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This paper presents a novel method for unsupervised DNA microarray gridding based on support vector
machines (SVMs). Each spot is a small region on the microarray surface where chains of known DNA
sequences are attached. The goal of microarray gridding is the separation of the spots into distinct cells.
The positions of the spots on a DNA microarray image are first detected using image analysis operations
and then a set of soft-margin linear SVM classifiers is used to estimate the optimal layout of the grid lines in
DNA microarray images
ridding
pot detection
otation estimation
upport vector machines

the image. Each grid line is the separating line produced by one of the SVM classifiers, which maximizes
the margin between two consecutive rows or columns of spots. The classifiers are trained using the
spot locations as training vectors. The proposed method was evaluated on reference microarray images
containing more than two million spots in total. The results illustrate its robustness in the presence of
artifacts, noise and weakly expressed spots, as well as image rotation. The comparison to state of the art
methods for microarray gridding reveals the superior performance of the proposed method. In 96.4% of

e com
the cases, the spots resid

. Introduction

Complementary DNA (cDNA) microarray devices are a valuable
ool of biotechnology, enabling monitoring of the expression levels
or thousands of genes in each experiment. The first step of such
n experiment is the isolation of two messenger RNA (mRNA) sam-
les to be compared. The two samples are reverse-transcribed into
DNA, amplified using polymerase chain reaction and labeled with
istinct fluorescent dyes, commonly Cy5 and Cy3. Subsequently the
amples (targets) are hybridized on a microarray, which is a slide
hat includes a large number of probes, i.e. chains of known DNA
equences, on a solid surface. The hybridized microarray is scanned
t the wavelength of each dye and the output of an experiment is
high-resolution digital image for each wavelength. A microar-

ay image consists of a matrix of blocks, each of which contains a
umber of rows and columns of spots. Each spot is an area in the

mage which represents the level of the hybridization between a
ingle probe and the samples. The intensity of each spot signifies the
egree of hybridization of the targets to each probe, which is usu-

lly a distinctive part of a gene, thereby indicating the expression
evel of the respective gene.

The quantification of gene expression levels from microarray
mages is usually performed in three steps, namely gridding, seg-
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pletely inside their respective grid cells.
© 2009 Elsevier Ltd. All rights reserved.

mentation and intensity extraction. Gridding involves partitioning
the spots into distinct cells in the image, as well as assigning coordi-
nates to each spot, whereas segmentation handles the separation
of the spot pixels (foreground) from the background. In the last
step, the intensity of the foreground and background is extracted
from the respective pixels and used to quantify the expression lev-
els of the corresponding genes. Since gridding is the first step in
the microarray image processing, its results significantly affect the
accuracy of the following steps, as well as the final results. Even
though the process of gridding a noiseless image would be quite
simple, there are several issues that have to be addressed for real
images, such as image rotation, irregular spot sizes and shapes,
spots of very low or zero intensity, as well as noise and various arti-
facts that are introduced by the wet lab process. A robust algorithm
should be unsupervised and able to automatically perform accurate
microarray gridding under these circumstances, as any user input
or intervention would introduce variation into the results. More-
over, unsupervised gridding allows high-throughput processing of
large amounts of data.

Several methods have been proposed for microarray gridding;
they either rely on some user input and adjustments or do not
achieve a high enough accuracy. Such methods are implemented
in ScanAlyze [1], ImaGene [2] or SpotFinder [3] that require sev-

eral parameters to be set by the user. Only a few state of the art
methods address the problem of unsupervised gridding based on
methods such as mathematical morphology [4], Markov random
fields [5], Voronoi diagrams [6,7], Bayesian grid matching [8], Gaus-
sian mixture model [9], genetic algorithms [10] or a combination of

http://www.sciencedirect.com/science/journal/08956111
http://www.elsevier.com/locate/compmedimag
mailto:d.bariamis@di.uoa.gr
mailto:dmaroulis@di.uoa.gr
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pproaches [11]. However, there are still drawbacks that have to be
esolved before fully automatic gridding can take place. For exam-
le, the method proposed in [4] requires that grid rows and columns
re strictly aligned with the x- and y-axes, the region segmentation
pproach proposed in [5] fails to detect many weak signal spots and
n [11] the number of rows and columns of spots per grid is required.
he method presented in [8] employs an iterative algorithm to solve
complex deformable model for microarray gridding, but simple

inear models such as [10] have been shown to achieve high accu-
acy. The approach proposed in [6,7] requires the introduction of
rtificial spots in place of the spots that are very weakly expressed. It
s worth noting that the use of Voronoi diagrams is equivalent to the
se of an 1 NN (nearest neighbor) classifier. The method proposed

n [9] is quite accurate, but the evaluation is performed visually
n a small number of spots, without comparison to a ground truth
eference. Genetic algorithms [10] have the potential to achieve
igh accuracy, but are very time-consuming as they have to evalu-
te a large number of possible solutions in order to converge. Our
reliminary version [12] of the proposed method is not entirely
nsupervised, as the gridding accuracy depends on the success-
ul selection of a few parameters that have to be experimentally
etermined.

