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ABSTRACT 

 

This thesis introduces unsupervised image analysis algorithms for the segmentation of 

several types of images, with an emphasis on proteomics and medical images. Τhe 

presented algorithms are tailored upon the principles of deformable models and more 

specific region-based active contours. Two different objectives are pursued. The first is 

the core issue of unsupervised parameterization in image segmentation, whereas the 

second is the formulation of a complete model for the segmentation of proteomics 

images, which is the first to exploit the appealing attributes of active contours. 

The first major contribution of this thesis is a novel framework for the automated 

parameterization of region-based active contours. The presented framework aims to 

endow segmentation results with objectivity and robustness as well as to set domain 

users free from the cumbersome and time-consuming process of empirical adjustment. 

It is applicable on various medical imaging modalities and remains insensitive on 

alterations in the settings of the acquisition devices. The experimental results 

demonstrate that the presented framework maintains a segmentation quality which is 

comparable to the one obtained with empirical parameterization.  

The second major contribution of this thesis is an unsupervised active contour-based 

model for the segmentation of proteomics images. The presented model copes with 

crucial issues in 2D-GE image analysis including streaks, artifacts, faint and overlapping 

spots. In addition, it provides an alternate to the laborious, error-prone process of 

manual editing, which is required in state-of-the-art 2D-GE image analysis software 

packages. The experimental results demonstrate that the presented model outperforms 

2D-GE image analysis software packages in terms of detection and segmentation 

quantity metrics.  

 

 

 

 

SUBJECT AREA: Image Analysis  

KEYWORDS: Segmentation, Active Contours, Proteomics Images, Medical Images  

 



 

 



ΠΕΡΙΛΗΨΗ 

 

Στην παρούσα διατριβή παρουσιάζονται αυτόματοι αλγόριθμοι ανάλυσης εικόνας για 

την κατάτμηση διαφόρων τύπων εικόνων, με έμφαση στις εικόνες πρωτεομικής και στις 

ιατρικές εικόνες. Οι προτεινόμενοι αλγόριθμοι βασίζονται στις αρχές των 

παραμορφώσιμων μοντέλων και ειδικότερα των ενεργών περιγραμμάτων περιοχής. Η 

διατριβή εστιάζει σε δύο κυρίως στόχους: ο πρώτος είναι η επίλυση του σημαντικού 

προβλήματος της αυτόματης παραμετροποίησης στην κατάτμηση εικόνας, ενώ ο 

δεύτερος είναι η διατύπωση ενός ολοκληρωμένου μοντέλου κατάτμησης εικόνων 

πρωτεομικής που αξιοποιεί το ανάπτυγμα των ενεργών περιγραμμάτων. 

Η πρώτη κύρια συνεισφορά της παρούσας διατριβής είναι ένα πρωτότυπο πλαίσιο για 

την αυτόματη παραμετροποίηση των ενεργών περιγραμμάτων περιοχής. Το πλαίσιο 

που παρουσιάζεται έχει σκοπό να εμπλουτίσει τα αποτελέσματα με αντικειμενικότητα 

και αρτιότητα καθώς και να απελευθερώσει τους τελικούς χρήστες από την επίπονη και 

χρονοβόρα διαδικασία της εμπειρικής ρύθμισης. Μπορεί να εφαρμοσθεί σε διάφορους 

τύπους ιατρικών εικόνων και παραμένει ανεπηρέαστο στις τροποποιήσεις των 

ρυθμίσεων των συσκευών λήψης των εικόνων αυτών. Τα πειραματικά αποτελέσματα 

καταδεικνύουν ότι το προτεινόμενο πλαίσιο διατηρεί υψηλή την ποιότητα κατάτμησης, 

συγκρίσιμη με εκείνη που επιτυγχάνεται με εμπειρική παραμετροποίηση. 

Η δεύτερη κύρια συνεισφορά της διατριβής είναι ένα αυτόματο μοντέλο βασιζόμενο στα 

ενεργά περιγράμματα για την κατάτμηση εικόνων πρωτεομικής. Το μοντέλο αυτό 

αντιμετωπίζει σημαντικά προβλήματα στην ανάλυση δι-διάστατων εικόνων 

ηλεκτροφόρησης συμπεριλαμβανομένων των γραμμών, τεχνουργημάτων, αχνών και 

επικαλυπτομένων κηλίδων. Ακόμη, παρέχει εναλλακτική λύση στην επίπονη, επιρρεπή 

σε σφάλματα διαδικασία της χειρωνακτικής επεξεργασίας, η οποία απαιτείται στα 

υπάρχοντα πακέτα λογισμικού ανάλυσης δι-διάστατων εικόνων ηλεκτροφόρησης. Τα 

πειραματικά αποτελέσματα καταδεικνύουν ότι το προτεινόμενο μοντέλο υπερτερεί των 

υπαρχόντων πακέτων λογισμικού δι-διάστατης ανάλυσης σε ποσοτικές μετρικές 

εντοπισμού και κατάτμησης. 

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Ανάλυση Εικόνας  

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Κατάτμηση, Ενεργά Περιγράμματα, Εικόνες Πρωτεομικής, Ιατρικές 

Εικόνες 



 

 



 

“The task is…not so much to see what no one has yet seen; but to think what nobody 

has yet thought, about that which everybody sees.”  

Erwin Schrödinger (8/1887-1/1961) 
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CHAPTER 1 

1. INTRODUCTION 

 

1.1  The Segmentation Task 

Segmentation is the process of partitioning an image into semantically disjoint 

regions (segments) so that each region exhibits homogeneous properties. The 

primary objective is to mine information on target regions associated with their 

shape, size and location on the image.  

 

Definition: Let F  be the set of all regions of an image and ()P  be a uniformity 

(homogeneity) predicate defined on groups of connected pixels, then 

segmentation is a partitioning of the set F  into a set of connected subsets or 

regions ),..,,( 21 nSSS  such that FSi

n

i 1  with ji SS   when ji  . The 

uniformity predicate )( iSP  is true for all regions iS  and )( ji SSP   is false when 

iS  is adjacent to jS . 

 

Segmentation is a challenging task in computer vision with essential applications 

in biomedical engineering, remote sensing, robotics and automation. Typically, 

the target region is separated from the rest of image regions utilizing defining 

features including intensity, texture, color or motion cues. In this light, multiple 

segments are generated and the selection of the most significant segments 

becomes a controversial decision as it highly hinges on heuristic considerations. 

Figure 1.1 depicts: (a) a sample image obtained by the Berkeley segmentation 

dataset [1] as well as (b)-(d) different versions of ground truth images. A 

significant task in order to develop image segmentation algorithms is the 

provision of objective, informative and usable ground truth images. This task 

becomes even more difficult in cases that experts disagree with one another and 

the validity of the ground truth is disputed. 
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(a) (b) 

  

(c) (d) 

Figure 1.1: (a) Sample image obtained by the Berkeley segmentation dataset [1], (b)-(d) 

different versions of ground truth images. 

 

Moreover, the separation of the target regions is impeded by several daunting 

factors such as: background clutter, the presence of noise and artifacts as well as 

occlusions on multiple target regions. This thesis focuses on image segmentation 

using deformable models and specifically region-based Active Contours (ACs) [2] 

because of their strong mathematical foundation and their appealing properties 

(see Chapter 2, § 2.5.4). Figure 1.2 depicts an example of the style of image 

segmentation adopted in this thesis, utilizing texture information. The 

segmentation task is performed by delineating the boundaries of target regions 

via contour tracking. 
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Figure 1.2: Example of the style of image segmentation adopted in this thesis. 

 

1.2  Objectives of the Thesis 

This thesis aims to present unsupervised image analysis algorithms for the 

segmentation of various types of images, with a focus on proteomics and medical 

images.  

 

 The first major objective of this thesis is to develop a novel framework which 

immunizes deformable models against empirical parameterization. The novel 

framework focuses on region-based ACs due to their appealing merits on 

biomedical image segmentation (see Chapter 3). It is applied on various 

medical imaging modalities in order to set Medical Doctors (MDs) free from the 

tedious and time-consuming process of parameter tuning, as well as to bolster 

the objectivity and reliability of the segmentation results (see Chapter 5). 

 The second major objective of this thesis is to develop unsupervised algorithms 

for spot detection and segmentation on proteomics images since state-of-the-art 

software packages and techniques generate results which require manual 

editing and corrections by gel expert analysts (see Chapter 6). 

 

1.3  Contributions of the Thesis 

The contributions of this thesis to the state-of-the-art are categorized into 

theoretical and applied and are addressed below: 

 

 



 

Eleftheria A. Mylona 
38 

Theoretical 

 A Novel Framework for Automated Parameterization of Region-Based ACs.  

The presented framework aims to enrich segmentation results with objectivity 

and robustness as well as to set domain users free from the cumbersome and 

time-consuming process of empirical adjustment. Additionally, technical skills 

and a priori knowledge or learning considering the shape/size of the target 

region, are no longer a prerequisite for the end-user. The presented framework 

is inspired by an observed isomorphism between the eigenvalues of structure 

tensors and AC parameters. Both may act as descriptors of the orientation 

coherence in regions containing edges. The experimental results demonstrate 

that the presented framework maintains a high segmentation quality without 

the need of trial-and-error parameter adjustment. Moreover, due to its 

simplicity and flexibility, it can be embedded in various region-based AC 

variations. Refer to Chapter 3 for details of the novel framework. 

 

Applied 

 Medical Image Segmentation Utilizing the Automatic Framework.  

The presented framework is applicable to various medical imaging modalities 

regardless of the shape/size and the non-rigid boundaries of the internal 

anatomical structures as well as the degree of corruption due to the presence 

of noise. Furthermore, it is not sensitive on alterations in the settings of the 

acquisition devices and it relieves MDs from the laborious task or parameter 

tuning. Refer to Chapter 5 for details of medical image segmentation provided 

by the automatic framework. 

 

 Unsupervised AC-Based Model for the Detection and Segmentation of 

Proteomics Images.  

The presented model is the first to exploit the attractive properties of the AC 

formulation, in order to confront acute issues in 2D-GE image analysis, such as 

the presence of noise, streaks, multiplets and faint spots. Moreover, it relieves 

gel expert analysts from the tedious, error-prone process of manually 

correcting segmentation results obtained by state-of-the-art 2D-GE image 
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analysis software packages. It is based on the formation of a spot-targeted 

level-set surface, as well as of morphologically-derived AC energy terms, used 

to guide AC initialization and evolution, respectively. The experimental results 

demonstrate that the presented model generates more plausible spot 

boundaries and outperforms 2D-GE image analysis software packages in 

terms of detection and segmentation quantity measures. Refer to Chapter 6 for 

details of the unsupervised 2D-GE image detection and segmentation based 

on ACs. 

 

All ideas presented in this thesis have been published or are submitted in four 

(4) international peer-reviewed journals, eleven (11) international peer-

reviewed conferences, one (1) book chapter and one (1) Hellenic conference. 

Among them, one work has been published in Pattern Recognition, Elsevier 

while another one has been published in IEEE Transactions on Information 

Technology in Biomedicine (TITB). One more has been accepted with 

revisions in IEEE Transactions on Cybernetics and another one has been 

submitted in Medical & Biological Engineering & Computing, Springer. 

Moreover, three papers have been published in the Proceedings of IEEE 

International Conference on Image Processing (ICIP), two in the Proceedings 

of IEEE Computer-Based Medical Systems (CBMS), two in the Proceedings of 

IEEE Information Technology and Applications in Biomedicine (ITAB), one in 

the Proceedings of IEEE Digital Signal Processing (DSP), one in the 

Proceedings of European Signal Processing Conference (EUSIPCO) and one 

in Proceedings of the IEEE International Workshop on Biomedical Engineering. 

Furthermore, one paper has been published in the Proceedings of IEEE 

International Symposium on Signal Processing and Information Technology 

(ISSPIT). 

 

1.4  Organization of the Thesis 

The remainder of this thesis is organized as follows:  

Chapter 2 provides a literature review on the most representative segmentation 

methods. These include: a) thresholding, b) edge-based, c) region-based 

methods and d) deformable models. Particular emphasis is provided on the latter, 
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since most of the ideas presented in this thesis are based on deformable models 

and more specific region–based ACs.  

 

Chapter 3 presents a novel framework for automated parameterization of region-

based ACs. This chapter provides information on related work as well as the 

motivation that inspired the design of the framework. Furthermore, a detailed 

description of the methodology reveals the framework’s inner mechanisms. The 

framework is incorporated into two region-based and one hybrid AC variation so 

as to demonstrate its versatility with respect to different region-based AC 

variations. 

 

Chapter 4 provides an introduction on proteomics and medical images, on which 

all algorithms developed in this thesis, are applied. A brief biological and medical 

background is provided on either case along with the challenges of these images, 

which impede the segmentation task. 

 

Chapter 5 presents medical image segmentation results on six medical image 

databases using the automatic framework. The utilized databases include: a) 

mammograms containing abnormalities, b) ultrasounds of thyroid nodules, c) 

endoscopy images containing polyps, d) dermoscopy images containing skin 

lesions, e) axial and coronal CT scans of lung parenchyma and f) labial teeth and 

gingiva photographic images.  

 

Chapter 6 introduces an unsupervised AC-based model for the detection and 

segmentation of proteomics images. As a first step, protein detection is performed 

utilizing operators based on mathematical morphology. The presented detection 

technique is evaluated on real 2D-GE images by comparing it with a popular 

software package. As a second step, protein spot segmentation is achieved by an 

AC-based scheme which is automatically initialized and is capable of separating 

overlapping spots as well as identifying faint spots. The presented segmentation 

scheme is experimentally evaluated on real and synthetic 2D-GE images by 

comparing it with three state-of-the-art software packages.  
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Chapter 7 summarizes the major achievements of this thesis and provides ideas 

regarding possible future directions of this work.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Eleftheria A. Mylona 
42 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Image Analysis and Processing with Applications in Proteomics and Medicine 

Eleftheria A. Mylona 
43 

CHAPTER 2 

2. LITERATURE REVIEW ON SEGMENTATION METHODS 

 

2.1  Introduction 

This chapter provides a concise review of the most established segmentation 

methods published in literature so far as well as extensive references for further 

reading. The segmentation methods can be classified into four main categories: 

a) thresholding methods, b) edge-based methods, c) region-based methods and 

d) deformable models. Most of the ideas presented in this thesis are tailored upon 

the principles of deformable models. 

 

2.2  Thresholding Methods  

Thresholding is a simple yet effective method of image segmentation. It is 

implemented based on the intuitive idea of differentiating Pixels Of Interest (POIs) 

from the rest. Regions Of Interest (ROIs) are separated according to each 

specific application by comparing pixel intensity values with respect to a threshold 

value. The output is a binary image consisting of two states namely, foreground 

and background, each one assigned specific intensity values that fulfill the needs 

of implementation. ROIs are usually portrayed in the foreground.  

 

Several thresholding applications focus on document image analysis with the aim 

to extract characters, logos, graphical content, lines or legends [4], scene 

processing [5], quality inspection of materials [6], cell image analysis [7] and 

segmentation of various imaging modalities [8]-[11]. Thresholding methods can 

be categorized into six types depending on the exploitation of: a) histogram 

shape-based, b) clustering-based, c) entropy-based, d) spatial-based and e) local 

statistics-based information [12].  

 

2.2.1 Histogram Shape-Based  

This category achieves thresholding based on the exploitation of the shape 

properties of the image histogram. Rosenfeld’s method [13] analyzes the 
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concavities of the histogram )(gh  contrary to its convex hull )(gHull , i.e. the set 

theoretic difference |)()(| ghgHull  . Intensity values associated with the deepest 

concavity points become threshold candidates. In the case that there are multiple 

competing concavities, various target attributes other than intensity may as well 

be exploited. Variations on this thresholding algorithm were proposed by [14]-[17]. 

Sezan’s method [18] analyzes the peaks of the histogram by convolving the 

histogram function with a smoothing kernel. The aperture of the kernel is adjusted 

and the peaks of the histogram are merged. As a result, the histogram is reduced 

to a two-lobe function where each lobe consists of incipient ie , maximum im  and 

terminating is  zero-crossings. The optimal threshold is located between the first 

terminating and second initiating zero-crossing and is calculated by the following 

formula:  

10,)1( 21  γsγeγTopt  (2.2.1) 

 

 

2.2.2 Clustering-Based  

In this category, the grey level data are divided into two clusters. Riddler et al. 

[19] proposed one of the first iterative approaches according to two-class 

Gaussian mixture models. At the 
thn  iteration, a new threshold value is 

established based on the average of the foreground and background class 

means. The iterations terminate when || 1 nn TT becomes sufficiently small. 

Leung and Fam [20] as well as Trussel [21] proposed thresholding approaches in 

a similar fashion. Yanni and Horne [22] initialized the mean value midg  between 

two peaks of the histogram as 2/)( minmax gggmid  , where maxg  is the highest 

non-zero grey level and ming  is the lowest so that )( minmax gg   becomes the span 

of non-zero grey values in the histogram. The mean value is updated using the 

mean of the two peaks on the right and left as 2/)( 21 peakpeakmid ggg  . 

 

Otsu [23] addressed the minimization of the weighted sum of within-class 

variances of the foreground and background pixels to establish an optimal 
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threshold. The results are satisfactory when the numbers of pixels in each class 

are close to each other.   

 

2.2.3  Entropy-Based  

The algorithms of this class exploit the entropy measure of the intensity 

distribution. Kapur et al. [24] considered the image foreground and background as 

two different signal sources and the obtained threshold value was the intensity 

value that maximizes the sum of the two class entropies. Moreover, Yen et al. 

[25] obtained the threshold that maximizes the entropy correlation. Sahoo et al. 

[26] incorporated the Renyi entropies fH  and bH  of the foreground and 

background, respectively defined as follows:  
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(2.2.2) 

where 1ρ  is a positive real parameter, T  the threshold value and g  the 

intensity values. By maximizing the sum of the foreground and the background 

Renyi entropies for the three ranges 10  ρ , 1ρ  and 1ρ  in the limiting 

case, they obtain three different threshold values 1T , 2T  and 3T , respectively. The 

optimal threshold value is a weighted combination of these three threshold 

values. 

 

2.2.4  Spatial-Based  

Algorithms of this category utilize both intensity distribution and dependency of 

pixels on a neighborhood in the form of context probabilities, correlation functions, 

co-occurrence probabilities and local linear dependence models of pixels. Pal et 

al. [27] introduced an approach based on the observation that two images with 

identical histograms can have different entropies due to their spatial structure. 

Thus, they utilized the co-occurrence probability of intensities of each pixel over 

its horizontal and vertical neighbors. Chang et al. [28] proposed an approach 
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based on the minimization of the divergence between the co-occurrence 

probabilities of the original and binary image. The utilized measure of divergence 

was the Kullback-Leibler distance.  

 

2.2.5  Local Statistics-Based 

In this category, a threshold is calculated at each pixel based on local statistics 

such as intensity range or variance of the pixel neighborhood. According to 

Niblack [29] as well as Trier and Jain [30], a threshold is calculated by using local 

variance while the local contrast is exploited by White and Rohrer [31]. The latter 

compared the intensity value of a pixel with the average of the intensity values in 

a neighborhood chosen to be of character size. Provided that the pixel is 

significantly darker than the average it is denoted as character, otherwise it is 

classified as background.  

 

2.3  Edge-Based Methods  

In edge-based segmentation the main idea is to detect edges by designing a 

kernel matrix which resembles the edge structure. The image is convolved with 

the kernel and the pixels with a neighborhood similar to the kernel will give a 

strong output. Let ),( nmI  be the two-dimensional input image and ),( jik  the 

kernel with which the image is convolved. The convolution of I  with k  is defined 

as follows:  

),(),( jnimIjikkI
I

Ii

J

Jj

 
 

 
(2.3.1) 

 

 

Figure 2.1 depicts the process of convolution of I  with k . The center element of 

k  is placed over the source pixel of I . On the output image, the source pixel is 

replaced by a weighted sum of itself and nearby pixels.  
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Figure 2.1: Convolution of image I  with kernel matrix k . 

 

The most typical elements for edge detection are the first and second derivatives. 

