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Abstract

In the era of the multimedia-rich World Wide Web and inexpensive digital cameras there is an
ever-increasing need for image indexing and retrieval techniques beyond the traditional
metadata-based techniques. Content Based Image Retrieval (CBIR) systems facilitate the
retricval of images based on visual content. Jigsaw is a modularized, scriptable and
customizable CBIR framework that was built to serve as a research platform. The system
extends the query by example paradigm by supporting arbitrarily shaped regions of interest.
To the best of our knowledge, Jigsaw is the first system 10 combine a sliding window indexing
technique with the Image Distortion Model similarity measure. To make real-time searches
feasible, Jigsaw employs a filtering technique based on sub-image signatures combined with a
fast VA-file based multidimensional index. The performance of the system was evaluated,
using the Wang image database and simple color features, and was found to be on par with
other modern systems, even with the use of very simple color features and without much fine-
tuning.
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1. Introduction

Content-Based Image Retricval (CBIR) has been an active field of research in the past
few years. CBIR systems, as opposed to text based approaches, enable users to
perform queries in image and video databases based on visual content, rather than
text-based descriptions and metadata. Even though a varicty of systems have been
proposed, the problem of CBIR remains difficult and unsolved for many applications.

Below, we present the Jigsaw system, ‘a customisable image retrieval framework
building upon the SamMatch retrieval methodology. Jigsaw is the first CBIR system
that integrates the two-phase filtering approach of SamMatch [Hua et Al. 1999] [Vu
& Tavanapong 2003] with the Image Distortion Model (IDM) [Keysers et Al. 2004}
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[Desclacrs 2003]. Furthermore, it has the ability to utilise several different image
features and uses a fast Vector Approximations file [Weber et Al. 1998] to index the
visual information. Using the Jigsaw system, we are able to perform interactive
queries, utilizing several different image features.

Our system differs from other common approaches to the CBIR problem in that it
does not rely on image segmentation algorithms that often fail to produce a
meaningful segmentation. Instead it employs a sliding window approach to index as
many as possible sub-images of different sizes from each image. This method allows
the system to locate in its database, objects that appear scaled or transposed,
compared to the query image. Several other systems have used a sliding window
approach such as the wavelet based Warlus [Natsev ct al. 2004] system or the
SamMatch [Vu & Tavanapong 2003] [Hua et al. 1999] system. One of the challenges
that systems like these face is the vast number of sub-image signatures that need to be
indexed. Previous efforts to address this problem have been proposed that rely on
clustering techniques combined with an R-tree based index [Vu & Tavanapong 2003].
In the Jigsaw system, a VA-file based index has been used that is able to handle
interactive queries without the extra step of clustering.

Furthermore, we employ the IDM (Image Distortion Model) similarity model for
ranking the results. The IDM has the benefit of being robust in slight deformations or
misalignments of the compared images. This property of the IDM allows us to use a
larger sliding window step resulting in a lower number of sub-images.

From a software engincering perspective, the system focuses on modularity,
extensibility and being scriptable in order to support automated experiments. It has to
be stressed that Jigsaw, being a modular system, can be reconfigured and extended to
support different retrieval strategies. Below, we present our experiments and
conclusions from the initial configuration of the system.

2. Basic Concepts
2.1 Noise Free Queries

The most common query model supported by current CBIR systems is “Query by
Example” (QBE), according to which the CBIR system searches an image database
for images that are similar to an example image presented to the system. The concept
of Noise Free Queries (NFQ) [Vu & Tavanapong 2003] is an extension to the QBE
model that enables the user to define a free-form Region Of Interrest (ROI) on the
example image, thus excluding non relevant pixels of the image from the query. In
Jigsaw, the region of interest is defined by a grayscale mask. The values of the mask
for each pixel represent the relative significance of the pixel to the query.
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2.2 A two phase approach

In every interactive retricval system there are two, often conflicting, requirements that
have to be met, response time and accuracy. Most image similarity algorithms require
a significant amount of computing time to access the similarity of two images. Thus it
is infeasible to directly compare the similarity of the query image to every image in
the database. Instead, in the Jigsaw framework a multidimensional vector (image
signature) is computed for each sub-image of an image and a multidimensional index
is used to retrieve the most relevant signatures from the database. Afterwards, the
sub-images that the relevant signatures came from are ranked according to their
relevance to the query using a more accurate, but time consuming, similarity model.