In this paper we propose the use of soft-margin linear support
ector machine (SVM) classifiers [13] for DNA microarray gridding
hat overcomes the aforementioned issues. Several improvements
n various steps of the methodology lead to a more robust solu-
ion, where the optimal operating parameter values are determined
utomatically. Extensive experiments were performed, which lead
o the conclusion that any changes to the operating parameters
nduce negligible variations in the accuracy of the results. The more
fficient spot detection and filtering, as well as the use of additional
ata in the SVM training process, contribute to the increased accu-
acy and robustness of the proposed method. The results of the
roposed method are supported by a thorough exploration of the
arameter space, the use of an extensive data set and the com-
arison of the gridding results to the ground truth gridding of the
eference images. Prior to the use of the SVM classifiers, the distance
etween rows and columns of spots is estimated, as presented in
ection 2.1, and then a spot detection step selects spots that have
pecific properties, filtering out any irregularities and artifacts. The
emaining spots are then separated into rows and columns and the
VM classifiers set the separating lines between consecutive rows
r columns so as to maximize the margin between the spots, with-
ut any user intervention. The motivation for the using the linear
VM classifier in a gridding application was its well-known geo-
etric properties as a maximum-margin classifier [14], as well as

ts tolerance to outliers, in the case of the soft-margin support vec-
or machines. These features provide robustness in the presence
f weakly expressed spots and in the presence of irregularities or
rtifacts.

. Methodology

In the proposed methodology, the distance between consecutive

ows and columns of spots is first estimated and then the locations
f the spots are discovered. Once extracted, that information is used
o separate the detected spots into rows and columns, which are
sed as training data for a set of linear SVM classifiers. Each classifier
roduces one grid line of the microarray image grid. In short, the

Fig. 1. Block diagram of the p
ging and Graphics 34 (2010) 418–425 419

proposed methodology consists of the following steps (Fig. 1):

1. Distance estimation between consecutive rows and columns.
2. Rotation estimation.
3. Image preprocessing.
4. Spot detection.
5. SVM-based gridding.

2.1. Distance estimation between consecutive rows and columns

In the first step of the proposed gridding methodology, the dis-
tance between consecutive rows and columns is estimated. Even
though the image dimensions are known and the number of spots
in each row and column might also be known, the row height and
column width cannot reliably be estimated due to image rotation
or possibly inaccurate cropping of the scanned image. Furthermore,
such an estimation would depend on user input and reduce the
potential for high-throughput microarray image analysis. Instead,
in order to find the optimal row height, the image is segmented into
horizontal stripes with a height of dr pixels, which are then aver-
aged. If dr is equal to the distance between the rows, the spots of all
rows will be highly overlapping in the resulting averaged subim-
age, producing well defined white areas that are well separated
from the black background, as shown on the left side of Fig. 2b. In
the case of a suboptimal value of dr, the spots will partly blend with
the background (Fig. 2b, right side), producing numerous gray areas
instead of distinct black and white areas. In order to select the opti-
mal value of dr, the standard deviation of the pixel intensities of the
averaged subimage is used as an effective measure of spot overlap.
A scheme based on the maximization of the standard deviation will
result in the determination of the optimal row height dr, whereas
the optimal column width dc is likewise estimated.

In more detail, given a microarray image of x × y dimensions
and an estimate of the distance dr between the rows of its spots,
the image is segmented into subimages of size x × dr pixels. These
subimages are then averaged into a single x × dr image. Such images
for several values of dr are illustrated in Fig. 3.