The first derivative is the natural candidate for edge detection since it provides a 

non-zero output across the entire edge transition. It is represented by the gradient 

operator G  defined as:  
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(2.3.2) 

 

 

Three discrete formulations widely utilized for edge detection are the Prewitt [32], 

Sobel [33] and Roberts [34] filter masks illustrated in Figure 2.2. 
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Figure 2.2: (a) Prewitt, (b) Sobel and (c) Roberts filter masks. 
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The second derivative is utilized to determine the transition from low to high 

intensity or vice versa. It may also be used to verify the center of an edge by the 

zero-crossing of the two peaks. It is represented by the Laplacian operator 

defined as:  

2

2

2

2
2222

y

I

x

I
GGIG yx









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(2.3.3) 

 

Due to the double differentiation, it is very susceptible to noise. In order to 

overcome this, the image is smoothed using a Gaussian filter defined as: 

 

222 2/)( σyx

σ eG   (2.3.4) 

The Laplacian and Gaussian operators are combined so as to form the Laplacian 

of a Gaussian (LoGσ) operator defined as: 
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According to [35], Canny is 10.17%, 11.29% and 70.12% better than LoG, Sobel 

and Prewitt operator, respectively in terms of localization and signal response.  

 

2.4  Region-Based Methods  

The key idea is to start from a given seed point that represents a target pixel. The 

neighborhood of the pixel is classified as background or target region depending 

on a threshold value. The target region is segmented by a recursive search 

through the pixels which are classified as target. The most common region-based 

approach is the Watersheds Transform (WST) [36]. According to the latter, the 

image is visualized as a landscape where local minima are identified as seed 

points. Provided that rain falls over the landscape, the water will be collected from 
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a specific area surrounding each local minimum called catchment basin. Each 

catchment basin is considered to represent a target region. The boundaries 

generated between catchment basins are called watersheds.  

 

A typical drawback of this approach is over-segmentation since all pixels of the 

image are assigned to catchment basins, i.e. no pixels are initially excluded from 

the procedure. Aiming at confronting over-segmentation, researchers have 

developed inner marker WST [37] as well as region merging methods [38]. The 

former incorporates markers in order to identify appropriate local minima, 

whereas the latter removes false watersheds generated after the segmentation 

process. Figure 2.3 depicts: (a) forested watersheds, (b) WST formulation in 

image segmentation. 

 

  

(a) (b) 

Figure 2.3: (a) Forested watersheds, (b) WST formulation in image segmentation. 

 

2.5  Deformable Models 

Deformable models are related to the theory developed in Fluid Dynamics during 

the 80’s. They are formulated according to an energy functional defined so as to 

be minimized when approximating target boundaries. The argument of the energy 

functional is typically a curve or surface, which evolves and defines the 

partitioning of the image based on external forces that hinge on image features 

such as intensity and/or texture. Additionally, internal constraints generate tension 

and stiffness, which preserve the smoothness and continuity of the model by 
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preventing the formation of sharp corners. The corresponding Euler-Lagrange 

equation constitutes a Partial Differential Equation (PDE), i.e. an iterative gradient 

descent algorithm, which guides the evolution towards the minimum (see 

Appendix I). The numerical implementation of the evolution is performed by the 

level set method, which endows the model with topological adaptability, i.e. 

splitting or merging, appearing or disappearing during the surface evolution. 

 

2.5.1  Snakes 

The original snake model was introduced by Kass, Witkin and Terzopoulos in 

1988 [39]. A snake is a deformable curve defined in 2  described as 

2]1,0[: s . The energy functional was suggested to contain two terms: the 

internal and external energy. The internal energy intE  is associated with 

smoothness and continuity and is defined as: 

 

dpsβsasE ppp )||||||||()( 2

1

0

2

int    
(2.5.1) 

 

where ps  and pps  are the first and second derivative of s , respectively and βa,  

are the corresponding weighting parameters defining the elastic properties. The 

external energy extE  is associated with image features and is defined as: 

 


1

0

)|)(()|( dpIpsPIsEext  
(2.5.2) 

 

where 2:P  is a function, called potential function, which hinges on image 

features. The total energy functional totalE  being minimized is defined as follows: 

 



Image Analysis and Processing with Applications in Proteomics and Medicine 

Eleftheria A. Mylona 
51 

)|()()( intint IsEwsEwsE extexttotal   (2.5.3) 

where intw , extw  are corresponding weighting parameters which control the fine 

balance between the two energy terms. The snake is initialized close to the target 

region and evolves until convergence towards a local minimum of totalE  defined 

as (see Appendix I): 

 

)}|()({minarg intmin IsEsEs ext
s

  (2.5.4) 

The numeric implementation of this minimization problem is obtained by sampling 

the continuous curve s  at finite number of points 2)(  ii pss , pipi Δ , 

Ni ,...,2,1 . The discrete energy functional is obtained by replacing the integral 

with a sum and the derivatives with first and second order differences as follows: 
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where 2

11

2

11int ||2||||||)(   iiiiii sssβssasE . The total discrete 

energy functional is minimized by the gradient descent algorithm which yields to 

the following recursive equation: 
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where )(int isF  and )( iext sF  are the internal and external forces defined as: 
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The model converges when an equilibrium between )(int isF  and )( iext sF  is 

reached. Figure 2.4 depicts the evolution of the snake model.  

Although simple and efficient, snakes are not topologically adaptable, i.e. they are 

not capable of extracting multiple targets. This drawback triggered researchers to 

develop AC models represented by the level set method. 

 

 

Figure 2.4: Evolution of the snake model. 

 

2.5.2  The Level Set Method 

The level set method uses an intrinsic representation of curve and surface 

evolution. This method was introduced in Fluid Dynamics at the end of the 70’s. 

Osher and Sethian [40] provided a solid mathematical foundation with 

applications to gas dynamics and flame propagation that was introduced for 

image segmentation. This framework is highly appropriate for curve and surface 

evolution. Hence, it has become the standard way of representing interfaces 

evolution in Fluid Dynamics and Computer Vision, among other disciplines.  

 

The curve C  is represented implicitly via a Lipschitz function φ  such that 

}0),(|Ω),{( 2  yxφyxC . Curve evolution is given by the zero-level set 

function ),,( tyxφ . The motion of the curve is given by solving the following PDE:  
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(2.5.8) 

 

where the set }0),(|),{( 0 yxφyx  defines the initial contour and 
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yxφ
divK  is the curvature of the level set. Figure 2.5 depicts a 3D 

representation of the level set. 

 

Figure 2.5: 3D representation of the level set. 

 

2.5.3  Level Set Edge-Based ACs 

The first level set edge-based AC model, called Geometric AC (GAC), was 

introduced by Caselles et al. [41]. The main idea was to utilize an edge detector 

function which depends on image gradient as follows: 
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where IGσ   is the convolution of image I  with the Gaussian σG . The evolution 

equation is represented by the level set method as follows:  
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where v  is a balloon force. Even though GAC is topologically adaptable, it fails to 

converge to the target boundary because g  is practically never zero on edges. In 

order to overcome this drawback, Caselles et al. [42] introduced an extended 

version of the GAC model, called geodesic AC model. Instead of utilizing the 

edge detector function described in Eq. (2.5.9), they proposed the more generic 

edge detector function 2|)(| Ig  . The evolution equation of the geodesic level set 

function is defined as follows: 
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(2.5.11) 

 

Equation (2.5.11) extends (2.5.10) in the sense that it includes a new term which 

increases the attraction of the contour towards the target boundary. It should be 

noted that, the balloon force can be incorporated so as to increase the 

convergence speed.  

 

2.5.3.1 The Model of Li et al. 

Li et al. [43] proposed to minimize an energy functional inspired by GAC, which is 

defined as: 
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(2.5.12) 

 

where p  a potential function ),0[:p , δ  the Dirac function, H  the 

Heaviside function, regw  the regularization parameter, a  a parameter that weights 

the second energy term which can be expressed as a line integral of the GAC 

model and dfw  the data fidelity parameter. The level set evolution is determined 

as follows: 
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Level set edge-based ACs have been widely utilized for boundary extraction [44]-

[51]. However, they only incorporate localized information derived from the target 

region boundary, ignoring information related to the regions inside and outside of 

the target boundary. Hence, the contour might be delayed on edges associated 

with noise or artifacts. Aiming at encompassing more global information, region-

based ACs were introduced. 

 

2.5.4  Region-Based ACs 

The first region-based AC model was proposed by Mumford and Shah in 1989 

[52]. The key idea was to compute the optimal approximation of an image as a 

combination of regions of piecewise smooth intensities. The authors suggested 

the following energy functional: 

 

dxdyyxudxdyyxuyxIw

CLwCuE

C

df

reg

 



\Ω

2

Ω

2 |),(||),(),(|

)(),(

 

(2.5.14) 

 

where u  is a piecewise smooth approximation of I , ΩC  a 1D subset of edges 

and )(CL  the boundary length. The first term of Eq. (2.5.14) forces C  to have 

minimal length, whereas the second term evokes u  to approximate image I . The 

third term makes it more homogeneous.  

 

2.5.4.1 The Chan-Vese Model 

Chan and Vese [2] introduced a level set region-based AC model which was a 

particular case of the Mumford-Shah functional. According to this model, u  is a 
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binary function which obtains two values: a) the average of I  inside the 

segmented region and b) the average of I  outside the segmented region. The 

energy functional that was suggested is defined as follows: 
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where inc , outc  are the average values of I  inside and outside of the contour, 

respectively defined as: 
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The evolution equation of the Chan-Vese model is defined as follows: 
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The advantages of this model is that the initial contour can be placed anywhere 

on the image and it can extract target regions with weak boundaries. 
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2.5.4.2 The Model of Bresson et al. 

Bresson et al. [53] proposed to minimize the following energy functional based on 

the Chan-Vese model, in order to carry out the global minimization of 

segmentation: 
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(2.5.18) 

 

where )(uTVg  is the weighted total variation energy of the function u  with the 

weight function g , i.e.   dxuxguTVg ||)()( . Region-based ACs have been 

extensively utilized in image segmentation [54]-[57]. 

 

2.6  Summary 

In this chapter, the most representative image segmentation methods proposed in 

literature are introduced. The emphasis is put on deformable models since this 

thesis focuses on region-based ACs. Table 2.1 provides a comparison between 

the aforementioned segmentation methods pertinent to their benefits as well as 

their limitations.  
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Table 2.1: Comparison of segmentation methods 

Segmentation Method Benefits Limitations 

Thresholding Simple implementation 

 

Histograms with no sharp 

or well-defined peaks 

 

Edge-Based a) Algorithms are typically 

less complex 

b) Successful on images 

of high contrast between 

target and background 

 

a) Fail in the presence of 

noise 

b) Ineffective at curves 

and corners where gray 

level intensity values vary 

 

Region-Based a) Wider range of image  

features such as texture 

b) Insensitive to the 

presence of noise 

c) Use of spatial 

information 

a) Susceptible to the 

selection of seed points 

b) Requirements for 

stopping criteria 

c) Over-segmentation 

Deformable Models a) Topologically 

adaptable 

b) Incorporation of 

smoothness constraints 

which provide robustness 

to noise 

a) Sensitive to local 

minima 

b) Sensitive to parameter 

settings 

Aiming to overcome the last limitation of deformable models, one major goal of 

this thesis is to develop a novel framework which immunizes deformable models 

against empirical parameterization. Since it is unrealistic to automatically adjust 

all parameters of different deformable models, the novel framework focuses on 

region-based ACs due to their attractive merits on biomedical image 

segmentation. 
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CHAPTER 3 

3. A NOVEL FRAMEWORK FOR AUTOMATED 

PARAMETERIZATION OF REGION-BASED ACs 

 

3.1  Introduction 

ACs are a rather mature image segmentation paradigm, with several variations 

proposed in literature (see Chapter 2, § 2.5). However, their parameterization 

remains a challenging, open issue, with strong implications on the quality, 

objectivity and robustness of the segmentation results. Very often, parameters 

are empirically adjusted on a trial and error basis, a process which is laborious 

and time-consuming, based on subjective as well as heuristic considerations. On 

one hand, non-expert users such as MDs and biologists require technical support 

since they are not familiar with the algorithmic inner mechanisms. On the other 

hand, parameter configurations empirically determined by image analysis experts 

are usually suboptimal and applicable to specific datasets [58].  

 

This chapter introduces a novel framework for automated adjustment of region-

based AC regularization and data fidelity parameters based on local image 

geometry information. Starting from the observation that these parameters and 

the eigenvalues of structure tensors are associated with the same orthogonal 

directions, local image geometry is encoded by the orientation coherence in edge 

regions. The latter can be mined by means of Orientation Entropy (OE), a 

measure which is an increasing function of the variability in edge orientation, 

obtaining low values in structured regions containing edges of similar orientations 

and high values in unstructured regions containing edges of multiple orientations. 

As a result, those forces that guide contour away from randomly oriented, high-

entropy edge regions are amplified and iterations dedicated to misleading local 

minima are avoided, speeding up contour convergence. On the other hand, 

forces imposed within the proximity of structured edges, naturally related to target 

edge regions, are reduced, enhancing segmentation accuracy. It should be 

highlighted that, the convergence acceleration is a byproduct of the presented 



 

Eleftheria A. Mylona 
60 

framework, rather than its main motivation, which is the capability of AC self-

parameterization. 

  

3.1.1  Contribution 

The contribution of the presented framework has several aspects: 

1) It is unsupervised and may be treated as a ‘black box’: the regularization and 

data fidelity parameters are automatically adjusted. Hence, technical skills are not 

a prerequisite for the domain user, whereas the subjectivity of the results is 

reduced. 

2) It is applicable to several types of images: it can be applied to natural, textured 

and biomedical images as well as to real-world photographs. 

3) It does not require any a priori knowledge or learning considering the 

shape/size of the target region. 

4) It guides contour away from high-entropy edge regions in order to avoid 

iterations dedicated to misleading local minima, by selectively amplifying data 

fidelity forces. 

 

3.1.2  Related Work 

Numerous approaches have been proposed in order to cope with the issue of 

empirical parameterization. Pluempitiwiriyawej et al. [59] and Tsai et al. [60], 

dynamically update AC parameters as contour evolves. This temporal 

dependency may lead to the propagation of early errors in the later contour 

evolution stages. In addition, in these approaches parameters are not spatially-

varying, failing to capture local image features. Kokkinos et al. [61] proposed a 

statistical approach employing the a posteriori probabilities of texture, edge and 

intensity cues as contour weights in a locally adaptive manner. Nevertheless, 

their approach still requires technical skills by the domain user. Keuper et al. [62] 

and Liu et al. [63] presented a method for dynamic adjustment of AC parameters, 

applicable on the detection of cell nuclei and lip boundaries, respectively. Both 

methods require a priori knowledge considering the shape of the target region. 

Iakovidis et al. [64] and Hsu et al. [65] introduced a framework for optimization of 
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AC parameters based on genetic algorithms. However, these heuristic 

approaches converge slowly in locally optimal solutions. Allili et al. [66] proposed 

an approach for estimating hyper-parameters capable of balancing the 

contribution of boundary and region-based terms. In their approach, empirical 

parameter tuning is still involved. Yushkevich et al. [67] developed an application 

for level set segmentation of images of anatomical structures. Although their 

Graphical User Interface (GUI) is friendly to non-expert users, parameter settings 

are still empirically fixed.  

 

3.2  Motivation 

3.2.1  Structure Tensor Eigenvalues 

The presented parameterization framework is motivated by the appealing 

properties of structure tensor eigenvalues [68]. The latter are capable of 

describing the orientation coherence in edge regions.  

 

In what follows, an edge region containing edges of similar orientations is 

characterized as a structured edge region, whereas an edge region containing 

multiple orientations is characterized as an unstructured one. Structured edge 

regions usually surround actual region boundaries, whereas unstructured edge 

regions are associated with noise or artifacts. In this light, structure tensors are 

capable of providing maps of actual region boundaries and regions which 

correspond to noise or artifacts. This is depicted in Figure 3.1, which illustrates: 

(a) the structure tensor field of a test image, (b) a zoomed region which 

corresponds to an actual region boundary and (c) a zoomed region which 

corresponds to noise and artifacts. In the case of Figure 3.1(b), the edge region is 

characterized by edges of similar orientations, whereas in the case of Figure 

3.1(c), the edge region is associated with multiple orientations. Based on the 

above remark, structure tensor eigenvalues are capable of identifying whether an 

edge region is associated with actual region boundaries, depending on the 

variability of the orientations of its edges.  
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Figure 3.1: (a) Structure tensor field of a test image, (b) zoomed region which corresponds 

to an actual region boundary, (c) zoomed region which corresponds to noise and artifacts. 

 

The Weickert’s diffusion model [69] defines a structure tensor D  as a symmetric, 

semi-positive 22  matrix (also called “second-moment matrix”), capable of 

describing the orientation coherence of an edge region as follows: 

 

TIIIID   (3.2.1) 

where D  has an orthonomal basis of eigenvectors 1v , 2v  with Iv ||1 , Iv 2  

and 21,λλ  are the corresponding eigenvalues given by: 
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where the  sign belongs to 1λ . The eigenvectors form the orthogonal basis so 

that the variance of the projection on one of the tensor’s axes is maximal and the 

projection on one of the remaining axes is minimal. The eigenvalues describe the 

orientation coherence of edge regions along the corresponding eigenvectors. It is 
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worth to be noted that, 1λ  is the principal eigenvalue and is longitudinal with 

respect to the principal axis of the elliptical tensor, whereas 2λ  is the minor 

eigenvalue and is vertical with respect to the same principal axis. Figure 3.2 

depicts an elliptical representation of a 2D structure tensor. 

 

 

Figure 3.2: Elliptical representation of a 2D structure tensor. 

 

3.2.2  Regularization and Data Fidelity Forces 

The general form of the region-based AC energy functional can be written as 

follows (see Chapter 2, § 2.5.4): 

 

dfdfregregtotal EwEwE   (3.2.3) 

where  regE  and dfE  are the regularization and data fidelity energy terms, 

respectively, whereas regw  and dfw  are the corresponding weighting parameters. 

Energy terms are scalar functions, which most often discard any information 

associated with the orientation coherence of edge regions. However, forces 

guiding contour evolution are vectors, which are affected by the orientation 

coherence of edges.  

 

Regularization forces imposed on a point of the contour are tangent, whereas 

data fidelity forces are vertical, attracting the contour towards target edges. 
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Providing that the contour is initialized as a circle, the regularization weight regw  

is longitudinal on a point of the contour, whereas the data fidelity weight dfw  is 

vertical with respect to the same point. Figure 3.3 depicts a circular 

representation of an AC (red line). 

 

 

Figure 3.3: Circular representation of an AC (red line). 

 

It is tempting to notice that, if we associate the eigenvectors of the elliptical tensor 

with the forces imposed on a point of the contour, the regularization weight regw  

corresponds to the same direction as the principal eigenvalue 1λ , whereas the 

data fidelity weight dfw  corresponds to the same direction as the minor 

eigenvalue 2λ . This isomorphism indicates a link between the regularization and 

data fidelity parameters and the eigenvalues of the structure tensor. 

 

3.3  Methodology 

3.3.1  Orientation Coherence Estimation Using Multi-Directional Analysis 

Inspired by the aforementioned observation, regularization and data fidelity 

parameters of region-based ACs are automatically adjusted in order to reflect the 

orientation coherence of edge regions, in a similar fashion to Weickert’s diffusion 

model [69]. The orientation coherence is estimated by means of the orientation 

entropy (OE). The latter is calculated on directional subbands in each scale of the 

Contourlet Transform (CTr) [70], which apart from intensity also represents 

textural information. CTr provides an inherent multi-directional filtering 
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mechanism, capable of filtering out randomly oriented edges associated with 

noise, artifacts and/or background clutter. Moreover, CTr is directly implemented 

in the discrete domain, as opposed to similar transforms, such as curvelets [71]. 

 

The Contourlet Transform (CTr) 

Aiming at a sparse image representation, CTr employs a double iterated filter-

bank, which captures point discontinuities by means of the Laplacian Pyramid 

(LP) and obtains linear structures by linking these discontinuities with a 

Directional Filter-Bank (DFB). The final result is an image expansion that uses 

basic contour segments. Figure 3.4 illustrates a CTr iterated filter-bank. 

 

 

Figure 3.4: The CTr filter-bank. LP provides a downsampled low-pass and a band-pass 

version of the image. Consequently, a DFB is applied to each band-pass image. 