3. Indexing Methodology
3.1 Image features

The first step in the process of indexing an image is feature extraction. During feature
extraction, the image is divided in 7xn non-overlapping pixel blocks and a feature
vector is extracted from each block. Each feature vector can include a combination of
several available image features. Depending on the application, a combination of the
following features can be used: a) the average intensity b)the mean hue ¢) the mean
color in several color spaces (RGB, CIE-Lab or HSV) d) the mean chromaticity
values e) a fuzzy grayscale histogram [Deselaers 2003] f) any combination of the
Tamura texture features [Tamura et Al. 1978] (contrast, coarseness and directionality)
g) a vector of the n most significant colors. The feature extraction process may be
repeated twice to extract two sets of features. One sct of features is used to compute
the sub-image signatures and a, possibly different, set of features may be stored to be
later used in the similarity ranking phase.

3.2 Indexing with a Sliding Window

While the feature vectors are being extracted, they are placed on a grid, according to
the location on the image that they originated from. We call this grid, FVM (Feature
Vector Map). In the next step, square windows of different sizes are used to group the
features vectors that originated from the corresponding sub-image. This group of
feature vectors takes part in the computation of a sub-image signature as it is
described in the following section. Then the indexing window slides a few samples
and a different signature is computed until the whole area of the image is indexed.
The process is repeated with indexing windows of different sizes ranging in size from
windows that cover most of the image at once, to windows small enough to isolate
single objects.
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3.3 Sub-image signatures

From each sub-image, an image signature is extracted that captures the spatial
distribution of image features in the sub-image. Each signature is multidimensional
vector of real values. For the signature computation the indexing window is divided
in seven overlapping regions (fig. 1). Those are the following: a) the whole area of the
indexing window b) the two diagonals of the indexing window and c¢) the four disjoint
quadrants of the indexing window. For each of the seven regions, a statistical
average-variance pair (4,07 per feature vector dimension is computed. The final
form of the signature vector coming from n-dimensional feature vectors is shown in
eq. 1.
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Signatures have the property of being invariant to scaling transformations of the sub-
image while being able to capture the spatial distribution of the features on the sub-
image. The downside of the signatures methodology is the resulting high
dimensionality of the signature vectors as the resulting dimensionality is 14 times the
dimension of the feature vectors.
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Figure 1. The seven overlapping signature regions

3.4 The VA-file index

The high dimensionality of the signature vectors makes the use of a typical R-tree
based index prohibitively slow. It has been shown that the performance of such space
partitioning indexes degrades rapidly as the dimensionality increases [Weber et Al
1998]. Instead a VA-file based multidimensional index is used. A VA-file index takes
advantage of the high linear read speed of the modern hard disks and the caching
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mechanisms provided by the OS by performing a linear scan in a table containing
highly space efficient approximations of the actual vectors. To form these space
efficient approximations, the signature vectors are quantized and stored in a binary
file along with pointers to the actual vectors.

4. Retrieval Methodology

4.1 Query signature

In order to query the index for similar signatures, a signature has to be computed for
the query. The first step in computing the signature is extracting features from the
ROI of the query. Then a signature must be computed for the ROI from the extracted
features. Unfortunately the signatures, as defined so far, can only be computed for
square image regions while the ROI of the query can take any shape. To overcome
this problem, a square area has to be located that contains as much of the ROI as
possible while keeping the amount of non-ROI pixels low. We call this square area
the “Core Area”. The core area is located by an algorithm that starts by assuming that
the core area covers the entire image and iteratively shrinks it until the average
interest value of the pixels in the area is higher than 80% and it is not possible to
further shrink the area without leaving out more ROI pixels. Finally, the feature
vectors of the ROI that lic inside the core area are used to compute the query
signature as described in section 3.3.

4.2 Filtering by querying the signatures index

The query signature is finally used to perform a k-nearest neighbour search among the
signature vectors in the VA-file index. The Manhattan distance is used during the k-
nn search to speed up the procedure. The number of the signatures retrieved is a
trade-off between speed and accuracy and it is specified by the user along with the
query. The more signatures are returned from the index, the more expensive it gets to
rank the results in the next stage. On the other hand, if too few signatures are
returned, the recall and precision of the system are reduced since fewer images will be
available in the ranking phase, where the more accurate similarity evaluation takes
place.

