to the correct SAD
Units. Additionally, the output of this scheme is properly wired
in order to handle the variability of the comparisons it must car-
ry. Each unit’s output is directed to the proper selector unit of
the two available, according to the comparison block coordinates
of the central EI. Each selector is connected to one input of the 2-
to-1 adder, which adds up the SAD values of each proper pair of
blocks to one intermediate value, which is stored in the tempo-
rary results block RAM.

The outline of the proposed metric calculation architecture is
depicted in Fig. 11. The three main assets of this architecture com-
pared to the baseline approach presented in [17] are:

� The doubling of speed that it achieves: the system simulta-
neously processes two neighbors of each EI. The speed increase
of this architecture is almost 100% compared to single neighbor
processing, since only one latency clock cycle is added to the end
of the datapath for the extra addition that is required.

� The flexibility that it offers for the position of the block in the
central EI: moving the block away from the center of the central
EI leads to search area size variations in the neighboring EIs. The
system can cope with these variations thanks to the ability of
the PEs to operate on either of two search areas, alleviating
the need of either restricting the central block position to spe-
cific coordinates or using more PEs.

� The more efficient use of the PEs: summing up the sizes of the
two search areas that are simultaneously processed, the total
size is the same to the number of implemented PEs. The PEs
are always active during the processing regardless of the search
area sizes. On the contrary, if operating on a single search areas
that can vary in size, the maximum number of PEs should be
implemented. Some of them would remain idle when the search
area is smaller than the maximum given size.

The memories are organized in a way that a central EI and two
neighboring ones can be simultaneously accessed by the system. In
our architecture, each EI storage memory is comprised of 11 mem-
ory sub-modules, each storing six lines of 64 data bytes. An exam-
ple for the left neighbor memory module (LMem) contents is
shown in Table 3.
EI memory

UpMem 

LMem 

RMem 

DnMem 

CMem-hor 

CMem-ver 

O
ut

pu
t S

el
ec

t S
ta

ge
 

+In
pu

t S
el

ec
t S

ta
ge

 

SAD 
Array +

Temp. 
results 
BRAM

Metric calculation 

Fig. 11. The outline of the metric calculation architecture.
The central EI memory occupies 22 memory sub-modules, one
more is used for the intermediate and one for the final results.
The remaining FPGA memory is used for the neighboring EIs. In to-
tal, 24 neighboring EIs are stored in the FPGA memory, according
to the LX110T device specifications [18]. As a result, the maximum
neighborhood level that can be processed without reloading image
data to the FPGA memory is N ¼ 6. When addressing neighbor-
hoods of seven or more adjacent EIs, the remaining neighbors must
be loaded in the already read memory modules of the previous
neighbors, without stalling the process.

The image data from the neighbors are forwarded to the proper
PEs, which are determined by the coordinates of the central EI. This
way, more PEs can be assigned to operate on the bigger search area
and less on the smaller one, increasing system efficiency. The cen-
tral EI window serves as an input on two PEs, namely the first ones
to operate on each search area. The data are propagated to one next
PE on each clock cycle, to create the appropriate window compar-
ison pair on every PE. The output of the PEs need similar organiza-
tion in order to separate the outputs according to the neighbor
each output is related to. A properly designed selector directs the
results of the first comparison to the first input of the successive
adder, and the results of the second comparison to its second out-
put. This way, the SAD results of each window pair in each search
area are added and stored in the temporary results’ block RAM.
Using the same procedure, the next SAD results are computed
and added in the following phase from the remaining two neigh-
bors of the same neighborhood level. Adding these results with
the temporarily stored ones in a final addition, the required SAD
values are derived. These values represent the comparison results
between a pixel in the central EI and determined quadruples of
pixels in the search areas of the four neighboring EIs.

The final processing stage requires the results to be compared in
order to determine the minimum value. A comparator is imple-
mented in order to perform this calculation, which takes place in
a sequential manner. This is possible because each SAD result is
produced one clock cycle after the previous one, thus a comparator
needs to operate only on two values on each clock cycle. The
implementation of a sequential comparator leads to reduced area
coverage and higher operation speed of the specific circuit, posing
no bottleneck on the entire digital system. The complete FPGA
architecture is depicted in Fig. 12.