 

The downsampled low-pass and band-pass versions of the image contain lower 

and higher frequencies, respectively. It is evident that, the band-pass image 

contains detailed information of point discontinuities which are associated with 

target edge regions. Furthermore, DFB is implemented by an l-level binary tree 

which leads to 
l2  subbands. In the first stage, a two-channel quincunx filterbank 

[72] with fan filters divides the 2D spectrum into vertical and horizontal directions. 

In the second stage, a shearing operator reorders the samples. As a result, 

different directional frequencies are captured at each decomposition level. The 

number of iterations depends mainly on the size of the input image. The total 

number of directional subbands totalK  is calculated as: 
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



J

j

jtotal KK
1

 
(3.2.4) 

 

where jK  is a subband DFB applied at the thj  level ( Jj ,...,2,1 ). 

 

Figure 3.5 depicts the CTr filter-bank of a sampled image grid, decomposed to 

the finest scale, which is partitioned into four directional subbands. 

 

Figure 3.5: The CTr filter-bank of a sample grid decomposed to one level of LP and four 

band-pass directional subbands. 

 

Each qq   image grid is fed into the CTr filter-bank through an iterative 

procedure and is decomposed into one pyramidal level, which is then transformed 

into four directional subbands: 0°, 45°, 90° and 135°. This grid must be 

appropriately selected in order to preserve the orientation of the main structures 

of the target region. The size of the qq   image grid is experimentally determined 

as the minimum of the negative power of two of the original image size, which still 

maintains at least an edge region. The band-pass directional subbands represent 

the local image structure. OE is calculated on each directional subband image  

jkI  as follows:  


 


jk jkN

n

M

m

jkjkjk nmpnmpOE
1 1

),(log),(  
(3.2.5) 
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(3.2.6) 

 

where jkOE  is the OE of the subband image jkI  in the thk direction and the thj  

level of decomposition, jkM  is the row size and jkN  the column size of the 

subband image. Among the OE values calculated for each subband image, the 

maximum value jkOE  of the most informative direction k  is calculated and 

assigned to all pixels of each grid. The result is considered as an OE ‘heatmap’ 

reflecting local image structure. 

 

OE obtains high values in cases of unstructured edge regions, which are 

associated with noise and artifacts and low values in cases of structured edge 

regions, which are associated with the actual region boundaries. Figure 3.6(a) 

depicts a schematic representation of edge regions consisting of single and 

multiple orientations, whereas Figure 3.6(b) depicts the OE behavior on each 

edge region of Figure 3.6(a). 

 

 

                  (a)                    (b) 

Figure 3.6: Schematic representation of: (a) edge regions, (b) OE behavior on each edge 

region. 
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3.3.2  Automated Parameter Adjustment 

Regularization and data fidelity parameters are matrices of the same dimensions 

as the original image, and are calculated according to the following equations: 

 

))(max(arg),
1

( jkjkI

auto

dfauto

df

auto

reg IOEw
w

aw
jk

  
(3.3.1) 

 

where a depends on the dimensions of the image grid. The core idea is to guide 

the active contour towards structured, target edge regions in the early stages of 

evolution by appropriately amplifying data fidelity forces in randomly oriented, 

high-entropy regions. As a result the contour will be repelled and iterations 

dedicated to misleading local minima will be bypassed, speeding up contour 

convergence towards target edges. It should be highlighted that both parameters 

are calculated only once. The aim is to guide the contour directly to target edge 

regions, already from the beginning and to prevent any erroneous behavior during 

evolution by ‘constantly reminding’ where the target edge regions lie. 

 

Figure 3.7 illustrates: (a) an artificial bipartite textured image consisting of a target 

region and the initial contour (green circle), (b) a sketch of data fidelity forces on 

an iteration of contour evolution, where A

dfF  (white arrows) relate to edge regions 

which correspond to noise and B

dfF  (black arrows) reflect structured target edge 

regions and, (c) a sketch of these forces on a next iteration of contour evolution, 

where A

dfF  is amplified (long white arrows) and B

dfF  is reduced (short black 

arrows). 
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(a) (b) (c) 

Figure 3.7: (a) Artificial bipartite textured image consisting of a target region and the initial 

contour (green circle), (b) sketch of data fidelity forces on an iteration of contour evolution, 

(c) sketch of data fidelity forces on a next iteration of contour evolution. 

 

Equation (3.3.1) is an interpretation of OE values adaptive to the orientation of 

data fidelity forces. Apart from separately adjusting each parameter, the 

presented framework also achieves a balanced trade-off between regularization 

and data fidelity parameters. It should also be noticed that, the automated 

parameterization is spatially-adaptive, so as to reflect local variations over the 

image. 

 

It can be mentioned that, the presented framework is not confined in using CTr 

and could also embed alternative multi-scale, multi-directional approaches for 

image representation. In any case, the encoded local image geometry will allow 

the formation of OE ‘heatmaps’, which can be used to weight regularization and 

data fidelity forces. The pipeline of the presented framework is portrayed in the 

block diagram of Figure 3.8. 

 

Figure 3.8: Block diagram of the pipeline of the presented framework. 
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3.4  Experimental Evaluation 

The presented framework has been integrated into two region-based [2], [53] and 

one hybrid [43] AC model, in order to evaluate the segmentation performance of 

the automated versus empirical parameterization. The well-known Chan-Vese 

model [2] has been implemented in Matlab [73], whilst Matlab codes of the 

models of Li et al. [43] and Bresson et al. [53] can be downloaded from the 

authors’ homepages [74] and [75], respectively. The ‘9-7’ biorthogonal filter for 

the multi-scale and multi-directional decomposition stage of CTr is applied [76]. 

The results of the automated versions were compared to those obtained by the 

original, empirically parameterized algorithms. Apart from experiments on the 

Berkeley segmentation dataset [1] and on test images obtained by various 

datasets [77], [78], additional experiments were conducted on the Amsterdam 

Library of Object Images (ALOI) database [79]. 

 

It should be stressed that, rather than comparing one AC method with another, 

the experiments to follow aim to evaluate the effectiveness of the presented 

parameterization framework by examining whether the segmentation 

performance of the automated version is at least comparable to the one obtained 

by the empirically fine-tuned version. 

 

Figure 3.9 illustrates: (a),(b) test images obtained by the Berkeley segmentation 

dataset  [1], (a1),(b1) ground-truth images and (a2),(b2) segmentation results of the 

presented framework. Aiming to evaluate the obtained results, the region overlap 

measure, known as the Tanimoto Coefficient (TC) [80], is considered: 

 

)(

)(

BAN

BAN
TC




  

(3.4.1) 

 

where A  is the region delineated by the segmentation method under evaluation, 

B  is the ground truth region and )(N  indicates the number of pixels of the 
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enclosed region. The results of Figure 3.9(a2) and (b2) correspond to TC values of 

90.3% and 88.7%, respectively. 

   

(a) (a1) (a2) 

   

(b) (b1) (b2) 

Figure 3.9: Segmentation based on local image geometry: (a),(b) original test images 

obtained by [1], (a1),(b1) ground-truth images and (a2),(b2) segmentation results of the 

presented framework. 

 

3.4.1  Integration into the Chan-Vese Model 

The Chan-Vese model [2] determines the level set evolution by minimizing the 

energy functional and solving Eq. (2.5.17). For the empirical case, the optimal 

parameters are set according to the original paper [2]. For the presented 

framework, the regularization and data fidelity parameters are automatically 

calculated according to Eq. (3.3.1). 

 

The segmentation performance of the Chan-Vese model for both automatically 

and empirically parameterized versions is evaluated on test images obtained by     

the authors of [77], [78] utilizing the database of [1]. The test images contain a 

foreground object of interest over an inhomogeneous background. The contour is 

initialized as a closed circle with the same center and radius for all test images 

and for both automatically and empirically parameterized versions, so as to 

ensure consistency.  
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Figure 3.10 illustrates the contour obtained on two test images, for the second as 

well as for the final iteration. The first image contains a target region of high 

average intensity over a darker background, whereas the second image contains 

a dark target region over a brighter background. Yellow color is used for the initial 

contour in both versions whereas blue and green colors are used for the contours 

obtained by empirical and automated version, respectively on the second and 

final iteration. The dilation operator has been used to morphologically reconstruct 

contours and enhance image appearance. In the case of the first image, the 

automated version converges faster to the target boundaries since the forces 

guiding contour evolution are appropriately amplified in high-entropy edges 

associated with noise (see Figure 3.7). In the case of the second image, the 

empirical version is delayed on the misleading local minima of the “land parcel” 

and converges to erroneous boundaries. This can be explained by the gross 

nature of the Chan-Vese model, which is guided by region-based forces and thus, 

is delayed on misleading local intensity minima associated with brighter 

background clutter. On the contrary, the automated version is guided by region-

based forces, as well as by local geometry information, incorporated in the 

parameters matrices and is capable to identify the actual target edge regions. 

 

Aiming to evaluate the convergence rate of both versions, we define the 

Difference of Mean Intensity values (DMI) between inside and outside region 

terms and implement the following algorithm: 

 

 Iteration i 

1. Calculate inside 
2|),(| incyxI  and outside 

2|),(| outcyxI  region terms. 

2. Normalize and quantize both terms in the range [0,255]. 

3. Calculate mean values. 

4. Calculate DMI. 
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Figure 3.11 depicts DMI calculated for the early stages of evolution of the 

automated versus empirical version of the Chan-Vese model presented in Figure 

3.10. It can be observed that, DMI reaches higher values in the automated case 

in the early stages of contour evolution. Again, this is explained by the fact that 

the forces guiding contour evolution are appropriately amplified in edge regions 

associated with noise. Figure 3.12 compares the segmentation performance for 

the early stages of evolution of the automated versus empirical version in terms of 

TC (see Eq. (3.4.1)). 

 

 

Figure 3.10: Examples of contour evolution of the Chan-Vese model [2]. Yellow color is 

used for the initial contour in both versions; blue and green colors are used for the 

contours obtained by the empirical and automated version, respectively. 

 

 

Figure 3.11: DMI calculated for the early stages of evolution of the automated versus 

empirical version of the Chan-Vese model, presented in Figure 3.10. 
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Figure 3.12: TC for the early stages of evolution of automated versus empirical version 

presented in Figure 3.10. 

 

3.4.2  Integration into the Model of Bresson et al. 

The model of Bresson et al. [53] minimizes the energy functional described in 

(2.5.18). For the empirical case, the data fidelity parameter is set according to the 

original paper [53]. For the presented framework, the data fidelity parameter is 

automatically calculated according to Eq. (3.3.1). The model of Bresson et al. is 

evaluated on test images obtained by the first author’s homepage [75]. Figure 

3.13 presents segmentation results for ‘cheetah’ and ‘zebra’ textured images. The 

final contour satisfies:  

 

}5.0),(|Ω),{(  yxIyx final
 (3.4.2) 

 

Magenta and green colors correspond to empirical and automated version, 

respectively. It is evident that, both versions converge to the actual target 

boundaries, resulting in comparable segmentation accuracy. It should be pointed 

out that, the empirical version of the model of Bresson et al. convexifies energy in 

order to compute a global minimizer. The automated version captures local 

geometry information correctly and converges to the actual target edge regions. 
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Figure 3.13: Segmentation results of the model of Bresson et al. [53]. Magenta and green 

contours correspond to empirical and automated parameterization, respectively. 

 

3.4.3  Integration into the Model of Li et al. 

The presented framework has also been applied on the model of Li et al. [43] so 

as to evaluate it on a hybrid energy functional, i.e. consisting of region-based as 

well as edge-based terms. Li et al. minimize the energy functional described in 

Eq. (2.5.12). For the empirical case, the optimal fixed parameters are set 

according to the original paper [43]. For the presented framework, the optimal 

fixed value of a is maintained, whereas the regularization and data fidelity 

parameters are automatically calculated according to Eq. (3.3.1). It should be 

noted that, the optimal fixed value of a is maintained since it is unrealistic to 

automatically adjust all AC parameters of different AC variations. 

 

In a similar fashion, the segmentation performance of both automated and 

empirical versions of the model of Li et al. is evaluated on test images obtained 

by the author’s homepage [74]. Figure 3.14(a) and (b) illustrate a test image and 

the initial level set function, respectively, whereas the images below present 

contours obtained in three different iterations, as well as the final level set 

functions. The latter exhibit the shape of a signed distance function in the vicinity 

of the zero level set and a flat shape outside this vicinity. Red and green colors 

correspond to empirical and automated parameterization, respectively. It should 

be pointed out that, the level set evolution is applied without re-initialization and is 
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guided also by edge-based forces. It is evident that the segmentation results of 

the empirical and automated versions are comparable.  

 

Figure 3.15 depicts TC results of automated versus empirical version, based on 

contour evolution presented in Figure 3.14. In the automated version, TC reaches 

slightly higher values from early iterations.  One should take into account that, 

with empirical parameterization it is always possible to set “optimal” parameters 

after laborious, time-consuming experimentation. The presented framework is 

capable of obtaining comparable results in an automated fashion.  

 

 

Figure 3.14: Evolution of segmentation for the model of Li et al. [43]. Red and green 

contour corresponds to empirical and automated parameterization, respectively, (a) 

original test image, (b) initial level set function. 

 

 

Figure 3.15: TC for the early stages of evolution of automated versus empirical model 

presented in Figure 3.14. 
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The presented framework is also tested on images obtained by the ALOI 

database [79] in order to enable evaluation on a large benchmark dataset. Figure 

3.16 illustrates segmentation results for both automated and empirical 

parameterization. The first and second columns illustrate test images and their 

ground truth, respectively. The third column provides the iteration number, for 

which the automated version converges. The fourth and fifth columns illustrate 

segmentation results of the automated and empirical case for that iteration, 

respectively. The sixth and seventh columns illustrate the iteration number for 

which the empirical version converges and the segmentation results for that 

iteration, respectively. All test images were recorded with varying viewing and 

illumination angles, resulting in challenging shades. Several images of ALOI 

database, including the illustrated ‘teapot’, ‘bear’, ‘basket’ and ‘wire’, contain 

intensity-based information whereas some also contain textured regions, as is the 

case with ‘basket’ and ‘wire’. It is evident that after convergence, the 

segmentation results of both automated and empirical versions are comparable. 

However, in the empirical case, the contour is delayed in misleading local 

intensity minima associated with shades and hence, requires approximately 10-

20 times more iterations in order to converge. On the contrary, in the automated 

case, forces which guide contour evolution are appropriately amplified in high-

entropy edges, accelerating convergence. The automated case achieves an 

average TC value of 96.9±1.6%, which is comparable to the TC value obtained by 

the empirical case. However, the empirical case achieves a TC value of 

58.4±14.3% in the same iteration that the automated version has converged, with 

regards to all ALOI images tested. 
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(a) (b) (c) (d) (e) (f) (g) 

Figure 3.16: Segmentation results of the automated and empirical case. (a) test images 

obtained by ALOI database [79], (b) corresponding ground truth images, (c) final iteration 

in the automated case, (d) segmentation results of the empirical case for (c), (e) 

segmentation results of the automated case, (f) final iteration in the empirical case, (g) 

segmentation results of the empirical case for (f).  

 

3.5  Summary 

This chapter presents a novel framework for automated regularization and data 

fidelity parameterization of region-based ACs, which is motivated by the 

observation that the weighting factors of regularization and data fidelity terms and 

the eigenvalues of structure tensors are associated with the same orthogonal 

directions. The presented framework is unsupervised and does not require 

technical skills from the domain user. In addition, it is applicable to several 

imaging modalities and does not require prior knowledge on the target regions. 

Moreover, it avoids iterations dedicated to misleading local minima, speeding up 

contour convergence. 

 

The presented framework has been experimentally evaluated on various datasets 

of natural, textured and real-world images. Its segmentation performance was 
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compared with two state-of-the-art region-based and one hybrid empirically 

parameterized AC variations. The experimental results demonstrate that it is 

capable of maintaining a segmentation quality comparable to the one obtained 

with empirical parameterization, yet in an automated fashion.  
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CHAPTER 4 

4. PROTEOMICS AND MEDICAL IMAGES 

 

4.1  Introduction 

This chapter provides a coherent overview of proteomics and medical images, 

which were utilized in our segmentation experiments. The provided information 

covers the biomedical background as well as the physics-based principles of the 

acquisition devices, which generate these images. Furthermore, several factors 

which obstruct the segmentation task are thoroughly examined. 

 

4.2  Proteomics Images 

Proteomics images, called electrophoretograms, are the result of proteins’ 

electrophoresis, which provides the movement of charged particles over time οn a 

gel. It reflects the phenotype, i.e. the biochemical properties of an organism at a 

given time under a specific condition. On such images, proteins appear as spots 

over a grey level surface. A proteomics image consists of a few hundred up to 

several thousands of protein spots and each individual protein spot represents a 

single protein. The amount of each protein can be estimated by the cumulative 

intensity of the associated protein spot region. Ideally, each protein spot is 

represented by a Gaussian distribution. In literature, there are two types in 

proteomics image representation. In one case, proteins are represented as white 

spots over a dark surface whereas in the other case, proteins are represented as 

black spots (typically smaller in size) over a light surface. In the former case, 

protein intensities reach maximum values whereas surface intensities reach 

minimum ones. Figure 4.1 depicts the two types of proteomics image 

representation. 
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(a) (b) 

Figure 4.1: Two types of proteomics image representation, (a) proteins are represented as 

white spots over a dark surface, (b) proteins are represented as black spots over a light 

surface. 

 

In this thesis, proteomics image analysis is conducted on the former image 

representation in accordance with the datasets provided by the Biomedical 

Research Foundation of the Academy of Athens. In addition, the provided 

proteomics images have sufficient resolution of 2000×3000 pixels and 16-bit 

image depth in agreement with the databases utilized in proteomics research 

such as SWISS 2D-PAGE [81] and PROSITE [82]. A resolution of 300 dpi is 

generally sufficient for gel analysis. It should be noted that, by augmenting 

resolution and depth, the computational analysis time and cost are increased. 

 

4.2.1  Biological Background 

The structural and functional core units of all known organisms are the cells. 

Various organisms, such as bacteria, consist of a single cell which performs all 

functions required for living whereas others, such as humans, consist of multiple 

cells which differentiate and undertake specific tasks as part of more complex 

ones. The former types of cells are called prokaryotic whereas the latter are 

called eukaryotic. Unlike prokaryotic, eukaryotic cells consist of the membrane-

delineated compartment called nucleus which contains the cell’s genetic material 

defined as the genome. Most organisms’ genetic material is DeoxyriboNucleic 

Acid (DNA) however; few viruses, such as HIV, consist of RiboNucleic Acid 
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(RNA). The biological information of an organism is encoded in DNA or RNA 

sequences. DNA sequences consist of discrete units called structural genes 

which code for proteins [83]. 

 

Proteins were discovered in the 19th century by Jöns Jakob Berzelius [84] who 

named them “πρωτειοξ” in Greek, meaning “of primary importance”. They are 

fundamental components since they participate in core cellular processes such as 

cell motility, DNA synthesis, signaling and mitosis. Proteins are organic complex 

macromolecules called polypeptides composed of amino acids linked to each 

other with peptide bonds. An amino acid structure incorporates an amino group, a 

carboxylic acid group and a side chain which are all attached to a central carbon 

atom (see Figure 4.2). The amino acid’s side chain and protein’s three-

dimensional structure highly affect the hydrophobic (water-repelling) or 

hydrophilic (water-soluble) biochemical properties as well as the way of the 

polypeptide’s folding, respectively. Protein denaturation occurs when the structure 

is destroyed and protein unfolds. As a result, it is no more capable of fulfilling 

required tasks [85].  

 

 

Figure 4.2: From cell to amino acid structure. 

 

Protein synthesis requires two main processes, transcription and translation. 

During the first process, DNA is transcribed to messenger-RNA (mRNA) which 

holds essential information for protein synthesis whereas during the second, 

mRNA is further translated by transfer-RNA (tRNA) to a protein. The complete set 
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of proteins expressed in a cell is named as proteome. Post-Translational 

Modifications (PTMs) refer to differences between a translated polypeptide 

sequence and the final protein. They are crucial functions since they are 

responsible for alterations in biological activity of polypeptides. For instance, 

proteins are known to be constructed from 22 amino acids [86]. 