The range of dr values tested can be specified by the user as a
parameter, but a wide range ensures successful estimation with-
out user intervention and is thus preferred. The standard deviation
of the averaged subimages is calculated for all values of dr within
that range, using a small step in the order of a fraction of a pixel.
The values of dr for which the standard deviation is a local maxi-
mum are selected as candidates for the optimal distance estimation,
as denoted by the arrows in Fig. 4. The local maxima are most
often located on multiples of the optimal dr value (points a and
d of Fig. 4), as a distance estimation of n·dr also results in highly
overlapping spots. Other local maxima (points b, c and e) may be
present, depending on the rotation of the image. For each one of the
selected dr values, the average value of the standard deviation in
their neighborhood is calculated. The resulting value of dr is the one
that exceeds its neighborhood average by a greater ratio. In the case
shown, the greatest ratio is observed for point a, which exceeds the
average of its neighborhood by 19.61% and is thus selected.
2.2. Rotation estimation

By analyzing the averaged x × dr subimage for the estimated dis-
tance dr, it is possible to calculate the angle of rotation of the original

roposed methodology.
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Fig. 2. Production of (a) horizontal subimages, (b) averaged subimage for optimal dr and suboptimal dr and (c) detail of averaged subimages.

Fig. 3. The averaged row subimages produced for various values of dr .

Fig. 4. Standard deviation of pixel intensity as a function of distance between rows
dr . The selected point a is indicated in bold.
Fig. 5. (a) The averaged row subimage produced by a rotated microarray image and
(b) the directions of highest average intensity.

microarray image. Fig. 5a depicts an x × dr averaged subimage pro-
duced from a microarray image that has been manually rotated. In
order to estimate the rotation angle of the image, a large number of
the brightest pixels of the subimage are randomly selected. Start-
ing from each of these pixels, the average pixel intensity over all
directions ranging from −45◦ to +45◦ is calculated. The direction
that results in the highest average intensity is chosen, as shown
in Fig. 5b. The rotation estimated from the averaged subimage is
the median of the chosen directions of all the selected pixels. This
procedure is repeated for the averaged dc × y subimage generated
using the column distance dc estimation. The final result is the arith-
metic mean of the two image rotation angle estimations. Finally,
the input image is counter-rotated so as to realign the rows and
columns of spots to the x- and y-axes. The values of dr and dc are
recalculated for the counter-rotated image.

2.3. Image preprocessing
This step involves the normalization of the microarray image by
adjusting the intensity histogram into the range 0–255. This results
in effective use of the full dynamic range of the 8-bit image. The
edges of the spots are detected by the application of the Sobel oper-
ator on the normalized image. A threshold T is used to isolate the
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Fig. 8. Separating hyperplanes and their respective margins.
Fig. 6. The result of edge detection and thresholding.

harpest edges, which correspond to prevalent spots, as shown in
ig. 6.

.4. Spot detection

The thresholded image (Fig. 7a) is analyzed, in order to locate
ixel groups that contain consecutive white pixels. The pixels of a
roup reside on the same spot edge. Each group is represented as a
ectangle that circumscribes the pixels of the group, as illustrated
n Fig. 7b. Ideally, each rectangle should contain the edge of a single

icroarray spot, however, depending on the threshold used and the
oise present in the image, it might also include artifacts or multiple
erged spots. Subsequently, only the rectangles that have specific

hape and size characteristics should be considered valid, therefore
method for filtering the spots is employed.

The rectangles should be quasi-square in order to contain only
ne microarray spot, therefore the ratio of the smaller to the larger
ide of each rectangle must be close to unity. Also, each spot should
elong to exactly one row and one column, therefore its size should
ot exceed the distance between rows or columns in the image.
ence, any pixel group that has a diagonal longer than

√
d2

r + d2
c is

iscarded. The output of the pixel group filtering is shown in Fig. 7c.

.5. SVM-based gridding

In general, an SVM classifier [13] is provided with a training set
= {(xi, ci)|xi ∈ �2, ci ∈ {−1, +1}}, which consists of vectors xi and

heir respective class labels ci. It produces the normal vector w and
arameter b of the separating hyperplane w̄ · x̄ − b = 0, which max-

mizes the margin between vectors xi of different classes. The width
f the margin is equal to 2/||w||, therefore the widest margin is
ound by minimizing ||w|| under the constraints ci(w̄ · xi − b) ≥ 1,
.e. requiring that all the vectors in the training set are correctly
lassified. Fig. 8 presents an example of two possible lines for the
eparation of two classes of vectors. Although line l2 is a valid sep-
rating line, line l1 maximizes the margin (m1 > m2) and would
herefore be chosen by the SVM.