4.3 Ranking results

The final stage of a query is similarity ranking. Each of the signatures retricved from
the index in the previous step refers to a sub-image in the image database. We refer to
those sub-images as candidate sub-images. In order to compare a candidate sub-image
with the query image, the core area of the query is aligned with each one of the
candidate sub-images and the Image Distortion Model algorithm is applied to
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evaluate the similarity of the query ROI with the arca around the candidate sub-image
and assign a similarity score to the candidate sub-image. It is crucial to point out that
the IDM comparison is not constrained in the sub-image but extends in a region
around the sub-image similarly shaped to the query ROL

For the IDM to perform the comparison, image features have to be available for both
images. The database sub-image features can be extracted on the fly or loaded from
disk if they were extracted offline (section 3.1). The query features are extracted on
an as needed basis right before the similarity evaluation. Since the size of the sub-
images and the query can vary, the density of the extracted query features is adapted
to have an equal number of feature vectors in the candidate sub-image and the core
arca. The query features are organized on a feature vector map and cached in order to
be used in subsequent comparisons.

The IDM computes a similarity score by performing, for each feature vector in the
ROI of the query, a local search for the best matching feature vector among the
vectors of a small neighborheed in the corresponding area of the database image. The
distances of the matching vectors area aggregated in a similarity score value. The
procedure is depicted in figure 2. The local scarch- performed from the IDM
compensates for slight misalignments, scale, viewing angle or shape variations
between the compared images.
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Figure 2. The seven overlapping signature regions
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The computation of the distance between a query and a database image using the
IDM is expressed by the formula in equation 2 where Q is a query and B is a database

image, with feature vectors ¢, and b,j respectively while w, are weight values that

are derived from the ROI mask and reflect the interest values that the user has
assigned in different arcas of the query. The sum term is used to normalize the results
according to the number of feature vectors used.

o A 2
> w, min min D(q,,b,)
i i'=i-r j'=j-r
Dy (O, B)= - @)

1
ij

The similarity distance value is converted to a similarity score by composition with a
monotonically decreasing function.

Finally, each matching image is assigned the highest among the similarity scores of
the sub-images that it contains. The matching images are presented to the user,
through a web interface, in descending similarity score order. In figure 3 the top
ranking results of a sample query can be seen.
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Figure 3. A sample query in the Wang database. The upper left picture was used as
the query.
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Figure 4. Scaling of the VA-file index

5. Experimental Study
5.1 Index Performance

The performance of the multidimensional index is crucial to the interactive usage of
the system. The sliding window indexing technique produces a vast amount of
signature vectors that need to be indexed. The usage of a VA-file index allowed us to
avoid clustering the signature vectors, thus improving the precision of the system.
The query times of the index scale linearly to the number and the dimensionality of

the signature vectors (fig. 4 & 5). In each of the experiments, the 10° nearest
neighbours to a query vector were retrieved.
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Figure 5. Scaling of the VA-file index as a
function of signature dimensionality
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Figure 6. Precision (relevant images/images examined) of the system
5.2 Query Results

To assess performance of the system, the free Wang [Wang et Al. 2001] image
database was used. The Wang database consists of 1000 images evenly distributed in
10 semantically different classes such as beach settings, busses, dinosaurs, flowers,
elephants, horses, mountain settings etc. All images were normalized to
384 x 256 pixels.

Ten images were randomly selected from cach class to be used as queries, using the
whole image as the ROI. The database was populated using all 1000 images. As it
was not our intention to measure the cffectiveness of different image features, we
used only the average CIE-Lab colour as a feature both for the signatures and the
similarity ranking. Feature vectors were extracted from 8x8pixel blocks and
indexing windows of three different scales were used (256x 256, 192x192 and
128x128 pixels). The configuration above resulted in 42-dimensional signature
vectors.

In each of the queries, the 5000 most similar sub-images were retrieved from the
index. The step of the indexing sliding window was varied between one and two
blocks and the precision of the system was measured taking into account the first 50
images. By alternating the value of the radius of the search neighbourhood in the IDM
to 0% and 4% of the sub-image size, we were able to measure the influence of the
distortion in the precision of the system. We verified that the distortion has a
significant influence in the precision of the system and enables it to compensate for
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