 

4.2.2  Introduction to the Field of Proteomics 

Genomics revolution was only the beginning of an enormous metamorphosis of 

life sciences. The analysis of the proteome has provoked even more radical 

changes in biological research. Most biological functions are carried out by 

proteins that interact with each other within a complex biological system. The 

proteome is defined as a protein complement in a specific cell, tissue or 

organism. However, it is more complicated than the genome since a gene may 

encode a number of different proteins. In other words, genes are just the 

instructions for making proteins whereas proteins make life [87].  

 

The field of proteomics corresponds to the large-scale analysis of proteins 

expressed in a cell, tissue or biological organism. Numerous technologies are 

involved with the aim to identify and quantify proteins as well as to decode their 

PTMs and inner interactions [88]. Unlike the genome, proteome provides more 

vital information considering the processes that occur within the cell. By 

examining biological samples stemmed from cells at different stages of 

development, in the presence of drugs or upon infection by a pathogen, crucial 

information on alterations in protein expression profiles can be derived [89]. This 

information is essential for numerous biological applications such as the 

development of prognostic and diagnostic systems as well as the identification of 

personalized drugs and vaccine targets. It should be mentioned that, 

pharmaceutical companies spend an enormous amount of resources in animal 

experiments in order to develop new “intelligent” drugs.  Proteome analysis is 

expected to yield disease markers called biomarkers for disease diagnosis and 

therapy monitoring. Biomarkers may be genes as well as proteins. They are 

measurable indicators which reflect a specific normal biological state, pathogenic 

process or pharmacologic response to a therapeutic intervention [90].  
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Proteome analysis was originally performed in the mid-seventies by O’ Farell [91] 

who produced protein maps from Escherichia Coli and mouse cells. He detected 

about 1100 different proteins by means of a workhorse technique called Two-

Dimensional Gel Electrophoresis (2D-GE) [92], [93] and was able to investigate 

the phenotype of an organism on the level of protein expression. The objective in 

2D-GE is to identify differentially expressed proteins when comparing healthy and 

diseased biological samples in order to discover proteins that have appeared, 

disappeared, increased and decreased in size.  

 

4.2.3  Two-Dimensional Gel Electrophoresis (2D-GE) 

In 2D-GE, an indicative portion of the total protein component of a cell is resolved 

and information about different PTMs attributed to proteins is provided. The 

biological sample under investigation is separated in two independent dimensions 

according to two high resolution properties: isoelectric point (pI) and molecular 

weight (Mw). 2D-GE consists of biochemical and electrokinetic processes 

namely: a) labeling, b) denaturation, c) isoelectric focusing, d) incubation, e) 

molecular weight separation and f) image digitization [94]. 

 

During the labeling process, cells are cultured in a medium consisting of 

radioactive amino acids such as methionine ( S35 ) and formaldehyde ( C14 ). 

These amino acids, which enable the detection of radioactively labeled proteins, 

are incorporated into the biological sample. Various anionic dyes such as 

coomassie, silver or fluorescent can also be utilized. The key scope is to provide 

an effective linear response over as broad a range of concentrations as possible. 

By labeling the sample with radioisotopes, an image with higher resolution is 

generated and even low-abundance proteins can be detected. Consecutively, the 

proteins of the biological sample are denatured in a detergent lysis buffer 

comprising urea and thiourea [95]. The former is effective in disrupting hydrogen 

bonds whereas the latter is appropriate for destroying hydrophobic interactions. 

As a result, proteins’ structures are destroyed, proteins unfold and aggregations 

together with proteolysis are highly prevented. Furthermore, non-protein 

components such as artifacts are removed [96]. 
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During Isoelectric Focusing (IEF), the unfolded proteins are placed on an 

Immobilized pH Gradient (IPG) gel strip [97]. The pH scale reflects the amount of 

hydrogen ions and ranges from 0 to 14 units with 7 being neutral. Assuming that 

the pH scale is less or more than 7, the gel is acidic or basic, respectively. 

Proteins are differently charged and an electric field is applied across the gel strip 

in order to provoke their migration towards the electrode of the opposite charge in 

the first dimension. The migration rate hinges on the complex relationship 

between the electrophoresis system and the proteins. As a result, each protein 

will be immobilized at that pH value where the number of positive and negative 

charges on the protein is the same. This value is called pI and refers to protein 

state of equilibrium. The pH scale utilized in most experiments ranges from 4 to 7. 

Most proteins occupy different positions since they have different charges. 

Nevertheless, some proteins tend to obtain the same pI and thus, a second 

separation is required so as to identify individual proteins. The incubation process 

which follows, prepares the gel under investigation. The gel is being washed in a 

detergent called Sodium Dodecyl Sulfate (SDS), which aims to maintain the same 

charge on all proteins [98].  

 

During the Mw separation (SDS-PAGE), the IPG gel strip is placed on the upper 

edge of a thin polyacrylamide gel slab (matrix). The amount of polyacrylamide 

affects the pore size and the sieving properties of the gel slab. An electric field is 

applied in the tangent direction again provoking migration in the presence of SDS. 

The electrical force imposed on each protein is the same for all of them since they 

have the same charge. The electrophoretic mobility of proteins is primarily 

determined by the volume fraction of pores. Hence, large proteins meet more 

resistance and migrate slower compared to smaller ones. The electric field is no 

longer applied and the process ends when small proteins reach the bottom of the 

gel slab. The result is a two-dimensional map of proteins obtaining unique 

coordinates (pI, Mw) [99]. The gel slab is dried down and autoradiography is 

applied for protein visualization. Staining procedures also take place in the case 

that coomassie, silver and fluorescent dyes are utilized. It is of mandatory 

importance that these dyes are compatible with the subsequent Mass 

Spectrometry (MS) [100] analysis. Since gels do not last forever, it is essential 

that the data is stored in a format easily maintained. Hence, gel data is mutated to 
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image data. Figure 4.3 illustrates the two main processes of 2D-GE, i.e. IEF and 

SDS-PAGE. 

 

 

Figure 4.3: IEF and SDS-PAGE of 2D-GE. 

 

During image digitization, the gel is transferred to high resolution scanners, laser 

densitometers, fluorescent and phosphor imagers or charged couple device 

cameras so as to be digitized into images. The radioactively labeled proteins 

excite the electrons of the atoms to a high energy state. The electrons return to 

their equilibrium state emitting electro-magnetic radiation captured by an imaging 

technology device which in return generates the digital image [101]. 

 

Several important merits of 2D-GE should be highlighted. First and foremost, 2D-

GE is a robust technique which enhances reproducibility of protein expression 

provided that it is conducted under a defined temperature. Secondly, it is capable 

of investigating thousands of proteins on a single gel at the same time. Finally, by 

introducing IPGs and narrowing the pH gradient range, high resolution could be 

achieved. It should be noticed that two proteins may be resolved provided that 

their pI values differ by 0.001 units [102].  

 

Even though 2D-GE is performed by expert biologists, the processes and the final 

results are prone to subjectivity and human errors. There are numerous 

challenges in 2D-GE images derived by human errors as well as by the inner 

biochemical properties of the biological sample which reduce image quality. 

Common unwanted factors that influence the results emerging from the analysis 
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of 2D-GE images are: the presence of noise, dust particles, fingerprints, cracks in 

the surface and other artifacts such as streaks or tails that are not related to 

proteins. The main challenges in 2D-GE images are the inhomogeneous 

background and the existence of faint and overlapping spots. 

 

4.2.4  Challenges in 2D-GE Images 

One major challenge in 2D-GE images derives from the inhomogeneous 

background intensity, i.e. the fact that it is not uniform and increases non-linearly 

in protein spot regions. It is often caused either by flawed illumination during the 

scanning process or by local variations in gel density which become visible during 

the staining process.  

 

Another crucial challenge comes from the wide range of protein concentration. 

Low- and high-abundance proteins are represented by faint and saturated spots, 

respectively.  Faint spots are mainly caused due to labeling discrepancies. The 

contrast between the intensity of faint spots and the background is very poor. 

Saturated spots are caused by the incapability of the imaging technology device 

to capture color differences above a certain value (saturation) at which the light 

colors cannot be distinguished. As a result, saturated protein spots are 

characterized by a flat surface of uniform intensity with the maximum value 

around their centers (see Figure 4.4(a) and (b)).  

 

One of the core challenges in 2D-GE images comes from the complex spot 

regions containing overlapping spots. Due to the mixture complexity of the 

biological sample, protein migration is obstructed and multiple proteins called 

‘multiplets’ tend to occupy the same locations on the gel surface. In some cases, 

incomplete protein denaturation may also be responsible for the presence of spot 

clusters. High-abundance protein spots are visible however, low-abundance 

protein spots are being covered and their peaks can hardly be distinguished. In 

addition, the boundaries of the overlap cannot be delineated by the human eye 

and the resolution in these regions is deteriorated (blurred regions) (see Figure 

4.4(b)). 
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Moreover, protein tails called streaks tend to occupy a large portion of the 

surface. Streaks can be horizontal and/or vertical and are caused during 

migration where protein residues are produced in both dimensions. The density of 

each individual streak primarily depends on the corresponding protein 

concentration (see Figure 4.4(c)). 

 

Several artifacts such as dust particles, cracks and SDS residues not related to 

protein components as well as the high level of speckle noise are also inherent 

flaws in 2D-GE images (see Figure 4.4(d)).  

 

 

Figure 4.4: Challenges in 2D-GE images: (a) faint spots, (b) saturated and overlapped 

spots, (c) streaks and (d) artifacts. 

 

4.2.5  2D-GE Image Analysis 

The 2D-GE image analysis pipeline consists of six established processes: a) pre-

processing, b) alignment (warping), c) detection, d) segmentation, e) 

quantification, f) matching and g) statistical analysis. Several image analysis 

systems utilize combinations of the aforementioned processes which are not 

interconnected necessarily in this order.  
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The state-of-the-art in 2D-GE image pre-processing consists of noise removal by 

applying smoothing techniques. The latter are implemented by utilizing a 

Gaussian or a polynomial kernel however; there are more sophisticated 

smoothing techniques such as wavelets [103] and contourlets [70].  

 

The pre-processed images are aligned (warped) by adjusting geometric 

distortions. Starting from a pixel at a specific position (landmark) in the reference 

image, all pixels at that identical position in all other images are compared. 

Landmarks do not need to be associated with spots. Warp vectors are generated 

so as to represent pixel correspondences between two gel images and positional 

corrections are performed. As a result, all images are fused into one final image 

which consists of all spots stemmed from all images and is considered to be the 

proteome map of the sample under investigation. The alignment of proteomics 

images cannot be considered challenging since satisfactory results are already 

obtained by commercial software packages.  

 

Aiming at protein identification, the next step is protein spot detection. The scope 

in protein spot detection is to identify differentially expressed proteins such as 

proteins which are active during the different stages of a disease. Hence, it is of 

vital importance to detect protein spots which have appeared or disappeared 

between samples of healthy and diseased origin. In the process of detection, the 

centers of each individual spot are identified in order to determine the exact 

position, i.e. the unique coordinates (pI, Mw) of each individual spot on the gel 

surface. Spot centers correspond to mass spot centers. Protein spot detection is 

hindered by artifacts, streaks and multiplets, which have already been discussed 

in the previous section. Several features such as shape, size and intensity values 

usually vary between artifacts and protein spots. Nevertheless, there are cases 

where the above features are similar and the detection of true protein spots is 

often unsuccessful. Moreover, streaks consist of proteins as well as protein 

residues which correspond to migrated proteins. The detection of proteins and 

non-protein residues in streaks is a complicated, non-trivial task. In addition, 

multiplets are really challenging since spot centers of smaller proteins are 

overlapped by spot centers of larger ones. Thus, overlapping spots are hardly 
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distinguished. This thesis presents an unsupervised protein spot detection 

technique which is based on the principles of mathematical morphology in order 

to locate regional intensity maxima associated with protein spots (see Chapter 6, 

§ 6.2).  

 

Protein spot segmentation is the process of separating spots from the 

background and other non-protein components. Each segment ideally represents 

the spot of a single isolated protein and reflects the amount of protein expression.  

The accurate delineation of protein spot boundaries is the key requirement for 

successful spot matching in order to detect alterations in protein expression and 

identify proteins which may be further utilized as biomarkers. In this thesis, a 

protein spot segmentation scheme is presented, which is based on the principles 

of region-based AC models. The latter are prior candidates for spot segmentation 

since they are topologically adaptable, i.e. they are capable of splitting on the 

boundaries of multiplets and merging on the boundaries of single spots. 

Moreover, they are insensitive to the inhomogeneous background and the 

presence of noise (see Chapter 6, § 6.3).  

 

The segments created in the previous procedure are exploited for protein spot 

quantification. In this process, the amount of each individual protein spot is 

estimated by calculating the cumulative intensity of the associated spot area, i.e. 

the spot volume embedded in a spot boundary. In this thesis, an established 

volume metric for spot quantification is utilized. 

 

After quantification, spot matching is performed. In this process, pixels associated 

with the center coordinates of individual spots representing the same protein in all 

aligned images, are matched. As opposed to alignment, spot detection should be 

performed prior to matching. Typically, it is more accurate to match spots 

emerged from the same biological sample than spots emerged from different 

biological samples. Similar to alignment, spot matching is performed satisfactorily 

by commercial software packages according to 2D-GE image analysis experts.  
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Finally, in statistical analysis the quantified segments in all aligned images are 

compared in order to investigate both significant differences and similarities in 

protein expression profiles in response to different treatments or disease states. 

Several spot parameters may be used such as spot area and spot volume. The 

most popular statistical tools utilized are ANalysis Of VAriance (ANOVA) and 

Student’s t-Test. Any significant differences and similarities observed are 

referenced back to the corresponding proteins. Protein identification is achieved 

by using mass spectrometric analysis which determines peptide molecular 

weights. Protein characterization is performed by searching protein databases 

such as the HUman Proteome Organization (HUPO) [104] and correlating 

proteins with the resulted molecular weights. Protein identification and 

characterization are beyond the scope of this thesis since the former requires 

signal analysis algorithms and the latter database algorithms. 

 

4.2.6  State-of-the-Art 

2D-GE Image Analysis Models Proposed in Literature 

Numerous models have been suggested to tackle with 2D-GE image analysis 

such as stepwise thresholding [105], edge detection [106] and Watersheds 

Transform (WST) [107]. Stepwise thresholding applies an increasing threshold on 

the 2D-GE image of interest, starting from the lowest intensity level which can be 

associated with a protein spot. As the applied threshold increases, each 

connected image area may be split into multiple connected sub-areas. This 

process is iterative and stops when no more splits are possible. The 

segmentation result is determined by the connected sub-areas remaining in the 

last split.  

 

Edge detection methods aim to identify discontinuities in image intensity often 

associated with protein spot boundaries. Both stepwise thresholding and edge 

detection methods are highly sensitive to noise, artifacts, non-uniform background 

and overlapping spot clustering [108], whereas manual editing may be required in 

the case of edge detection [109].   
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WST methods model a 2D-GE image as a landscape where rain falls downhill 

formulating pools around each local intensity extremum. Areas collecting the 

water can be associated with protein spots. Although this approach copes with 

the presence of noise, artifacts and non-uniform background, it calls for additional 

post-processing since all pixels in the image are assigned to a catchment basin, 

resulting in over-segmentation [110]. Aiming to cope with this issue, Kim et al. 

[111] introduced a hybrid 2D-GE image segmentation approach based on WST 

and stepwise thresholding. However, the background removal process 

incorporated in this hybrid approach cannot cope with the presence of faint spots. 

Similar variations have been introduced for the segmentation of cell images. 

 

2D-GE Image Analysis Software Packages 

2D-GE image analysis is usually performed by visual inspection of an expert gel 

analyst with the aid of a software package. The scope of the software package is 

to meliorate visualization as well as data analysis in order to identify significant 

variations in protein expression profiles. Numerous software packages are 

nowadays adapted to biological laboratories around the world. A list of them is 

cited in Table 4.1. 

 

Table 4.1: List of available 2D-GE image analysis software packages 

Name Company Country Website 

Melanie 

(under ImageMaster 
2D Platinum 

platform) 

Geneva 
Bioinformatics 
(GeneBio) SA 

Switzerland www.genebio.com 

PDQuest Bio-Rad 
Laboratories 

USA www.bio-rad.com 

Delta2D Decodon Germany www.decodon.com 

Progenesis 
SameSpots 

(superseded Phoretix 
2D) 

Nonlinear Dynamics UK www.nonlinear.com 

Gellab II Scanalytics USA www.scanalytics.com 

Impressionist Genedata Switzerland www.genedata.com 
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Kepler Large Scale Biology USA www.lsbc.com 

ProteinMine Scimagix USA www.scimagix.com 

Z3 Compugen Israel www.cgen.com 

Dymension Syngene UK www.syngene.com 

 

2D-GE image analysis software packages utilize methods which are hidden from 

the user. To this end, the development of a golden reference 2D-GE image 

analysis pipeline is impeded. Moreover, such software packages require human 

intervention for empirical parameter selection based on heuristic considerations. 

This yields to a notable output variance where results lack objectivity and 

reproducibility as well as the necessity of technical support to calibrate the 

software. Furthermore, the results obtained by each software package require 

manual editing by gel expert analysts so as to eliminate spots that have been 

falsely detected, reconsider spots that have not been detected or correct 

boundaries which define the spot area. The latter occurs since most software 

packages assume that spot intensity values distribution is sufficiently described 

by a Gaussian distribution, which is not the case.  

 

For instance, Melanie [112] requires empirical adjustment of three detection 

parameters namely smooth, saliency and min area (see Chapter 6, § 6.2.3). In 

addition, the supported input and output image formats are not typical and can 

only be processed with Melanie. PDQuest [113] requires empirical calibration 

based on intensity values of faint, saturated and overlapping spots of each gel 

image imported whereas Delta2D requires inner markers which operate as 

landmarks for spot identification. 

 

Most 2D-GE image analysis software packages are capable of performing 

sufficient image alignment and spot matching however, they fail during spot 

detection and segmentation. Hence, development of improved spot detection and 

segmentation methods is of dire need and this is the motivation for part of the 

work of this thesis. 
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4.3  Medical Images 

Medical imaging is capable of aiding clinical practice by means of imaging 

acquisition techniques applied on the human body. Medical imaging modalities 

provide vital measures of internal anatomical structures and are investigated by 

MDs for the detection and diagnosis of various diseases in order to select and 

guide the most appropriate treatment. Since the geometry of anatomical 

structures is of great importance, automated and reliable image segmentation 

methods are in demand.  

 

4.3.1  Mammograms 

The female breast is a sweat gland which produces and secretes milk during 

lactation [114]. Each breast is divided into 15 to 20 sections, called lobes, 

separated from each other by fatty tissue and each lobe is divided into smaller 

lobules which end in dozens of tiny bulbs that secrete milk in response to 

hormonal signals. The lobules and bulbs are linked by thin tubes called ducts. 

Each duct contains a number of glandular cells clustering around it and opens on 

the tip of the nipple. The latter is a dark-pigmented area accommodating the 

ducts and their openings to allow milk to flow out once it is sucked. Figure 4.5 

depicts the anatomy of the female breast gland. The most common types of 

breast cancer are the ductal and lobular carcinomas which arise in the cells of 

ducts and lobules, respectively. 

 

Figure 4.5: Anatomy of the female breast gland. 
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Breast abnormalities occur mainly in the glandular tissue and can be divided into 

benign and malignant. They are characterized in four classes: (a) 

microcalcifications, (b) well-defined/circumscribed masses, (c) speculated 

masses and (d) ill-defined masses, which are depicted in Figure 4.6. 

    

(a) (b) (c) (d) 

Figure 4.6: Samples of breast abnormalities characterized as: (a) microcalcifications, (b) 

well-defined/circumscribed masses, (c) speculated masses and (d) ill-defined masses. 

 

Breast abnormalities are categorized in five types of breast cancer [115]: 

a) Stage 0: the size of tumor is less than 2cm in diameter and is only present 

where it was first detected, i.e. it has not spread to other parts of the body. 

b) Stage I: the size of the tumor is less than 2cm in diameter and has spread 

beyond margins into the surrounding tissue. 

c)   Stage II: the size of the tumor is between 2 and 5cm in diameter and has 

spread beyond margins to other parts of the body. 

d) Stage III: the size of the tumor is greater than 5cm in diameter and has 

spread beyond margins to other parts of the body. 

e) Stage IV: the stage of the tumor is any size, has attached to the chest wall 

and has spread to the lymph nodes. 