The support vector machine described above is called a “hard-
argin” SVM and does not take into account any outliers. One
f its properties is that the separating hyperplane is determined
y the support vectors, which are the ones that lie on the edges
f the margin. Thus, in the case of outliers present inside the
argin, the separating hyperplane will be placed suboptimally.

ig. 9 illustrates this case, where an outlier (denoted by the arrow)

Fig. 7. Grouping and filter
Fig. 9. Reduction of margin width due to an outlier, in the case of hard-margin linear
SVM.

forces the SVM to position the separating hyperplane signifi-
cantly closer to vectors with a class label of −1, reducing the
width of the margin. This problem can be solved using the “soft-
margin” SVM, where a slack variable �i is introduced for each
vector xi. The constraints are then formulated as ci(w̄ · xi − b) ≥
1 − �i and the separating hyperplane can be found by minimiz-
ing:
min

[
1
2

||w||2 + C
∑

i

�i

]
(1)

ing of white pixels.
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when all its pixels reside completely within its respective grid cell,
marginally gridded when more than 80% of its pixels reside within
its respective grid cell and incorrectly gridded when less than 80% of
the spot pixels reside within its respective grid cell. The evaluation
results are shown in Table 1. Out of more than two million spots
Fig. 10. (a) The valid spots and (b) the training set and resulting separ

here C is a cost parameter that determines the effect of outliers
n the resulting hyperplane. Large values of C result in a separating
yperplane that is mostly determined by any outliers, while on the
ther hand, if a smaller value of C is used, the separating hyperplane
ollows the general trend of the training set given to the classifier,
gnoring any outliers. The hard-margin classifier is equivalent to a
oft-margin classifier with an infinitely large C [14].

In order to use the SVM classifier for microarray gridding, the
alid spots (Fig. 10a) that have been produced by the previous steps
re first assigned into distinct rows and columns with respect to
he distances dr and dc. For each pair of consecutive rows num-
ered k and k + 1, the respective grid line that separates the spots
f these rows is calculated by a soft-margin linear SVM classifier.
very valid spot in the image is represented by a two-dimensional
ector xi that consists of the coordinates of the center pixel of
he valid spot, and these vectors comprise the training set D. The
lass label ci of each valid spot is determined as a function of the
ow that it belongs to. More specifically if the spot belongs to any
ow with number ranging from 1 to k, it is assigned to class +1,
lse it belongs to the rows with numbers greater than or equal
o k + 1 and is thus assigned to class −1, as shown in Fig. 10b.
he classifier is then trained and produces the separating line that
aximizes the margin between the vectors xi, which is also the

esulting grid line. It is only the training phase of the classifier that
s used for the determination of the grid lines and not the testing
hase.

If the successful detection of all spots in the image could be
uaranteed, the training set would consist of only the neces-
ary spots, i.e. those residing on rows k and k + 1. However, in
eal microarray images, there are cases where several consecu-
ive spots might be weakly expressed and therefore not detected,
o adding spots from rows above k and below k + 1 to the train-
ng set provides more useful data to the classifier for successful
ridding.

In the case that row k contains less than two detected spots,
he two grid lines that separate this row from rows k − 1 and k + 1
annot be determined by the use of the SVM classifier. This is a
ather rare case considering that the image is normalized during
he preprocessing step. To cope with this limitation, the endpoints
f the two grid lines are positioned equidistantly between the end-
oints of the first neighboring grid lines above and below them.

n the case where the top or bottom rows of spots contain less
han two spots, the endpoints of the grid lines that cannot be
etermined are positioned dr pixels further from the nearest grid

ines.
Furthermore, the outliers that result from misdetected spots due

o artifacts and noise require the use of the soft-margin SVM to
iminish their effects. In Fig. 11, an outlier has been introduced

nto the SVM training set. It is evident that in the case of a small

(Fig. 11a), the margin is determined by the other spots in the

ow and the outlier is virtually ignored, whereas in the case of a
arge C (Fig. 11b), a single outlier determines the positioning of the
eparating line, resulting in a line that is significantly closer to most
f the vectors of the top row, reducing the margin and rendering
ine produced by the SVM classifier for the separation of rows 7 and 8.

it suboptimal for gridding. The microarray gridding is completed
after the application of the above procedure for the determination
of the grid lines that separate each pair of consecutive columns of
spots.