4. Results

The total clock cycle delay imposed by the system for the calcu-
lation of the minimum SAD value for four EI neighbors adds up to
113 clock cycles. This number breaks down to 100 clock cycles for
propagating the data two times from the first to the last of the 50
PEs and the rest clock cycles for propagating the data through the
remaining datapath (adder trees in the PEs, intermediate and final
adder).



EI
memory 

Metric 
calculation 

C
om

pa
ra

to
r 

FPGA Controller 

DDR memory controller 

DDR memory 
(board) 

FPGA 

Fig. 12. The proposed FPGA architecture.

D. Chaikalis et al. / J. Vis. Commun. Image R. 21 (2010) 9–16 15
Hardware implementation results on the Virtex-5 LX110T FPGA
reveal that the system can be clocked with a frequency of 170 MHz.
A variety of different neighborhood area radii was tested in order
to evaluate the performance of the proposed architecture.

Memory operations dominate over the total processing time in
the specific platform implementation. Using 64-bit transfers from
the DDRAM modules to the FPGA, 512 cc are needed for each EI
to be moved to the hardware system memory. Processing time
thus depends on the size of the neighborhood area N, which deter-
mines the number of EI transfers to the hardware system memory.
For each N, a quadruplet of neighboring EIs must be transferred
twice to the system memory, once for the central pixel calculation
and one more time for the refinement calculation stage.

The integrated hardware performance is compared to the soft-
ware process of vertex grid computation and grid refinement,
when executed on a PC with an Intel Core2Duo 2 GHz CPU and
2048 MB of RAM, which is of the same technological era. The re-
sults are depicted in the diagram of Fig. 13.

As revealed in Fig. 13, the performance of the hardware is
approximately seven times better than the Core2Duo software per-
0

5

10

15

20

25

30

35

1 2 3 4
Neighborhood area radius (N)

Im
ag

es
/s

ec

Proposed Architecture on
Virtex-5 LX110T
Software, Core2Duo

Fig. 13. Performance comparison of the proposed architecture and the software
approach.
formance for every neighbourhood radius tested. As expected, the
neighborhood radius greatly affects the processing performance,
because more calculations are required for each EI. This aggrava-
tion diminishes as N increases, since as explained in Section 3.2
the number of central EIs decreases according to the expression
ð32� 2NÞ � ð32� 2NÞ. The hardware system achieves real-time
processing rates for lower neighbourhood area radii, while it oper-
ates at a rate close to 15 fps even for larger values of N. This rate
surpasses the estimated acquisition rate of a dynamic InIm acqui-
sition system, and therefore poses no bottleneck to a robust inte-
grated system.
5. Conclusions

Fully 3D shape and texture reconstruction is a highly intensive
processing task that needs to be efficiently addressed in order to
move towards real-time 3D applications. In this paper, a hardware
implementation for the acceleration of a software approach to 3D
surface model reconstruction is presented. The proposed parallel
digital system features maximized processing throughput and
minimized memory read by data reutilization. The implemented
PEs operate on two search areas simultaneously, thus reducing idle
time and efficiently exploiting the available area on the reconfigu-
rable device. Operating results reveal that the hardware architec-
ture is able to process 3D data in a rate that surpasses a
contemporary InIm system’s throughput capability. Although
developed for the specific 3D reconstruction algorithm proposed
by Passalis et al. [10], the hardware system can address the accel-
eration of any 3D reconstruction technique which resolves the cor-
respondence problem using distance metric calculations on
neighboring images, such as multi-view image and video se-
quences. The proposed architecture can support future 3D applica-
tions that will require real-time representation of 3D objects using
high-resolution InIms that have enhanced depth and detail
characteristics.
References

[1] O. Schreer, P. Kauff, T. Sikora, 3D Video Communication: Algorithms, Concepts
and Real-Time Systems in Human Centred Communication, Wiley, New York,
2005.