 

Mammography is an X-ray screening imaging modality and its key role is to 

detect breast abnormalities [116]. An X-ray beam emits radiation through the 

breast and is absorbed selectively by different tissue types. On the other side of 

the breast the radiation is recorded onto a film or plate. Since different tissues in 

the breast absorb different amounts of radiation, it is possible to distinguish 

features and details about the tissues being examined. The fatty tissue in the 
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breast has a low density, allowing the X-rays to pass through easily to expose the 

film. Hence, fatty areas of the mammogram are dark. The glandular tissue in the 

breast has a higher density, resulting in brighter areas. The muscle is a 

characteristic feature of the mammogram and presents itself as a bright triangle in 

one corner of the image. During a screening for breast cancer, radiologists 

inspect the mammogram for areas that may indicate further investigation through 

biopsy. Figure 4.7 illustrates a typical mammogram obtained by the 

Mammographic Image Analysis Society (mini-MIAS) database [117]. 

 

 

Figure 4.7: Typical mammogram obtained by the mini-MIAS database [117]. 

 

4.3.2  Ultrasounds of Thyroid Gland 

The thyroid gland is a butterfly-shaped endocrine gland located in front of the 

trachea (windpipe) and below the thyroid cartilage (Adam’s apple) [118]. It 

consists of two lobes one on each side of the windpipe connected by a tissue 

called the isthmus. Figure 4.8 depicts the anatomy of the thyroid gland. 
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Figure 4.8: Anatomy of the thyroid gland. 

 

The thyroid gland plays a key role in regulating the body’s metabolism and 

calcium balance. It comprises two types of cells namely follicular and 

parafollicular. The former secrete two iodine hormones called thyroxine (T4) and 

triiodothyronine (T3), whereas the latter secrete the hormone calcitonin. These 

hormones are secreted into blood and travel across every tissue in the body in 

order to stimulate it to produce proteins and increase the amount of oxygen. The 

conditions under which the thyroid gland does not produce enough hormones or 

produces too many hormones are called hypothyroidism or hyperthyroidism, 

respectively. In either case, several body systems may be affected resulting in 

alterations in weight, heartbeat, body temperature, digestion and muscle function 

[119]. 

 

Thyroid nodules are abnormal growths of thyroid cells which form lumps/bumps 

or irregularities within the thyroid gland. They are caused either by constant 

exposure to radiation or by heredity. The vast majority of thyroid nodules are 

benign however, a small proportion is malignant and surgery is required in order 

to remove them. In terms of early diagnosis, thyroid nodules need some type of 

evaluation and are categorized in four types of thyroid cancer [120]: 

a) Papillary carcinoma: they account for 80% of diagnosed cases. They grow 

slowly only in one lobe of the thyroid gland but spread to the lymph nodes 

in the neck. They can be successfully treated and are rarely fatal. 
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b) Follicular carcinoma: they account for 15% of diagnosed cases. They are 

more aggressive as they can spread to lungs and bones and they are 

common in countries where people do not have enough iodine in their diet. 

Cure rates are also high. 

c)   Medullary carcinoma:  they account for 5% of thyroid tumors and can 

spread to lymph nodes, lungs or liver even before a nodule is discovered. 

Cure rates are low compared to the aforementioned types. 

d) Anaplastic carcinoma: they account for 2% of thyroid tumors and can 

spread into the neck and other parts of the body. They derive from 

papillary or follicular carcinomas and are hardly treated. 

 

Ultrasound imaging (US) is a non-invasive, low-cost diagnostic imaging technique 

widely utilized for the detection of thyroid nodules compared to other non-invasive 

modalities such as Magnetic Resonance Imaging (MRI) and Computed 

Tomography (CT), which are more expensive and less available [121]. It poses 

no risks to the patient since it does not use ionizing radiation (as in X-rays 

devices) which causes cancer development. An electric field is applied to a 

transducer which consists of piezoelectric crystals. As a result, the latter emit 

high-frequency sound waves greater than the upper limit of human hearing (1-10 

MHz). Sound waves penetrate the human body by means of the ultrasound gel 

and propagate with the aid of pressure variations. The latter obtain high and low 

values in areas of compression (high-pressure areas) and in areas of rarefaction 

(low-pressure areas), respectively. The penetration of the ultrasound wave is 

proportional to the wavelength of the sine wave and the propagation velocity is 

relatively constant at 1540 m/sec. The transducer records the electrical current 

generated by the echoes produced as the sound waves bounce back from thyroid 

nodules. These echoes form the basis of all ultrasound imaging and the amount 

reflected highly depends on the density of the tissue. A computer receives the 

electrical current and produces images in real-time consisting of vital information 

with regards to the size, structure and pathology of the nodule.  

 

Thyroid nodules are classified by means of ultrasound imaging with regards to the 

degree of malignancy into four basic types [122] and are depicted in Figure 4.9: 
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a) Grade 1: small round and anechoic areas suggestive of thyroid cysts. 

b) Grade 2: i) isoechoic or hyperechoic solid nodules with or without cystic 

change and coarse calcifications suggestive of adenomatous goiter.  

               ii) isoechoic solid nodules or complex nodules with normal                               

appearance of the thyroid gland suggestive of follicular adenoma. 

c) Grade 3: i) hypoechoic solid nodules with regular border suggestive of 

follicular neoplasms. 

                ii) cystic nodules with solid component suggestive of papillary 

carcinomas. 

d) Grade 4: hypoechoic solid nodules with an irregular border and with the 

presence of calcifications suspicious for malignancy and highly suggestive 

of thyroid carcinoma.  

 

  

(a)  (b) 

  

(c)  (d) 

Figure 4.9: Samples of thyroid nodules classified in: (a) Grade 1, (b) Grade 2, (c) Grade 3 

and (d) Grade 4. 

 

4.3.3  Endoscopy Images 

The colon is an important organ since it forms the last part of the digestive tract 

where food is digested. Food travels down the esophagus to the stomach and 

from there to the large intestine. The latter contains the colon which absorbs 
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water and nutrients from food and takes part in the synthesis of certain vitamins. 

The colon consists of five sections: the cecum, the ascending colon, the 

transverse colon, the descending colon and the sigmoid colon as depicted in 

Figure 4.10 [123]. 

 

 

Figure 4.10: Anatomy of the colon. 

 

Colon polyps are growths that range from a few millimeters to several 

centimeters. They are generated when the genetic material within cells changes 

and mutates. There are two common types of polyps: a) hyperplastic polyps and 

b) adenomas. The former are not at risk for cancer. Nevertheless, the adenomas 

are considered to be the precursors for almost all colon cancers. Even though it is 

impossible to tell which adenomatous polyps will become cancers, larger polyps 

are more likely to become cancers [124]. 

 

Endoscopy is a minimally invasive diagnostic technique which allows the MD to 

examine the human body without performing surgery by means of the endoscope 

[125]. The latter is a long, thin, flexible tube with a lens at one end and a video 

camera at the other. The endoscope may also be used for enabling biopsies and 

retrieving foreign objects. The end with the lens is inserted into the patient. Light 

passes down the tube (via bundles of optical fibers) to illuminate the relevant 

area, and the video camera magnifies the area and projects it onto a screen so 

that the doctor can see what is located. Typically, an endoscope is inserted 

through one of the body’s natural openings, such as the mouth, urethra, or anus. 

Figure 4.11 illustrates samples of polyps on endoscopy images. 
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(a)  (b) 

Figure 4.11: Samples of colon polyps on endoscopy images. 

 

4.3.4  Dermoscopy Images 

The skin is the largest organ of the human body. Its thickness ranges from 0.5mm 

on eyelids to 4mm on the palms of hands and soles of feet. Its key role is to 

protect the body and keep the integrity of internal systems intact. It is also 

responsible for vital functions such as insulation, temperature regulation, 

sensation as well as the production of vitamin D.  

 

The skin comprises three layers: a) the epidermis (outer layer), b) the dermis 

(middle layer) and c) the hypodermis (bottom layer). The epidermis consists of 

keratinocytes, melanocytes and Langerhans cells. Keratinocytes are the barriers 

against environmental pathogens, melanocytes are responsible for skin 

pigmentation as a defense against sun rays and Langerhans cells are part of the 

immune system. The dermis is divided into the papillary dermis and the reticular 

dermis and consists of collagen and elastin fibers which are responsible for 

repairing the skin. The hypodermis is mainly composed of fatty tissue and its 

primary role is to manage the functions of feeding, excreting and heat exchange. 

Sweat glands which emerge from this layer are able to control body’s temperature 

by evaporating and cooling the skin surface [126]. The anatomy of the skin is 

portrayed in Figure 4.12. 
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Figure 4.12: Anatomy of the skin. 

 

Skin cancer is divided into two main categories: non-melanocytic and melanocytic 

skin lesions which are further characterized as benign or malignant [127]: 

a) Benign non-melanocytic lesions are defined as seborrhoeic keratosis and 

dermatofibroma. The former is a benign tumor composed of epidermal 

keratinocytes, whereas the latter is a common fibrous lesion occurring on 

the legs and arms. 

b) Benign melanocytic lesions are defined as melanocytic and atypical nevi. 

The former are lesions which result from the proliferation of melanocytes at 

the dermo-epidermal junction, whereas the latter have irregular and 

indistinct borders.  

c)   Malignant non-melanocytic lesions are Basal Cell Carcinoma (BCC) and 

Squamous Cell Carcinoma (SCC). The former is the most common type of 

skin cancer and arises in the basal keratinocytes in the deepest layer of 

the epidermis. Even though it rarely metastasizes, it is still considered 

malignant since it causes destruction and disfigurement. The latter starts 

when the atypical keratinocytes grow through the basement membrane 

and invade the dermis. 

d) Malignant melanocytic lesions are called melanomas and are the most 

serious form of skin cancer. They are characterized by the uncontrolled 

growth of melanocytes. A melanoma might appear on the epidermis and 

dermis suddenly without warning and if the body itself is unable to fight it, it 

spreads to lymph nodes and internal organs. There is today no effective 
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treatment against advanced melanoma and the only way to treat it is to 

physically remove it in its early stage.  

 

The clinical ABCD rule for diagnosing skin lesions is widely used [128]. This rule 

states that the skin lesion is likely to be a melanoma if the following criteria are 

fulfilled: Asymmetry, Border irregularity, Color variation and Diameter of more 

than 6 mm. Figure 4.13 illustrates samples of benign/malignant non-melanocytic 

and melanocytic skin lesions obtained by the Atlas of Dermoscopy [129]. 

 

 

 

(a)  (b) 

 

 

(c)  (d) 

Figure 4.13: Samples of skin lesions obtained by [129] characterized as: (a) benign non-

melanocytic, (b) benign melanocytic, (c) malignant non-melanocytic and (d) malignant 

melanocytic. 

 

Dermoscopy is an in vivo non-invasive skin imaging technique which is utilized for 

the diagnosis of melanoma and pigmented skin lesions [130]. It allows the 

magnification of structures of the epidermis, dermo-epidermal junction and 

papillary dermis in order to be investigated for irregularities and possible 

malignancy.  A dermoscope (or dermatoscope), is a combination of a magnifying 

glass (lens) and polarized light. The lens is encircled by light sources and is put in 

direct contact with the skin. Fluid (usually water or oil) is used to refract the light. 

Without the polarized light and the fluid, light is reflected at the surface of the skin, 

and only the patterns visible there can be examined by the physician. When the 

light is refracted by the polarized light and the fluid, it is the reflections from the 
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subsurface that reach the dermatologist’s eye. In this way, the physician is able to 

extract more information from a simple non-invasive examination. 

 

4.3.5  CT Scans of Lung Parenchyma 

The lungs are located in the thoracic cavity and between them lies the heart. The 

lungs are supplied by three major tubular systems: the airways or bronchi 

responsible for air transport, the pulmonary arteries responsible for transporting 

deoxygenated blood from the (right) heart into the lungs and the pulmonary veins, 

responsible for returning the oxygen-rich blood to the (left) heart to be 

redistributed into systemic circulation. More peripherally, where diameters are 

down to two millimeters or less, the airways are named bronchioles. The alveoli 

are the primary site of gas exchange. Supplied with air by the terminal 

bronchioles, the alveoli represent the leaves in the bronchial hierarchy. The 

collection of alveoli is called the lung parenchyma [131]. Figure 4.14 portrays the 

anatomy of the lungs. 

 

 

Figure 4.14: Anatomy of the lungs. 

 

Lung diseases are divided into three categories [132]: 

a) Parenchymal diseases, which include pulmonary emphysema, pneumonia, 

pulmonary fibrosis, asthma, acute bronchitis and sarcoidosis. Emphysema 

and chronic bronchitis are called Chronic Obstructive Pulmonary Disease 

(COPD), which is listed as the fourth cause of death in the world. It causes 
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a loss of elasticity of the lung parenchyma and a deterioration of the 

structures that support the alveoli. 

b) Primary lung cancer, which stems from lung cells and is strongly smoking 

related. There are two main types of lung cancer: Non-Small-Cell Lung 

Carcinoma (NSCLC) and Small-Cell Lung Carcinoma (SCLC). For the 

former, the choice of therapy highly hinges on the tumor stage. For the 

latter, chemotherapy is the only option even if it has been detected in an 

early stage. 

c)   Lung metastases, which are caused by tumor cells within the blood stream 

metastasizing in breast, kidney, head, neck and colon. The standard 

treatment of lung metastasis is chemotherapy. 

 

Computed Tomography (CT) lung screening is a non-invasive, painless imaging 

technique which uses X-rays [133]. It allows the radiologist to examine different 

levels and slices of the lungs using a rotating X-ray beam. CT imaging is capable 

of visualizing the effects of parenchymal diseases as well as lung cancer. Figure 

4.15 illustrates: a) the axial and b) coronal view of a CT lung image produced by a 

multi-detector CT scanner obtained by the Lung Image Dataset Consortium 

Image Collection (LIDC-IDRI) [134]. 

 

  

(a)  (b) 

Figure 4.15: Two views of a CT lung image: (a) axial and (b) coronal obtained by [134]. 

 

4.3.6  Labial Teeth and Gingiva Photographic Images 

The gingiva is the component of oral masticatory mucosa which covers the 

alveolar process and surrounds the cervical areas of the teeth. It consists of three 

structures: a) the epithelium, b) the lamina propria and c) the mucoperisoteum. 
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The gingiva obtains its final shape and texture in conjunction with eruption of the 

teeth. The gingiva is divided into two categories: the Free Gingiva (FG) and the 

Attached Gingiva (AG). FG is bordered by the free gingival margin, the gingival 

groove and the sulcular epithelium, whereas AG lies between FG and the 

mucogingival junction. The area which lies within AG is called interdental groove 

[135]. Figure 4.16 portrays the anatomy of the gingiva. 

 

 

Figure 4.16: Anatomy of the gingiva. 

 

Gingivitis is an inflammatory periodontal disease caused by bacterial plaque. The 

latter accumulates in the small gaps between teeth and releases toxins which 

yield to the destruction of supporting structures for the tooth such as gums, 

periodontal ligament and alveolar bone. Gingivitis is a reversible disease but may 

progress to periodontitis in the absence of treatment. Therapy is aimed primarily 

at plaque control and reduction or elimination of gingival inflammation in order to 

allow gum tissues to heal, followed by appropriate patient hygiene instruction, 

dentist monitoring and teeth cleanings to prevent re-initiation of inflammation 

[136]. 

 

The labial teeth and gingiva photographic images (LTG) utilized in this thesis 

have been conceived by using a combination of a Canon EOS 7D digital single-

lens reflex color camera with a Canon EFS 18-135mm standard zoom lens. A 

circular polarization filter was used in front of the lens and a linear polarization 

filter in front of the internal camera flash. The transmission axis of the polarization 

filters were set to be perpendicular in order to minimize specular reflection in the 

images. A tripod with camera and another tripod were used to keep the head 
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constant as well as a standard mouth opener for dentistry to avoid occlusion by 

cheeks and lips. Figure 4.17 illustrates samples of LTG images obtained by [137]. 

 

 
 

(a)  (b) 

Figure 4.17: Samples of LTG images obtained by [137]. 

 

4.4 Summary 

In this chapter, a concise overview of proteomics and medical images, which 

were used in our segmentation experiments, is presented. The latter include 

several imaging modalities such as: a) mammograms, b) ultrasounds of thyroid 

gland, c) endoscopy images, d) dermoscopy images, e) CT scans of lung 

parenchyma as well as f) labial teeth and gingiva photographic images. A 

biological and medical background on either case is provided along with the 

imaging technologies which produce these images.  
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CHAPTER 5 

5. MEDICAL IMAGE SEGMENTATION UTILIZING THE 

AUTOMATIC FRAMEWORK 

 

5.1  Introduction 

Active Contours (ACs) are prominent in medical image segmentation, due to their 

inherent noise-filtering mechanism and their topological adaptability [138]-[140]. 

Typically, they are parameterized empirically by MDs, who are unfamiliar with the 

intrinsic mechanisms of the underlying algorithms. Consequently, they depend on 

technical support by engineers. A key challenge is to develop reliable 

unsupervised parameterization AC approaches in order to set MDs free from the 

tedious and time-consuming process of parameter tuning, as well as to bolster 

the objectivity and reliability of the segmentation results.  

 

Region-based ACs have been proposed in medical image analysis literature as 

suitable for several medical imaging modalities since they cope well with regions 

of weak edges, such as human tissues [141]-[144]. Like most AC models, they 

rely on parameters weighting the regularization and data fidelity energy terms. 

Regularization and data fidelity parameters are of critical importance in region-

based AC segmentation, since they act as amplifiers on the forces guiding 

contour evolution. Despite this importance, in most existing methods, both 

regularization and data fidelity terms are manually set and kept intact over the 

image. As a result, segmentation results are suboptimal and subjective.  

  

In this chapter, the presented framework described in detail in Chapter 3, is 

applied on various medical imaging modalities. The latter are provided by various 

acquisition devices whose settings are often altered in clinical practice. Such 

alterations naturally affect the acquired image features. As a result, in the case of 

empirical parameterization, manual fine-tuning might be required on a per-image 

basis, raising doubts on the actual value of a computational segmentation 

approach. Our application demonstrates that the presented framework is not 
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sensitive on the shape/size of the target region and on alterations in the settings 

of the acquisition devices. 

 

5.2  Experimental Evaluation on Medical Images 

The presented framework is embedded into the Chan-Vese model [2] by 

replacing the empirically fine-tuned parameters with the automatically adjusted 

ones (see Eq. (3.3.1)), in order to evaluate the segmentation performance of the 

automated versus the empirically fine-tuned version. Experiments are conducted 

on databases of various medical imaging modalities so as to confirm the 

framework’s generality with respect to image content. All images used were 

investigated by MDs who provided ground truth images. The shape of all 

abnormalities as well as the irregularity of their margins are malignancy risk 

factors which are highly considered by MDs before proceeding to fine needle 

aspiration biopsy. It should be noted that, contour initialization was the same for 

both the presented framework and the empirically fine-tuned version in order to 

facilitate fair comparisons. 

 

5.2.1  Segmentation of Abnormalities on Mammograms 

The first database consists of 50 mammographic images containing abnormalities 

randomly obtained by the mini-MIAS database [117]. The background tissue is 

characterized as: a) fatty, b) fatty-glandular and c) dense-glandular, whereas the 

abnormality is classified as: a) well-defined/circumscribed and b) ill-defined. In 

terms of its severity, the abnormality is defined as benign or malignant. Figure 5.1 

illustrates segmentation results obtained by the automated version on 

mammographic images containing abnormalities, as well as by the empirically 

fine-tuned version. It is evident that the automated version delineates the 

boundaries of abnormalities in greater detail and the contour is less jagged than 

the one generated by the empirically fine-tuned version. 
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(a) (b) (c) 

   
(a1) (b1) (c1) 

   
(a2) (b2) (c2) 

   
(a3) (b3) (c3) 

Figure 5.1:  (a)-(c) Mammographic images containing abnormalities, (a1)-(c1) ground truth 

images, (a2)-(c2) segmentation results of the empirically fine-tuned version, (a3)-(c3) 

segmentation results of the automated version. 