3. Results

The dataset used for the evaluation of the proposed method con-
sists of 54 DNA microarray images, from the Stanford Microarray
Database [15]. The images have 1900 × 5500 pixels and 16-bit gray
level depth. The images include 48 blocks of about 870 spots each,
for a total of 2,255,040 spots in the data set. They have been pro-
duced for the study of the gene expression profiles of 54 specimens
of acute lymphoblastic leukemia, which span 37 positive and 17
negative to BCR-ABL [16], a fusion gene product resulting from
translocation between the 9th and the 22th chromosomes. The
dataset is accompanied by ground truth annotations regarding the
positions and sizes of the spots.

In order to enhance the reliability of the results, the data set
used for evaluation is a superset of the one used in [10] and [12],
as it includes all 54 images instead of only 25 used in the previ-
ous studies. The statistical analysis is performed correspondingly,
in order to produce directly comparable results. It is important to
note that [10] presents a comparison to the state of the art methods
[1,3,9], which it surpasses significantly with regards to microar-
ray gridding accuracy. Therefore the evaluation of the proposed
methodology is performed in comparison to [10]. For the statis-
tical analysis, each spot was evaluated as being perfectly gridded
Fig. 11. The effect of an outlier as a function of the SVM cost parameter C. (a) Small
value of C and (b) large value of C.
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Table 1
Comparison of gridding results.

Perfect Marginal Incorrect

Proposed method 96.4% 3.2% 0.4%
Bariamis et al. [12] 95.1% 4.5% 0.4%
Zacharia and Maroulis [10] 94.6% 4.8% 0.6%

Table 2
Percentage of correctly gridded spots as a function of the SVM cost parameter C and
the threshold T.

Threshold T SVM cost C

0.005 0.01 0.05 0.1

8 96.22% 96.20% 95.06% 94.74%
9 96.27% 96.27% 95.11% 94.80%

10 96.29% 96.30% 95.15% 94.84%
11 96.32% 96.35% 95.19% 94.88%
12 96.34% 96.41% 95.25% 94.93%
13 96.29% 96.38% 95.22% 94.91%
14 96.22% 96.34% 95.17% 94.86%
15 96.15% 96.29% 95.14% 94.82%
16 96.09% 96.25% 95.10% 94.79%
17 96.00% 96.18% 95.05% 94.74%
18 95.90% 96.12% 95.02% 94.70%
19 95.81% 96.04% 94.93% 94.62%
20 95.69% 95.95% 94.86% 94.54%
21 95.55% 95.84% 94.78% 94.46%
22 95.41% 95.73% 94.66% 94.35%

p
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u
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during the wet lab process. Despite the presence of these artifacts

T
M

23 95.26% 95.62% 94.57% 94.25%
24 95.12% 95.50% 94.46% 94.14%

resent in the data set, 96.4% spots were perfectly gridded, whereas
.2 and 0.4% were marginally and incorrectly gridded, respectively.
hese results show that the proposed method achieves higher qual-
ty gridding than the state of the art method presented in [10],
nd consequently it is also superior to [1,3,9]. In comparison to
he preliminary version presented in [12] which displayed promis-
ng results, the achieved accuracy is increased as several changes
ave been included in the proposed method, such as the automatic
etermination of valid spot sizes based on the distance between
ows dr and columns dc, as well as the inclusion of the valid spots
rom the whole image into the training set of each SVM classi-

er.

The gridding performance of the proposed method was eval-
ated using C = 0.1, 0.05, 0.01 and 0.005 and T ranging from 8
o 24. The SVM cost parameter C determines the effect that out-

Fig. 12. (a) A microarray image rotated by 15◦ , (b) the counter-rotated

able 3
ean and standard deviation of difference between actual and detected rotation angles �

�real −25◦ −20◦ −15◦ −10◦ −5◦

m�� 1.23◦ 0.62◦ 0.72◦ 0.72◦ −0.21◦

��� 0.41◦ 0.83◦ 0.95◦ 0.58◦ 0.70◦
ging and Graphics 34 (2010) 418–425 423

liers or noise might have on the separating lines that the SVM
produces, therefore a small value of C should be selected for suc-
cessful gridding. The threshold T affects the sensitivity of the spot
detection step, as well as its susceptibility to noise. The choice
of C = 0.01 is supported by the results shown in Table 2, where
it produces the most accurately gridded spots compared to the
other values of C evaluated. Lowering the value of C results in
negligible changes of accuracy, but the choice of a larger value
would reduce the achieved accuracy. Even though the optimal value
of C is usually application and data dependent, in the proposed
method the choice of a value lower than the optimal results in
comparable accuracy. Table 2 also illustrates that the proposed
method is highly accurate for a wide range of thresholds T, as
the greatest percentage of correctly gridded spots is 96.41% for
T = 12 (denoted in bold), but the accuracy remains higher than 96%
for T ranging from 8 to 19. The results illustrate that the effect
of threshold selection only marginally affects the achieved accu-
racy.