[2] J.-Y. Son, B. Javidi, Three-dimensional imaging methods based on multiview
images, J. Display Technol. 1 (2005) 125–140.

[3] Y.-S. Ho, S-Y. Kim, E.-K. Lee, Three-dimensional video generation for realistic
broadcasting services, in: Proceedings of the IEICE, 23rd International
Technical Conference on Circuits/System Computation and Communications,
2008, TR1–TR4.

[4] G. Lippmann, La Photographie integrale, C.R. Acad. Sci. 146 (1908) 446–455.
[5] J. Park, Y. Kim, J. Kim, S. Min, B. Lee, Three-dimensional display scheme based

on integral imaging with three-dimensional information processing, Opt. Exp.
12 (2004) 6020–6032.

[6] J. Park, S. Jung, H. Choi, Y. Kim, B. Lee, Depth extraction by use of a rectangular
lens array and one-dimensional elemental image modification, OSA Appl. Opt.
43 (2004) 4882–4895.

[7] S. Kishk, B. Javidi, Improved resolution 3D object sensing and recognition using
time multiplexed computational integral imaging, Opt. Exp. 11 (2003) 3528–
3541.

[8] Y. Frauel, B. Javidi, Digital three-dimensional image correlation by use of
computer-reconstructed integral imaging, Appl. Opt. 41 (2002) 5488–5496.

[9] D. Shin, E. Kim, B. Lee, Computational reconstruction of three-dimensional
objects in integral imaging using lenslet array, Jpn. J. Appl. Phys. 44/11 (2005)
8016–8018.

[10] G. Passalis, N. Sgouros, S. Athineos, T. Theoharis, Enhanced reconstruction of
3D shape and texture from integral photography images, OSA Appl. Opt. 46
(2007) 5311–5320.

[11] A. Kolar, T. Graba, A. Pinna, O. Romain, B. Granado, T. Ea, An integrated digital
architecture for the real-time reconstruction in a VsiP sensor, in: Proceedings
of the 13th IEEE International Conference on Electronics, Circuits and Systems,
2006, pp. 144–147.

[12] J. Falcou, J. Serot, T. Chateau and F. Jurie, A parallel implementation of a 3D
reconstruction algorithm for real-time vision, in: PARCO 2005, Parallel
Computing, 13–16 September, Malaga, 2005 pp. 663–670.



16 D. Chaikalis et al. / J. Vis. Commun. Image R. 21 (2010) 9–16
[13] D. Chaikalis, N. Sgouros, D. Maroulis, P. Papageorgas, Hardware
implementation of a disparity estimation scheme for real-time compression
in 3D imaging applications, J. Vis. Commun. Image Rep. 19 (1) (2008) 1–11.

[14] D. Maroulis, N. Sgouros, D. Chaikalis, FPGA-based architecture for real-time IP
video and image compression, in: IEEE International Symposium on Circuits
and Systems, Island of Kos, Greece, 2006, pp. 5579–5582.

[15] S. Wong, B. Stougie, S. Cotofana, Alternatives in FPGA-based SAD
implementations, in: IEEE I.C. on Field Programmable Technology (FPT’02),
Hong Kong, 2002, pp. 449–452.
[16] Torres-Huitzil, C., Arias-Estrada, M., Real-time image processing with a
compact FPGA-based systolic architecture, Real-Time Imaging 10 (2004)
177-187.

[17] D. Chaikalis, G. Passalis, N. Sgouros, D. Maroulis, T. Theoharis, Near real-time
3D reconstruction from InIm video stream, in: Springer Lecture Notes in
Computer Science, vol. 5112, Image Analysis and Recognition, 2008, pp. 336–
347.

[18] Xilinx Virtex-5 Datasheet. Available from: <http://www.xilinx.com>.

http://www.xilinx.com

	A real-time FPGA architecture for 3D reconstruction from integral images
	Introduction
	3D reconstruction from InIm algorithm outline
	FPGA implementation
	Implementation considerations
	Implementation details

	Results
	Conclusions
	References