 

5.2.2  Segmentation of Thyroid Nodules on Ultrasound Images 

The second database consists of 45 thyroid ultrasound images containing 

hypoechoic nodules provided by the Radiology Department of Euromedica S.A., 

Greece. All ultrasound images were acquired using a digital ultrasound imaging 

system HDI 3000 ATL with a 5-12 MHz linear transducer. Instrument settings 

were fixed accordingly to the built-in ‘SmallPartTest’ Philips protocol, 

magnification was set to 1:1 and dynamic range was set to 150 dB/C4. 

Hypoechoic nodules with regular boundaries may represent follicular neoplasms 

of medium-risk, whereas hypoechoic nodules with irregular boundaries are 

considered suspicious for malignancy and may represent thyroid carcinomas. 

Figure 5.2 illustrates segmentation results obtained by the automated version on 

ultrasound images containing thyroid nodules, as well as by the empirically fine-

tuned version. It is clear that the automated version embeds more pixels 
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corresponding to a nodule according to the ground truth inside the contour than 

the empirically fine-tuned version.   

 

   
(a) (b) (c) 

   
(a1) (b1) (c1) 

   
(a2) (b2) (c2) 

   
(a3) (b3) (c3) 

Figure 5.2:  (a)-(c) Thyroid ultrasound images containing nodules, (a1)-(c1) ground truth 

images, (a2)-(c2) segmentation results of the empirically fine-tuned version, (a3)-(c3) 

segmentation results of the automated version. 

 

5.2.3  Segmentation of Polyps on Endoscopy Images 

The third database consists of 32 endoscopy frame images containing polyps 

provided by the Gastroenterology Section, Department of Pathophysiology, 

Medical School of the University of Athens, Greece and partially by the Section 

for Minimal Invasive Surgery, University of Tübingen, Germany. The endoscopic 

data was acquired from sixty-six different patients with an Olympus CF-100 HL 

endoscope. All frame images consist of small size adenomatous polyps which are 

not easily detectable and are more likely to become malignant. Figure 5.3 

illustrates segmentation results obtained by the automated version on endoscopy 
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images containing polyps, as well as by the empirically fine-tuned version. It 

should be noted that the automated version achieves comparable segmentation 

results to the ones obtained by the empirically fine-tuned version yet in an 

unsupervised fashion. 

 

   
(a) (b) (c) 

   
(a1) (b1) (c1) 

   
(a2) (b2) (c2) 

   
(a3) (b3) (c3) 

Figure 5.3:  (a)-(c) Endoscopy images containing polyps, (a1)-(c1) ground truth images, (a2)-

(c2) segmentation results of the empirically fine-tuned version, (a3)-(c3) segmentation 

results of the automated version. 

 

5.2.4  Segmentation of Skin Lesions on Dermoscopy Images 

The fifth database consists of 50 dermoscopy images containing skin lesions 

randomly obtained by the Dermoscopy Atlas [129], which is provided by the Skin 

Cancer College of Australia and New Zealand. The more asymmetrical the 

distribution of the pigmented lesion is, the more it is considered as an evolving 

growing nevus or a melanoma. Figure 5.4 illustrates segmentation results 

obtained by the automated version on dermoscopy images containing skin 

lesions, as well as by the empirically fine-tuned version. Apparently, the 
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automated version generates more detailed outlines of the lesions, whereas the 

empirically fine-tuned version includes pixels associated with background inside 

the contour. 

 

   
(a) (b) (c) 

   
(a1) (b1) (c1) 

   
(a2) (b2) (c2) 

   
(a3) (b3) (c3) 

Figure 5.4:  (a)-(c) Dermoscopy images containing skin lesions, (a1)-(c1) ground truth 

images, (a2)-(c2) segmentation results of the empirically fine-tuned version, (a3)-(c3) 

segmentation results of the automated version. 

 

5.2.5  Segmentation of Lung Parenchyma on CT scans 

The sixth dataset consists of 30 axial and 26 coronal CT scans of lung 

parenchyma obtained by LIDC-IDRI [134]. The aim of segmentation is to separate 

the lung parenchyma from the surrounding anatomy, which is typically impeded 

by airways or other “airway-like” structures in the right and left lung. The 

segmentation result is used for the computation of emphysema measures. Figure 

5.5 and Figure 5.6 illustrates segmentation results obtained by the automated 

version on axial and coronal CT scans of lung parenchyma, respectively as well 
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as by the empirically fine-tuned version. It is notable that both versions achieve 

comparable segmentation results.  

 

   
(a) (b) (c) 

   
(a1) (b1) (c1) 

   
(a2) (b2) (c2) 

   
(a3) (b3) (c3) 

Figure 5.5: (a)-(c) Axial CT scans of lung parenchyma, (a1)-(c1) ground truth images, (a2)-(c2) 

segmentation results of the empirically fine-tuned version, (a3)-(c3) segmentation results of 

the automated version. 
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(a) (b) (c) 

   
(a1) (b1) (c1) 

   
(a2) (b2) (c2) 

   
(a3) (b3) (c3) 

Figure 5.6: (a)-(c) Coronal CT scans of lung parenchyma, (a1)-(c1) ground truth images, (a2)-

(c2) segmentation results of the empirically fine-tuned version, (a3)-(c3) segmentation 

results of the automated version. 

 

5.2.6  Segmentation of Teeth on Gingiva Photographic Images 

The fourth database consists of 40 labial teeth and gingiva photographic images 

randomly obtained by the LTG-IDB database [137] created by the Color Imaging 

Lab at the Optics Department of the University of Granada, Spain. For the image 

acquisition, a Canon EOS 7D digital single-lens reflex color camera combined 

with a Canon EFS 18-135 mm standard zoom lens was used. The scope of this 

database usage is the task of teeth/non-teeth segmentation. Figure 5.7 illustrates 

segmentation results obtained by the automated version on gingiva photographic 

images, as well as by the empirically fine-tuned version. It is evident that the 

segmentation results obtained by the automated version are alike the 

corresponding ground truth images, whereas the ones obtained by the empirically 

fine-tuned version differ from the ground truth images, more so in the left and 

right edges of each image (white arrows). 
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(a) (b) (c) 

   
(a1) (b1) (c1) 

   
(a2) (b2) (c2) 

   
(a3) (b3) (c3) 

Figure 5.7:  (a)-(c) Labial teeth and gingiva photographic images, (a1)-(c1) ground truth 

images, (a2)-(c2) segmentation results of the empirically fine-tuned version, (a3)-(c3) 

segmentation results of the automated version. 

 

The segmentation results depicted in Figures 5.1-5.7 demonstrate that the 

presented framework achieves comparable segmentation quality to the one 

obtained by the empirically fine-tuned version in an automated fashion. 

 

The experimental results are quantitatively evaluated by means of two metrics: 

a) TC (see Chapter 3, Eq. (3.4.1)) 

b) the Hausdorff distance H [145] defined as:  

 

||||minmax),( baBAH
BbAa




 (5.2.1) 
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where A is the ground truth set, B the set under evaluation and a, b the points 

defined in sets A, B, respectively. Table 5.1 presents TC and H values, obtained 

by both versions, for each utilized database. 

 

Table 5.1: TC and H values for each utilized database 

Database TC (%) H (mm) 

 Empirical Automated Empirical Automated 

Mini-MIAS 82.3±1.8 83.4±1.2 42.3±2.5 41.2±1.7 

Thyroid US 82.8±1.2 83.7±0.8 43.7±3.3 41.7±2.1 

Endoscopy 81.4±1.5 82.3±1.4 41.4±3.8 40.8±1.3 

Dermoscopy Atlas 81.7±0.9 82.8±1.6 41.2±4.2 40.1±1.5 

Axial CT scans 80.2±1.5 81.8±1.7 40.7±2.6 39.3±2.2 

Coronal CT scans 82.5±1.8 83.8±1.3 42.2±4.2 41.2±1.6 

LTG-IDB 82.9±1.6 84.2±1.8 44.8±5.7 42.4±2.5 

 

The automated version achieves an average TC and H value of 83.1±1.4% and 

40.9±1.8 mm, respectively with regards to all images tested, which is comparable 

to the TC and H value of 82.0±1.5% and 42.3±3.8 mm respectively obtained by 

the empirically fine-tuned version. This comparable segmentation accuracy 

verifies the value of the presented framework for automated parameter 

adjustment, without the need for laborious fine-tuning from MDs.   

 

Aiming at highlighting the importance of the presented framework, further 

experiments are conducted in order to investigate the sensitivity of the empirical 

version to small alterations of parameters. The empirical version, except of being 

adjusted with optimal parameters, is also adjusted with parameters which are 

randomly set. Parameters 
fixed

regw  and fixed

dfw  were set to randomly selected values, 
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which fluctuated up to 10% from the optimal ones. Figure 5.8 depicts: (a) sample 

images of utilized databases, (b) segmentation results obtained by the empirically 

fine-tuned version and (c) segmentation results obtained by one case of the 

randomly-tuned version where fixed

regw  and fixed

dfw  were randomly set to 0.001·255² 

and 0.1, respectively. It is evident that, the segmentation results obtained by the 

randomly-tuned version differ significantly from the ones obtained by the fine-

tuned version. 

 

The randomly-tuned version achieves average TC and H of 58.3±1.7% and 

62.1±1.9mm, respectively, with respect to all values tested, which differ 

significantly from the ones achieved by the fine-tuned version. Hence, the 

empirical version is sensitive even to small alterations of parameters and the 

segmentation results are highly questioned. On the contrary, the presented 

framework achieves a high segmentation quality in an automated fashion, 

endowing segmentation results with objectivity. 
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Figure 5.8: (a) Sample images of utilized databases, (b) segmentation results obtained by 

the empirically fine-tuned version and (c) segmentation results obtained by the randomly-

tuned version. 

 

Figure 5.9 illustrates the elapsed time of contour convergence for automated 

versus empirical parameterization, for each reference database. It is evident that, 

contour converges approximately 5-10 times faster in the case of the automated 

version. This is because region-based forces guiding contour evolution are 

appropriately amplified in randomly oriented, high-entropy regions, driving the 

contour away (see Figure 3.7). Hence, iterations dedicated to false local minima, 

which are associated with such regions, are avoided. On the contrary, in the case 

of empirical parameterization, region-based forces are uniformly weighted, 

irrespectively of the Orientation Entropy (OE). Hence, the contour is delayed in 

false local minima and kept away from target edge regions for more iterations.  

   

   

   

   

   
(a) (b) (c) 
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Figure 5.9:  Elapsed time of contour convergence for automated versus empirical 

parameterization for each utilized database. 

 

5.3  Summary 

In this chapter, the novel framework for automated adjustment of AC 

regularization and data fidelity parameters is applied for medical image 

segmentation. This work is motivated by the need for automated 

parameterization, which is prominent in medical imaging applications, so as to 

relieve MDs from the laborious, time-consuming task of empirical 

parameterization and bolster the objectivity of the segmentation results.  

 

The presented framework is validated on several medical image databases by 

comparing its segmentation performance with the empirically fine-tuned version. 

The experimental results demonstrate that the automated version maintains a 

high segmentation quality, comparable to the one obtained empirically, yet in an 

unsupervised fashion. Hence, MDs are set free from the laborious process of 

empirical parameterization and the objectivity of the results is enhanced.  
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CHAPTER 6 

6. AN UNSUPERVISED AC-BASED MODEL FOR THE 

DETECTION AND SEGMENTATION OF PROTEOMICS 

IMAGES 

 

6.1  Introduction 

The emerging field of proteomics has progressed enormously in the past few 

years with the publication of the genome sequences of organisms. The 

complexity of the proteome intrigues researchers to study all the post-

transcriptional control and Post-Translational Modifications (PTMs) maps, which 

decode the fundamental biological mechanisms. The goal is the quantitative 

assessment of protein expression. The latter is highly indicative of various 

pathological conditions ranging from neoplasms and tumors to infectious 

diseases and genetic disorders. In this light, protein patterns of normal and 

diseased origin are compared in order to allow the identification of possible 

differences in protein expression during the various cell-cycle stages. Proteomic 

research is challenged technically in the need of separation, characterization and 

quantification of thousands of complex protein mixtures (see Chapter 4, § 4.2.3). 

The computational analysis of protein content on 2D-GE images is a challenging 

pattern recognition task, which involves several layers of processes including 2D-

GE image detection and segmentation.  

 

In this chapter, a novel AC-based model is presented for the detection and 

segmentation of protein spots in 2D-GE images. This is the first complete 

analysis model exploiting the appealing properties of the AC formulation in order 

to cope with crucial issues in 2D-GE image analysis, including the presence of 

noise, streaks, multiplets and faint spots. In addition, it is unsupervised, providing 

an alternative to the laborious, error-prone process of manual editing, which is still 

required in state-of-the-art 2D-GE image analysis software packages. The 

detection technique utilizes the dilation image operator [146], which embeds a 

disk-shaped Structuring Element (SE) [147], adjusted to the dominant roundish 

shape of protein spots. The disk-shaped SE limits the falsely detected streaks. 



 

Eleftheria A. Mylona 
124 

SE size is set considering that a certain radius value minimizes the detection of 

false negatives, whereas it allows the detection of local maxima associated with 

small spots, even in cases where they overlap with larger spots in complex 

regions. The presented detection technique imposes regional intensity constraints 

on the dilation-generated maxima so as to cope with the presence of noise and 

artifacts. The accompanying segmentation scheme comprises four main 

processes, namely: (a) a detection process capable of identifying boundaries of 

spot overlap in regions occupied by multiplets, based on the observation that 

such boundaries are associated with local intensity minima, (b) histogram 

adaptation and morphological reconstruction so as to avoid unwanted 

amplifications of noise and streaks, as well as to facilitate the identification of faint 

spots, (c) a contour initialization process aiming to form a level set surface 

initializing the subsequent level set evolution, based on the observation that 

protein spots are associated with regional intensity maxima and (d) a level set 

evolution process guided by region-based energy terms determined by image 

intensity as well as by information derived from the previous processes. 

 

6.2  Protein Spot Detection 

6.2.1  Mathematical Morphology (MM) 

Mathematical Morphology (MM) [146] is a well-known image analysis approach, 

which can be applied for the extraction or suppression of image components of 

interest by probing the image with a suitable SE [147]. It is based on set theory, 

considering images as sets of points. Set operations such as union, intersection, 

addition and subtraction are performed between two sets; the target region and 

the SE. The key morphological operations are dilation and erosion, forming the 

basis for more complex operations such as opening and closing. Morphological 

operations are capable of preserving topological properties such as connectivity 

and homotopy [148], whereas they are suitable for detecting geometric 

characteristics, such as intensity peaks, which are associated with protein spots 

on 2D-GE images. They have been successfully applied on various biomedical 

imaging domains, including electron micrographs of muscle cross-sections [149], 

gastric tumor pathologic cell images [150], digital color eye fundus images [151] 

as well as on 2D-GE imaging [152], [153].  
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Morphological dilation involves the intensity transformation ),( yxI  of each pixel   

to the maximum intensity of a region centered on pixel ),( yx . Each region is 

specified by a SE defined by ),( jiB  over a domain ΔB  . Pixel values within the 

region of the SE are marked either with one or zero. The morphological operation 

is applied on the neighborhood formed by pixels marked with one. The gray-scale 

dilation operator of ),( yxI  with ),( jiB  is denoted as BI   and defined by: 

 

}),(|),(),(max{ ΔBjijiBjyixIBI   (6.2.1) 

The SE plays the exact same role as the convolution kernel in the linear filter 

theory (see Chapter 2, § 2.3). Figure 6.1 illustrates the dilation image operator on 

a sample image with a Four Nearest Neighbors (4NN) SE. The SE is placed over 

the upper left pixel until the whole image has been processed. The maximum 

intensity value within ),( jiB  centered to each ),( yxI  is set to the pixel ),( yx  of 

the output image. 

 

 

Figure 6.1:  Dilation operator with a 4NN SE on a sample image. 
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Variations in SE size and shape may alter the effect of morphological operations 

and should be taken into account [154]. Both are often selected in accordance 

with the shape of the target region [155]. Square and rectangular shapes are 

selected when the interest lies on edge detection, whereas in some cases a disk-

shaped SE unrelated to directions may lead to better results. In the case of 2D-

GE images, the dominant shape of protein spots is circular. As it comes to size, a 

large disk tends to ignore most of regional intensity maxima. Based on these 

considerations, the SE is selected disk-shaped and the radius R is selected small 

in order to minimize missed regional intensity maxima. The latter are connected 

components of pixels with a constant intensity, bounded from pixels of lower 

intensity. A regional intensity maximum M at elevation t  is defined by: 
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


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
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(6.2.2) 

 

where p  is the pixel location, )(pI  is the intensity of p  and SEδ  is the region 

generated by the dilation of M  according to the SE. It is evident that, a regional 

maximum M  is not restricted to one pixel but is extended to a connected 

neighborhood M . The main attribute of M  is that no higher intensity value exists 

in SEδ . In the case of a 2D-GE image, a regional intensity maximum is associated 

with a bright protein spot over a dark background, often corresponding to a 

saturated spot region. 

 

6.2.2  Implementation 

As a first step, median filtering is applied on the 2D-GE image, so as to tackle 

with the presence of noise and minimize the detection of background intensity 

peaks. The application of the median filter on 2D-GE images has been supported 

in literature [156]. In cases of 2D-GE images depicting proteins spots as bright 

regions over a dark background, as the image illustrated in Figure 6.2(a), protein 

spots can be associated to regional intensity maxima. These maxima can be 

determined by means of Eq. (6.2.2).  A disk-shaped SE is selected to form the 
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connected regions associated with the regional intensity maxima in agreement 

with the prevalent roundish shape of the majority of protein spots, ignoring 

rectangular-shaped streaks. SE radius R is set according to the results of 

preliminary experimentation on 2D-GE images, considering that a certain radius 

value minimizes the detection of false negatives, whereas it allows the detection 

of local maxima associated with small spots even in cases where they overlap 

with larger spots in complex regions. Figure 6.2(b) illustrates the result of the 

dilation of the 2D-GE image of Figure 6.2(a) with the utilized SE. The latter is 

illustrated in Figure 6.3. 

 

  

(a) (b) 

Figure 6.2:  (a) 2D-GE image containing bright spots over a dark background, (b) dilation of 

the image of Figure 6.2(a) with a disk-shaped SE. 

 

 

Figure 6.3:  Disk-shaped SE of radius R = 4. 
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Regional intensity constraints are imposed on regional maxima in order to cope 

with the presence of noise and artifacts. The selection of regional intensity 

maxima is based on the following criteria: 

a) intensity of the selected regional maxima should be equal to or higher than a 

kk   adjacent region. This constraint is applied so as to include salient maxima 

associated with spots and avoid local maxima associated with noise. 

b) intensities of the zz  square neighborhood of each pixel of the selected 

regional maxima should exceed a threshold value T in order to avoid the 

detection of spurious maxima associated with unwanted artifacts and background 

peaks. 

 

6.2.3  Experimental Evaluation on Detection Results 

The presented technique has been experimentally evaluated on 13 real 2D-GE 

images provided by the Biomedical Research Foundation of the Academy of 

Athens. The utilized dataset contains approximately 26,000 protein spots. The 

2D-GE images were obtained in a digital format at 16-bit gray level depth, with 

field of view of approximately 56810 mm² and size of 700×650 pixels. Three 

ground truth images were provided by the expert biologists of the Biomedical 

Research Foundation of the Academy of Athens for each 2D-GE image. The 

application of the majority rule resulted in the final ground truth images used in 

the experiments performed. The algorithm has been implemented in Matlab 

R2009b [73] and executed on a 3.2 GHz Intel Pentium workstation. 

 

Parameters T, k and R were set to 75, 8 and 4, respectively and were used in all 

experiments to follow based on the considerations listed below: 

• threshold value T is selected equal to or lower than the intensity of the 

faintest spot so as to allow the detection of local maxima associated with faint 

spots, 

• kk   size of adjacent region should be equal to or higher than 20 pixels 

considering that the typical size of a protein spot ranges from 20 to 300 pixels in 

order to allow the detection of local maxima associated with spots and avoid local 

maxima associated with noise and, 
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• radius R is selected smaller than the smallest protein spot radius in order to 

allow the detection of local maxima associated with small spots even in cases 

where they overlap with larger spots in complex regions. 