Although the dataset only includes microarray images with rota-
tion of up to a few degrees, an evaluation method was needed to
assess the performance of the rotation detection step of Section 2.2
for a wider range of image rotation angles. We have therefore man-
ually rotated the images of the dataset by angles �real ranging from
−25◦ to +25◦ and used the proposed rotation detection method
to compute an estimate �est of the rotation for each image. Based
on that estimate, the images were counter-rotated and gridded.
Table 3 presents the results of the rotation detection as a func-
tion of the rotation angle �real. The evaluation was made based
on the mean and standard deviation of �� = �est − �real, denoted
as m�� and ��� , respectively. The mean difference was less than
1.3◦ for all cases, which resulted in negligible variation of the grid-
ding accuracy compared to the original images. The variation of the
accuracy was less than 0.3% in all cases. An example of an image
rotated by 15◦, as well as the counter-rotated image and the grid-
ding result are illustrated in Fig. 12. In this case, �� was equal to
0.9◦.

Fig. 13 illustrates the gridding resulting from the application
of the proposed method in the presence of artifacts. More specifi-
cally, in Fig. 13a–c, several bright artifacts are present, whereas in
Fig. 13d the top right part of the image has been affected by noise
and noise, the proposed method achieves successful gridding in all
those cases. Fig. 14 illustrates a microarray image area that includes
a large and bright artifact. Even in the vicinity of the artifact, the
gridding is not affected by its presence.

image (�� = 0.9◦) and (c) the resulting gridding for this image.

�.

0◦ 5◦ 10◦ 15◦ 20◦ 25◦

0.28◦ 0.63◦ −0.42◦ 0.20◦ −0.3◦ −1.02◦

0.35◦ 0.88◦ 0.61◦ 0.89◦ 0.72◦ 0.57◦
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Fig. 13. Gridding examples: (a) large artifact, (b) and (c) small artifacts, and (d) noise at the top of the image.

ing in
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m
t
t

Fig. 14. Detail of successful gridd

. Discussion and conclusions
In this paper, we presented a novel method for unsupervised
icroarray gridding, which consists of five steps. In the first step,

he distance between rows and columns of spots is estimated. In
he second step, the image rotation angle is estimated and the
the presence of a bright artifact.

image is counter-rotated to align the rows and columns of spots

with the x- and y-axes. In the third step, the input image is pre-
processed, whereas the fourth step involves the spot detection and
filtering. In the final step, a set of soft-margin linear support vector
machine classifiers determine the positioning of the grid lines. The
SVM produces the separating lines of the grid so as to maximize
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he margin between the rows and columns of spots, and displays
igh tolerance to outliers that result from misdetected spots due
o artifacts and noise. Furthermore, the proposed method allows
igh accuracy gridding for a wide range of operating parameters
y employing efficient filtering of the detected spots based on their
ize and shape, in addition to using soft-margin linear SVM classifier
ith an extended training set.

Overall, the advantage of the proposed method is that it man-
ges to perform successful gridding of DNA microarray images
n the presence of the following conditions: irregular and weakly
xpressed spots, noise and artifacts, as well as rotation. The effects
f the irregular spots, the noise and the artifacts are diminished by
he high tolerance of the soft-margin SVM to outliers, as well as by
he spot filtering included in the spot detection step. Furthermore,
he generalization performance of the SVM classifier allows it to
etermine the grid lines in the presence of weakly expressed spots.
astly, the proposed method estimates the image rotation angle
nd counter-rotates the input image in order to produce accurate
ridding. A potential disadvantage of the proposed method is that
he SVM classifiers require several detected spots in each row and
olumn of spots. Rarely, most of the spots in a row or column might
e weakly expressed and not detected. In such cases, which account
or less than 0.1% of the rows and columns in the data set, the grid
ine positioning is determined by the nearest grid lines.

Out of more than two million spots present in the data set, 96.4%
pots were perfectly gridded, whereas 3.2 and 0.4% were marginally
nd incorrectly gridded, respectively. These experimental results
how that the proposed method achieves higher quality gridding
han the state of the art method presented in [10], providing the
otential of achieving perfect gridding for the vast majority of the
pots.
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