 

Parameters T, k and R are not directly affected by the total image size. However, 

as it can be derived from the considerations listed above, parameters k and R are 

affected by the range of protein spot sizes in pixels, which is determined by image 

resolution. In addition, parameters k and R are invariable to image contrast, as 

opposed to parameter T. The latter decreases as image contrast increases, since 

contrast increase lowers faint spot intensities, which provide the upper bound of 

T, as described.  

 

Melanie 7 [112] software package is used for comparisons. Melanie 7 parameters 

“smooth”, “saliency” and “min area” were set to 4, 70 and 60, respectively. These 

values were selected by an expert biologist, following his experience. According 

to the documentation provided with Melanie 7: a) “smooth” parameter determines 

the number of iterative executions of the diffusion smoothing algorithm, which is a 

component of Melanie 7, b) “saliency” parameter indicates how far a spot stands 

out with respect to its environment. Real spots generally have high saliency 

values whereas artifacts and background noise have small saliencies, c) “min 

area” parameter eliminates spots of area smaller than the specified value, which 

is expressed in number of pixels. 

 

Figures 6.4(a)-(c) illustrate three of the final ground truth images, whereas 

Figures 6.4(d)-(f) depict the detection results obtained by Melanie 7 software 

package. It can be observed that, much more actual protein spots are missed 

(red arrows), whereas more artifacts are falsely detected as spots (green arrows), 

especially in the cases of Figure 6.4(e),(f).  
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(a) (d) 

  

(b) (e) 

  

(c) (f) 

Figure 6.4: (a)-(c) Ground truth images, (d)-(f) detection results obtained by Melanie 7 [112]. 

 

Figures 6.5(a)-(c) illustrate the ground truth images, whereas Figures 6.5(d)-(f) 

depict the detection results obtained by the presented detection technique. It is 

evident that, the vast majority of the actual protein spots are correctly detected. 
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For instance, in the case of Figure 6.4(e) and 6.5(e) Melanie 7 and the presented 

technique detected 31 and 27 spots, respectively out of a total of 28 protein 

spots. 

  

(a) (d) 

  

(b) (e) 

  

(c) (f) 

Figure 6.5: (a)-(c) Ground truth images, (d)-(f) detection results obtained by the presented 

detection technique. 
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The detection results are quantified by means of the Predictive Value (PV), 

Specificity (SP) and Detection Sensitivity (DS) [157], which are defined as: 
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(6.2.3) 

 

where True Positives (TP) and False Negatives (FN) are defined as correctly 

detected and falsely detected spots. TP and FN are calculated based on the final 

ground truth images. Table 6.1 presents PV, SP and DS obtained by Melanie 7 

and the presented detection technique for each 2D-GE image of Figure 6.4. The 

presented technique obtains a DS, which exceeds 90% in all image cases. In the 

cases of Figure 6.5(d) and 6.5(e) it misses only 4 and 2 actual protein spots out of 

57 and 26, respectively. In the case of the 2D-GE image of Figure 6.5(f), the 

presented technique misses 17 out of a total of 154 protein spots. These FN 

cases are a side effect of median filtering, which may affect some regional 

intensity maxima. 

 

Table 6.1: Indicative detection results obtained by Melanie 7 and the presented detection 

technique 

 Melanie 7 Presented Detection 

Technique 

Image of Figure 

6.4 

PV(%) SP(%) DS(%) PV(%) SP(%) DS(%) 

d 90 43 90 92 83 93 

e 90 35 89 91 81 92 

f 75 25 85 85 77 90 
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The comparison of PV, SP and DS presented in Table 6.1 lead to the conclusion 

that the presented detection technique outperforms Melanie 7 software package 

in all image cases. Figure 6.6 illustrates detailed sub-images of the images of 

Figure 6.5, so as to focus on the response of the presented detection technique 

with respect to the presence of overlapping spot regions, streaks and artifacts. 

The detailed sub-images of Figures 6.6(a),(b) depict complex regions with 

multiple overlapping spots. In both cases, it manages to separately detect each 

overlapping spot. This discriminative capability of the presented technique is 

attributed to the size of the SE, which is smaller than the protein spot sizes.  

 

Figures 6.6(c),(d) illustrate sub-images containing multiple vertical streaks. Such 

streaks occur due to flawed calibration or insufficient SDS in electrophoresis 

buffer (see Chapter 4, § 4.2.3) and pose difficulties for the consistent spot 

detection by biologists. The main challenge is the localization of protein spots 

within streaks. The presented technique succeeds in detecting such spots. The 

DS of the presented technique in such cases can be attributed to the utilization of 

the disk-shaped SE, which tends to ignore the rectangular-shaped streaks.  

 

Figures 6.6(e),(f) present sub-images containing artifacts. In both cases, the 

presented technique correctly ignores all artifacts present. This can be attributed 

to the selectivity of the constraints imposed, which are parameterized so as to 

select salient intensity maxima. 

 

 

 

 

 

 

   

 

 

 

 

 

(a) (b) (c) (d) (e) (f) 

Figure 6.6: Detailed sub-images containing overlapping spots (a),(b), vertical streaks (c),(d) 

and artifacts (e),(f), extracted from Figure 6.5(f),(e) and (b), respectively. 
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Table 6.2 presents the PV, SP and DS obtained by the presented detection 

technique and Melanie 7, in a total of approximately 26,000 protein spots 

appearing in a dataset of 13 2D-GE images. Figure 6.7 provides a visualization of 

the results of Table 6.2. It is evident that, the presented detection technique 

outperforms Melanie 7 in terms of all performance criteria. In addition, ANOVA 

has been performed so as to validate the statistical significance of the obtained 

results. ANOVA involves the so-called null hypothesis testing, where the null 

hypothesis is that the means among the compared populations are equal, under 

the assumption that these populations are normally distributed [158]. ANOVA 

yielded a p-value of less than 0.05 for all performance criteria, indicating that the 

performance difference of the presented detection technique and Melanie 7 is 

statistically significant. 

 

Table 6.2: Overall detection results obtained by Melanie 7 and the presented detection 

technique 

 Melanie 7 Presented Detection 

Technique 

 mean standard 

deviation 

mean standard 

 deviation 

PV(%) 73.6 17.4 88.2 4.2 

SP(%) 33.2 13.5 81.6 5.3 

DS(%) 77.4 12.6 87.3 6.2 

 

 



Image Analysis and Processing with Applications in Proteomics and Medicine 

Eleftheria A. Mylona 
135 

 

Figure 6.7: Overall detection results in terms of PV, SP and DS, obtained by the presented 

detection technique and Melanie 7. 

 

Considering the experimental evaluation it can be concluded that the presented 

detection technique achieves a PV and a DS which exceed 80%, outperforms 

Melanie 7, distinguishes multiple overlapping spots, locates spots within streaks 

and ignores artifacts. 

 

6.3  Protein Spot Segmentation 

The presented segmentation scheme is based on the Chan-Vese model [2] and 

comprises four main processes: (a) separation of multiplets, (b) histogram 

adaptation and morphological reconstruction, (c) level set initialization and (d) 

contour evolution.  

 

6.3.1  Separation of Multiplets Based on Directionality 

It can be observed that, the region of overlap between two protein spots is 

associated with local intensity minima, with respect to a particular direction. 

Figure 6.8 illustrates this point by three-dimensional representations of protein 

spot intensities, in cases of partly overlapped (see Figure 6.8(a)) and highly 

overlapped (see Figure 6.8(b)) protein spots. This observation yielded to the 
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incorporation of information derived by such local intensity minima in the 

presented 2D-GE image segmentation scheme. 

 

  

(a) (b) 

Figure 6.8: 3D representations of protein spots: (a) partly overlapped and (b) highly 

overlapped. 

 

The original 2D-GE image is pre-processed with median filtering [156] aiming to 

reduce the side effects of noise on the following processes. The pre-processed 

image is scanned with parallel straight-line segments of variable lengths and 

multiple directions (see Figure 6.9), so as to facilitate the detection of local 

intensity minima, associated with each particular direction. 

 

  

Figure 6.9: Multiple directions of straight-line segments for local intensity minima 

detection. 
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Local intensity minima are identified for each parallel straight-line segment. 

However, the ones which are eventually selected conform to the following two 

criteria: a) intensity value exceeds a threshold value T1 and b) intensity value is a 

global minimum over a square sub-segment of width exceeding a minimum value 

w. These criteria are imposed to exclude local intensity minima associated with 

background clutter. Figure 6.10 illustrates: a) a real 2D-GE image, b) the 

detection results obtained by the local intensity minima process, with each 

minimum marked as black and (a1)-(b1) respective sub-images as marked in (a) 

and (b). In Figure 6.10(b1) it is evident that, the detection process actually 

identifies boundaries of spot overlap. Therefore, alterations in the pre-processing 

techniques as well as further manual editing are not required.  

  

(a) (b) 

  

(a1) (b1) 

Figure 6.10: (a) Real 2D-GE image, (b) detection results obtained by the local intensity 

minima process, (a1) sub-image of (a), and (b1) sub-image of (b). 
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6.3.2  Enhancement of Faint Spots Using CLAHE and MM 

A popular histogram equalization variant called Contrast-Limited Adaptive 

Histogram Equalization (CLAHE) [159] is utilized to enhance the segmentation 

performance of the presented scheme with respect to the presence of faint spots 

in 2D-GE images. CLAHE involves a grayscale transformation function which has 

been effectively applied on various medical imaging modalities including 

mammographic [160] and chest CT [161] imaging. The core idea is to adaptively 

enhance image contrast in a local fashion, contrary to the original histogram 

equalization which is uniformly applied on the entire image.  

 

CLAHE separately applies histogram equalization on nn  small non-overlapping 

image regions called tiles. The histogram of each transformed tile approximates 

the uniform distribution, which results in amplification of faint regions such as the 

faint protein spots in 2D-GE images. The local nature of CLAHE prevents 

unwanted amplifications of noise and streaks, as opposed to the original 

histogram equalization which has the same amplifying effect on noise and 

artifacts as on faint spots. In addition, CLAHE imposes a constraint on the 

resulting contrast providing a mechanism to cope with a possible over-saturation 

of the resulting image. This constraint can be adjusted by a parameter h, called 

clip limit. The clip limit h determines the maximum number of pixels which are 

allowed to occupy a bin in the resulting histogram. In cases of over-saturation, 

where certain histogram bins are occupied by more than )12(  depthlevelgrayh  

pixels, the excessive amount of pixels is redistributed over the rest of the 

histogram. The neighboring transformed tiles are then merged using bilinear 

interpolation to reduce artificially induced boundaries and the pixel intensity 

values are updated in accordance with the adapted histograms [162].  

 

Figure 6.11 illustrates the images resulted from the application of: (a) histogram 

equalization and (b) CLAHE, on the original 2D-GE image of Figure 6.10(b). A 

sub-image of this original 2D-GE image is illustrated in Figure 6.11(c), whereas 

the corresponding sub-images of Figure 6.11(a) and (b) are magnified in Figure 

6.11(a1) and (b1), respectively. It can be observed that, both techniques amplify 

spots which were faint in the original 2D-GE image; however CLAHE avoids 
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unwanted amplifications of noise and streaks, which is not the case with the plain 

histogram equalization. Figure 6.12 illustrates the histograms of: (a) the original 

2D-GE image illustrated in Figure 6.10(b), as well as the histograms of the 

images illustrated in: (b) Figure 6.11(a) and (c) Figure 6.11(b). It can be observed 

that the histogram of the image resulted from the application of CLAHE, is much 

denser than the one generated by plain histogram equalization, indicating that the 

former maintains much more detailed image-related information. 

 

It should be noted that, the application of CLAHE could not benefit the detection 

of local intensity minima, as well as the contour initialization process which is 

described later on. Accordingly, both processes are applied on the original 2D-GE 

image. This can be justified by considering that the clipping involved in CLAHE 

redistributes pixels over the histogram, introducing intensity minima which are not 

necessarily associated with spot boundaries, as well intensity maxima which are 

not necessarily associated with spots. 

 

  

(a) (b) 
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(c) (a1)  (b1) 

Figure 6.11: 2D-GE images obtained by the application of: (a) histogram equalization and 

(b) CLAHE, on the 2D-GE image of Figure 6.10(b). A sub-image of the original 2D-GE image 

is illustrated in (c), whereas the corresponding sub-images of (a) and (b) are magnified in 

(a1) and (b1), respectively. 

 

  

(a) 

  

(b) 



Image Analysis and Processing with Applications in Proteomics and Medicine 

Eleftheria A. Mylona 
141 

  

(c) 

Figure 6.12: Histograms of: (a) the original 2D-GE image, (b) the image resulted from the 

application of histogram equalization on the image of Figure 6.11(a) and (c) the image 

resulted from the application of CLAHE on Figure 6.11(b). 

 

The protein spot regions depicted on the enhanced image generated by CLAHE 

are still characterized by intensity inhomogeneity which would affect the 

subsequent AC evolution. Another morphological processing step is performed in 

order to cope with this issue. The enhanced image is binarized according to a 

threshold value T2. However, the protein spot regions of the binary image contain 

holes as a result of intensity inhomogeneity. The flood-fill morphological operation 

[146] is applied so as to eliminate such holes. This morphological operation alters 

the connected background pixels to foreground pixels until it reaches the target 

boundaries.  

 

Figure 6.13 illustrates the results obtained by the flood-fill morphological 

operation on: (a) the original 2D-GE image illustrated in Figure 6.10(b) and (b) on 

the enhanced image of Figure 6.11(b), which is generated by the application of 

CLAHE. A sub-image of the original 2D-GE image is illustrated in (c), whereas 

(a1) and (b1) are the corresponding sub-images of Figure 6.13(a) and (b), 

respectively. Missing regions in Figure 6.13(a1), as compared to Figure 6.13(b1), 

correspond to faint protein spots.  It is evident that, the utilization of CLAHE is 

essential, since most faint spots are missed when CLAHE is omitted. The 

obtained binarized image represents protein spots, including faint ones, as well 

as the boundaries of spot overlap in regions occupied by multiplets. This 

indispensable information is incorporated into the later stage of contour evolution.  
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(a) (b) 

   

(c) (a1)  (b1) 

Figure 6.13: Results obtained by the flood-fill morphological operation on: (a) the image 

illustrated in Figure 6.10(b) and (b) on the enhanced image of Figure 6.11(b), which is 

generated by the application of CLAHE. A sub-image of the original 2D-GE image is 

illustrated in (c), whereas (a1) and (b1) are the corresponding sub-images of (a) and (b), 

respectively. 

 

6.3.3  Automatically Initialized Level Set Function 

The Chan-Vese model is not completely insensitive to initialization [163]. It suffers 

in the sense that it is susceptible to the initial level set surface, which is often 

manually determined. Figure 6.14 illustrates segmentation results obtained by the 

straightforward application of the Chan-Vese model where the contour is 

initialized: (a) inside a protein spot, (b) to embed a single protein spot and (c) to 
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embed multiple protein spots. It is evident that, the convergence state is subject 

to initial contour positioning.  

 
 

 

(a) (b) (c) 

 
 

 

(d) (e) (f) 

Figure 6.14: The initial contour: (a) is positioned inside a protein spot, (b) embeds a protein 

spot and (c) embeds the majority of protein spots, (d)-(f) segmentation results emerged 

from the application of the Chan-Vese model according to the initialization of (a)-(c), 

respectively after 200 iterations. 

 

Hitherto, it is essential to initialize the level set function so that the associated 

zero levels approximate the actual protein spots. Starting from the observation 

that regional intensity maxima of a 2D-GE image are associated with protein 

spots, the presented initialization process constructs a level set surface of 

multiple cones centered at maxima positions. This surface can serve as a spot-

targeted initialization of the level set function. Such an initialization process is 

particularly important within the context of the presented segmentation scheme, in 

the sense that it provides the capability of unsupervised segmentation. In this 

light, this process is one of the novel elements of the presented scheme, since it 

extends a straightforward AC application, which would have required supervised 

initialization in order to avoid sub-optimal segmentation results. It should be noted 

that, the level set function is initialized on the 2D-GE image instead of the 

binarized image described in the previous process, since regional intensity 

maxima are not maintained in the latter image.  

 

The positions of regional intensity maxima selected in the detection process are 

used as centers of cones forming the surface of the initial level set function. Apart 
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from cone centers, the presented initialization process determines the zero-level 

regions associated with each cone. Figure 6.15 illustrates a three-dimensional 

representation of the level set surface of multiple cones obtained by the 

application of the presented initialization process on a real 2D-GE image.  

 

Figure 6.15: 3D representation of the level set surface of multiple cones obtained by the 

application of the presented initialization process on a real 2D-GE image. 

 

6.3.4  Contour Evolution Endowed with Information on Multiplets and Faint 

Spots 

Aiming to enhance segmentation performance, contour evolution is initialized by 

the spot-targeted level set surface generated by the previous initialization 

process. In addition, the AC evolves in separate gg   image sub-regions, which 

are centered at the cone centers of the level set surface. The AC converges 

according to the following equation: 
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where 1I , 2I  are the original image and the binarized image which is the output of 

morphological processing, respectively, 1c , 2c  and 3c , 4c  the average intensities 

inside and outside of the contour of 1I  and 2I , respectively, fixed

regw  the fixed 

regularization parameter, fixed

dfw
1

 and fixed

dfw
2

 the fixed data fidelity parameters of 1I  

and 2I , respectively. 

 

Equation (6.3.1) describing contour evolution of the presented scheme extends 

(2.5.17) in the sense that it encompasses information derived by: 1) the original 

2D-GE image 1I , 2) the binarized image 2I  obtained by the application of CLAHE 

and morphological processing of the original 2D-GE image. The latter information 

is essential to identify the presence of faint spots as well as the boundaries of 

spot overlap in regions occupied by multiplets. 

 

6.3.5  Experimental Evaluation on Segmentation Results 

The experimental evaluation of the presented segmentation scheme has been 

conducted on a dataset of 13 real digital grayscale 2D-GE images provided by 

the Biomedical Research Foundation of the Academy of Athens, as well as on a 

dataset of 30 synthetic 2D-GE images, so as to facilitate qualitative and 

quantitative comparisons with state-of-the-art 2D-GE image analysis software 

packages. The size of each real and synthetic 2D-GE image used was 

approximately 2000×3000 and 1500×2000 pixels respectively, whereas image 

gray-level depth of both image types was 16-bit. The presented segmentation 

scheme has been implemented in Matlab R2009b [73] and executed on a 3.2 

GHz Intel Pentium workstation.  

 

Effects of Parameter Settings  

Parameter tuning was based on preliminary experimentation, which resulted in 

the values presented in Table 6.3. The preliminary experiments were performed 

on three pilot 2D-GE images, whereas the search on the parameter space was 

guided by the following considerations: 
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- the width w of the square sub-segment considered in local intensity minima 

detection as well as the size z of the square neighborhood considered in contour 

initialization process, were all set to 3. This value is the smallest value for these 

two parameters, whereas higher values of both w and z resulted in slight 

reduction of the obtained segmentation quality, 

 

- thresholds T1, T2, T3 were experimentally identified as 150, 160 and 75, since 

these values approximate: 1) the upper extreme of the intensity range of the 

background clutter, 2) the lower extreme of the intensity range of faint spots on 

the images resulted from histogram equalization and, 3) the lower extreme of the 

intensity range of faint spots on the original 2D-GE images, respectively. 

Perturbations of T1, T2, T3 within the ranges [147,152], [158,162] and [72, 77], 

resulted in insignificant variations of the obtained segmentation quality,  

  

- tile size n considered for CLAHE was experimentally identified as 40, since this 

values approximates the typical size of a faint protein spot. Perturbations of n 

within the range [37, 42] resulted in insignificant variations of the obtained 

segmentation quality,    

  

- clip limit h is set to 0.01 since this order of magnitude reduces over-saturation 

and leads to the optimal segmentation quality in all pilot 2D-GE images. 

Perturbations of h within the range [0.006, 0.03] resulted in insignificant variations 

of the obtained segmentation quality, 

 

- size m of adjacent regions and radius r considered in contour initialization 

process as well as image sub-region size g considered in contour evolution 

process were experimentally identified as 20, 4 and 50, since these values 

approximate: 1) the lower extreme of protein spot sizes and consider salient 

intensity maxima associated with protein spots, 2) the lower extreme of protein 

spot radii and allow the detection of regional intensity maxima in cases of small 

spots overlapping with larger spots in multiplets and 3) the average size of a 

typical protein spot. Perturbations of m, r and g within the ranges [17, 24], [3, 5] 
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and [42, 59] resulted in insignificant variations of the obtained segmentation 

quality, 

 

- following relevant literature [2], the weights of the energy terms fixed

dfw
1

 and fixed

dfw
2

  

were set to 1 whereas the weight fixed

regw  was adjusted to 2255006.0  , since this 

value leads to the optimal segmentation quality in all pilot 2D-GE images. 

Perturbations of fixed

regw  within the range ]255009.0,255003.0[ 22   resulted in 

insignificant variations of the obtained segmentation quality. 

 

The variations in segmentation quality are considered insignificant when the 

values of the associated segmentation quality measures (i.e. VO and VE, as 

defined in Eq. (6.3.5)), derived for each one of the three pilot 2D-GE images are 

overlapping. The latter occurs when the values of the segmentation quality 

measure derived for a pilot 2D-GE image are within the ranges defined by the 

mean values and the standard deviations of the same measure, as derived for the 

other two pilot 2D-GE images. It should be pointed out that, parameter tuning is 

performed once on a small number of pilot 2D-GE images generated with a 

certain experimental setup (pH, staining etc.) and the resulting parameter values 

can be used for all 2D-GE images generated with the same setup. On the 

contrary, state-of-the-art software packages require parameter tuning for each 

single 2D-GE image, as confirmed by expert biologists.  
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Table 6.3: Parameter values 

Detection of local intensity 

minima in multiplets 

k = 3 T1  = 150 w = 3  

Image enhancement and 

morphological reconstruction 

n = 40 h = 0.01 T2 = 160  

Contour initialization m = 20 z = 3 T3  = 75 r = 4 

Contour evolution g = 50 fixed

regw = 0.006·255² 
fixed

dfw
1

 = 1 
fixed

dfw
2

= 1 

 

 

Real 2D-GE Images 

Figure 6.16 illustrates example segmentation results obtained by the application 

of PDQuest 8.0.1 [113], Melanie 7 [112], Delta2D and the presented 

segmentation scheme on a real 2D-GE image. It should be noted that, the output 

images resulting from the application of the software packages varied with 

respect to size and resolution. The software packages were applied on inverted 

versions of the 2D-GE images, whereas parameter settings and calibrations 

involved were performed by expert biologists, following their experience.  
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(a) (b) 

  

(c) (d) 
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(a1) (b1) (c1) (d1) 

Figure 6.16: Segmentation results obtained by the application of: (a) PDQuest 8.0.1, (b) 

Melanie 7, (c) Delta2D and (d) the presented segmentation scheme, whereas (a1)-(d1) are 

sub-images of the same region of (a)-(d) respectively. 

 

It is evident that, the presented segmentation scheme results in more plausible 

spot boundaries (see Figure 6.16(d1)) than all three image analysis software 

packages. PDQuest 8.0.1 results in elliptical boundaries, which do not correspond 

to the irregular shape of the actual spot boundaries, whereas such elliptical 

boundaries tend to include background regions. In the cases of Melanie 7 and 

Delta2D, the obtained segmentation results suffer from over-segmentation and 

are subject to laborious, error-prone and time-consuming correction process by 

the expert biologists.  

 

Synthetic 2D-GE Images 

In order to quantitatively evaluate the presented segmentation scheme, 

experiments were performed on the set of synthetic images generated by the 

synthetic 2D-GE image generation software, developed by the Real-time Systems 

& Image Analysis Lab of our Department. Figure 6.17 illustrates an example of a 

synthetic 2D-GE image, as well as the corresponding ground truth. Such a 

synthetic image is populated by approximately 200 spots, following beta 

distribution. As a result of trial-and-error experimentation, parameters a and b of 

the beta function were set to 4 and 3 respectively, resulting in spatial frequency of 

singlet and multiplet occurrence, which emulates real 2D-GE images. Synthetic 

background emulates inhomogeneity, streaks and clutter, which characterize the 

background of real 2D-GE images.  
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(a) (b) 

Figure 6.17: (a) Synthetic 2D-GE image and (b) the corresponding ground truth. 

 

The intensity profile of each spot is chosen flat top in order to emulate the 

saturation characterizing actual protein spots and is defined by:  
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where 0r  is the radius of the flat top, r  is the Euclidean distance from the center 

of the spot and 
2

φσ  is an angle-dependent variance coefficient:  
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where xσ  and yσ  are the variance coefficients along the primary axes. Figure 

6.18 illustrates example segmentation results obtained by PDQuest 8.0.1, 

Melanie 7, Delta2D and the presented segmentation scheme on a synthetic 2D-

GE image. 

 

  
(a) (b) 



Image Analysis and Processing with Applications in Proteomics and Medicine 

Eleftheria A. Mylona 
153 

  
(c) (d) 

    
(a1) (b1) (c1) (d1) 

    

(a2) (b2) (c2) (d2) 

Figure 6.18: Segmentation results of the application of: (a) PDQuest 8.0.1, (b) Melanie 7, (c) 

Delta2D and (d) the presented segmentation scheme, (a1)-(d2) sub-images of (a)-(d), 

respectively. 

 

The segmentation results are quantified according to the spot volume V, as 

defined in [108]:  
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Comparison of the segmentation results with the corresponding ground truth 

image, as generated by the 2D-GE image simulation software allows the 

categorization of each pixel in one of the following four region types: “Actual Spot 

Region (ASR)”, “False Spot Region (FSR)”, “False Background Region (FBR)” 

and “Actual Background Region (ABR)”. 

 

The spot volumes which are calculated according to Eq. (6.3.4) for the above four 

cases of regions, correspond to the “Actual Spot Volume” (ASV), “False Spot 

Volume” (FSV), “False Background Volume” (FBV) and “Actual Background 

Volume” (ABV), respectively. The segmentation performances are quantitatively 

evaluated in terms of Volumetric Overlap (VO) and Volumetric Error (VE), which 

are defined as follows:  

 

FBVASV

FSV
VE

FBVASV

ASV
VO





 ,  

(6.3.5) 

 

Table 6.4 presents the results obtained by PDQuest 8.0.1, Melanie 7, Delta2D 

and the presented segmentation scheme. Figure 6.19 provides a visualization of 

the results of Table 6.4. It is evident that, the presented scheme outperforms all 

three software packages in terms of VO and VE. In particular, VE obtained by the 

presented scheme is approximately 3 - 4 times smaller than the one obtained by 

the software packages, indicating that it is much more effective in avoiding the 

identification of FSR. Moreover, the presented scheme demonstrates a 

remarkably lower variance in both performance measures, as a result of its 

robustness over streaks, multiplets and faint spots.  
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Table 6.4: Segmentation results 

 PDQuest 8.0.1 Melanie 7  Delta2D Presented Scheme 

VO 80.2±4.6% 86.5±3.2% 82.4±3.6% 92.0±1.2% 

VE 83.1±8.9% 55.0±6.7% 64.3±7.6% 20.0±3.2% 

 

 

Figure 6.19: Overall segmentation results in terms of VO and VE obtained by PDQuest 

8.0.1, Melanie 7, Delta2D and the presented scheme on the set of synthetic 2D-GE images. 

 

6.3.6  Graphical User Interface (GUI) 

The presented AC-based model has been integrated into a GUI built in Matlab via 

GUIDE tools. The GUI is designed for spot detection and spot segmentation on 

2D-GE images. User intervention requirements are minimal. The GUI is designed 

in a simple yet effective manner so that the user can easily communicate with the 

computer without having to worry on the intrinsic mechanisms.  

 

GUI comprises three main pushbuttons namely: a) read image file, b) spot 

detection and c) spot segmentation. Additionally, it includes three axes one for 

each pushbutton so as to depict the image emerged from each procedure. 

Waiting bars and pop-up windows are also included for a better communication 

between the user and the computer. Moreover, GUI consists of buttons which 
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magnify and minimize the dimensions of the image, drag the image and show the 

coordinates of each image, enhancing the visualization of the detection and 

segmentation results by the user. Figure 6.20 illustrates: a) the GUI setup, b) a 

snapshot of GUI during spot detection, c) a snapshot of GUI during spot 

segmentation and d) detection and segmentation results. 

 

 

(a)  

 
(b) 
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(c) 

 
(d) 

 

Figure 6.20: a) The GUI setup, b) a snapshot of GUI during spot detection, c) a snapshot of 

GUI during spot segmentation, d) detection and segmentation results. 

 

6.3.7  Comparison Between Empirical and Automated AC Parameterization 

The performance of the presented segmentation scheme has also been 

compared with the automated version implemented by embedding the framework 

presented in Chapter 3. Both automated and empirical versions are evaluated on 

real 2D-GE images, obtained by the Biomedical Research Foundation of the 

Academy of Athens. For the empirical case, the optimal parameters are set 

according to the original paper [2]. For the presented framework, the 
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regularization and data fidelity parameters are automatically calculated according 

to Eq. (3.3.1). 

 

Fig. 6.21 illustrates contours obtained on the second as well as on the final 

iteration for two 2D-GE sub-images. Yellow color is used for the initial contour in 

both versions, whereas purple and green colors correspond to empirical and 

automated version, respectively. It is evident that, the segmentation results of the 

empirical and automated versions are comparable. Nonetheless, as already 

pointed out, empirical parameterization requires tedious, time-consuming 

experimentation. The presented framework is capable of obtaining comparable 

results in an automated fashion. Figure 6.22 depicts DMI for both versions, based 

on the contour evolution presented in Figure 6.21. Again in the case of the 

automated version, DMI is slightly higher in early iterations. In Figure 6.23, the 

comparison is performed in terms of TC, providing a quantification of the actual 

segmentation performance.  

 

 

Figure 6.21: Segmentation results of the presented scheme on two sub-images. Yellow 

color is used for the initial contour in both versions, purple and green contours correspond 

to empirical and automated parameterization, respectively. 
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Figure 6.22: DMI between inside and outside regions for the early stages of evolution of 

automated versus empirical parameterization presented in Figure 6.21. 

 

 

Figure 6.23: TC for the early stages of evolution of automated versus empirical approach 

presented in Figure 6.21. 

 

6.4  Summary 

In this chapter, a novel AC-based model is presented for the detection and 

segmentation of protein spots in 2D-GE images. The presented detection 

technique utilizes the dilation operator for the location of regional intensity 

maxima associated with protein spots. The SE is selected as disk-shaped in 

accordance with the dominant roundish shape of most protein spots. The disk-

shaped SE tends to ignore rectangular-shaped streaks.  In addition, SE radius R 

is set considering that a certain radius value minimizes the detection of false 

negatives, whereas it allows the detection of local maxima associated with small 

spots even in cases where they overlap with larger spots in complex regions. The 
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presented detection technique imposes regional intensity constraints on the 

dilation-generated maxima so as to cope with the presence of noise and artifacts, 

such as cracks and dust particles.   

 

Considering the experimental evaluation, the presented detection technique: 

a) achieves a PV and a DS which exceed 90%, 

b) outperforms Melanie 7 software package, 

c) distinguishes multiple overlapping spots, 

d) locates spots within streaks and, 

e) ignores artifacts. 

 

The presented segmentation scheme incorporates: (a) a detection process 

capable of identifying boundaries of spot overlap in regions occupied by 

multiplets, based on the observation that such boundaries are associated with 

local intensity minima, (b) histogram adaptation and morphological reconstruction 

so as to avoid unwanted amplifications of noise, streaks and facilitate the 

identification of faint spots, (c) a contour initialization process aiming to form a 

level-set surface initializing the subsequent contour evolution, based on the 

observation that protein spots are associated with regional intensity maxima and 

(d) a contour evolution process guided by region-based energy terms determined 

by image intensity as well as by information derived from the previous processes 

of the presented scheme.  

 

The experimental evaluation of the presented segmentation scheme has been 

conducted on datasets of both real and synthetic 2D-GE images, so as to 

facilitate quantitative comparisons with state-of-the-art 2D-GE image analysis 

software packages, including PDQuest 8.0.1, Melanie 7 and Delta2D. As it can be 

derived by the experimental results, the presented scheme: (a) is capable of 

identifying spot boundaries within regions occupied by multiplets, (b) is capable of 

identifying boundaries of faint spots, (c) copes with the presence of noise, as a 

result of the region-based formulation of the energy terms in contour evolution 
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equation, (d) results in more plausible spot boundaries than PDQuest 8.0.1, 

Melanie 7 and Delta2D 2D-GE image analysis software packages as it can be 

observed on the segmentation results on both real and synthetic 2D-GE images, 

(e) outperforms all three 2D-GE image analysis software packages in terms of 

segmentation quantity measures, calculated from the segmentation results 

obtained on synthetic 2D-GE images and (f) is unsupervised, providing an 

alternate to the laborious, error-prone and time-consuming process of manual 

editing, which is required in state-of-the-art 2D-GE image analysis software 

packages. 
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CHAPTER 7 

7. CONCLUSIONS 

 

7.1  Contributions 

In this thesis, unsupervised image analysis algorithms have been presented for 

the detection and segmentation of various types of images focusing on 

proteomics and medical images. After reviewing related state-of-the-art methods, 

novel algorithms, published in peer-reviewed international journals and 

international conferences, were introduced.  

 

The major achievements of this thesis are listed below: 

 

The presented framework for automated adjustment of region-based AC 

parameters described in Chapters 3 and 5 was compared to the empirical fine-

tuned version and achieved to: 

1) maintain a high segmentation quality comparable to the one stemmed from 

each empirically fine-tuned approach. 

2) speed up contour convergence by selectively amplifying data fidelity 

forces. 

3) identify and distinguish actual region boundaries from edge regions 

associated with noise and artifacts by utilizing multi-scale analysis and 

orientation coherence information. 

4) enrich segmentation results with objectivity and reproducibility. 

5) relieve domain users from the tedious and time-consuming process of 

empirical adjustment.  

6) be equally successful when integrated into various region-based AC 

variations since it is implemented in a simple and flexible manner.  

7) be successfully applied on several types of images such as natural, 

textured and biomedical images. 
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In the case of medical image segmentation, it achieved to remain insensitive on 

alterations in the settings of the acquisition devices and additional technical skills 

by the MDs are no longer a prerequisite. 

 

The presented model for the detection and segmentation of proteomics images 

described in Chapter 6 achieved to: 

1) separate multiplets in complex regions based on local intensity minima 

with respect to their directionalities. 

2) identify boundaries of faint spots by utilizing CLAHE and MM. 

3) tackle the presence of noise and the inhomogeneous background, as a 

result of the region-based formulation of the energy terms in contour 

evolution equation. 

4) locate spots within streaks by appropriately selecting a disk-shaped SE, 

which tends to ignore the rectangular-shaped streaks.  

5) ignore artifacts as a result of regional intensity constraints imposed on the 

detection of regional maxima. 

6) obtain PV and DS values which exceed 90%. 

7) endow detection and segmentation results with objectivity and 

reproducibility by automatically initializing the level set function based on 

regional intensity maxima associated with actual spots. 

8) generate more plausible spot boundaries than commercial image analysis 

software packages such as:  PDQuest 8.0.1, Melanie 7 and Delta2D. 

9) outperform image analysis software packages in terms of VO and VE 

segmentation quality measures. 

10)  provide an alternate to the laborious, error-prone and time-consuming 

process of manual editing, which is required by gel analysis experts in 

state-of-the-art 2D-GE software packages. 
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7.2  Future Perspectives 

Recently, there has been an increasing interest to analyze and process images 

emerging from 3D scanners and 3D acquisition devices. Hence, one future 

direction of this work would be to investigate active surfaces, which are the three-

dimensional representation of two-dimensional ACs [164]-[166]. In the case of 

volumetric medical imaging, active surfaces are very popular since they 

accurately delineate the required target region and aid MDs to better visualize 

complex and variable anatomical structures for diagnosis and treatment planning 

[167]. Figure 7.1 illustrates: (a) the initialization of an active contour surface, (b) 

the segmentation result of the trachea on a typical CT image [168]. 

 

  

(a) (b) 

Figure 7.1: (a) Initialization of an active contour surface, (b) segmentation result of the 

trachea on a typical CT image [168]. 

 

Moreover, in the case of the challenging issue of AC parameterization, machine 

learning algorithms have great potential for automation [169]. The key idea is to 

construct a ‘level learning set’ whose parameters will obtain values according to 

the orientation coherence in edge regions. More specific, the level learning set 

will be trained to learn to distinguish between structured and unstructured edge 

regions. After the learning process, it will be capable of amplifying and attenuating 

data fidelity forces in cases of unstructured and structured edge regions, 

respectively. 
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ABBREVIATIONS– ACRONYMS 

 

2D-GE Two-Dimensional Gel Electrophoresis 

AC Active Contour 

AG Attached Gingiva 

ABR Actual Background Region 

ABV Actual Background Volume 

ASR Actual Spot Region 

ASV Actual Spot Volume 

ALOI Amsterdam Library of Object Images (database) 

ANOVA Analysis of Variance 

BCC Basal Cell Carcinoma 

14
C Formaldehyde 

CT Computed Tomography 

CTr Contourlet Transform 

COPD Chronic Obstructive Pulmonary Disease 

CLAHE Contrast Limited Adaptive Histogram Equalization 

DS Detection Sensitivity 

DFB Directional Filter Bank 

DMI Difference of Mean Intensity 

DNA Deoxyribo-Nucleic Acid 

FG Free Gingiva 

FN False Negatives 

FP False Positives 

FBR False Background Region 

FBV False Background Volume 

FSR False Spot Region 

FSV False Spot Volume 

GAC Geodesic Active Contour 

GUI Graphical User Interface 

HUPO Human Proteome Organization 

IPG Immobilized pH Gradient 

LP Laplacian Pyramid 
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LoGσ Laplacian of Gaussian 

LTG Labial Teeth and Gingiva 

LIDC - IDRI Lung Image Dataset Consortium Image Collection (database) 

MD Medical Doctor 

MM Mathematical Morphology 

MS Mass Spectrometry 

Mw Molecular weight 

MRI Magnetic Resonance Imaging 

MIAS Mammographic Image Analysis Society (database) 

mRNA Messenger Ribo-Nucleic Acid 

NSCLC Non-Small Cell Lung Carcinoma 

OE Orientation Entropy 

pI Isoelectric Point 

PV Predictive Value 

PDE Partial Differential Equation 

PTMs Post-Translational Modifications 

RNA Ribo-Nucleic Acid 

35
S Methionine 

SE Structuring Element 

SP Specificity 

SDS Sodium Dodecyl Sulfate 

SCC Squamous Cell Carcinoma 

SCLC Small Cell Lung Carcinoma 

T3 Triiodothyronine 

T4 Thyroxine 

TC Tannimoto Coefficient 

TN True Negatives 

TP True Positives 

tRNA Transfer Ribo-Nucleic Acid 

US Ultrasound 

VE Volumetric Error 

VO Volumetric Overlap 

WST Watersheds Transform 
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APPENDIX Ι 

I. Gradient Descent Algorithm 

 

Let θ be an unknown parameter vector and J(θ) the corresponding cost function to be 

minimized, which is assumed to be differentiable.  

The algorithm starts with an initial estimate θ(0) of the minimum point and the 

subsequent algorithmic iterations are defined as follows [158]: 

 

θoldθnewθ Δ)()(   (I.1) 

)(|
)(

Δ oldθθ
θ

θJ
μθ 




  

(I.2) 

 

where μ > 0. Figure I.1 demonstrates the geometric interpretation of the algorithm. The 

new estimate θ(new) is selected in the direction that decreases J(θ). Parameter μ plays 

a key role in the convergence of the algorithm. Provided that μ is too small, corrections 

Δ(θ) are also small and the convergence to the optimum point is slow. However, if μ is 

large, the algorithm may oscillate around the optimum point and convergence may not 

be achieved. Once μ is properly chosen, the algorithm converges to a stationary point of 

J(θ), which can be: a) a local minimum ( 0

1θ ), b) a global minimum ( 0θ ) and c) a saddle 

point ( 0

2θ ). In either case, the gradient of the stationary point is zero (Figure I.2). To 

which of the stationary points the algorithm will converge depends on the position of the 

initial point relative to the stationary points. Furthermore, the convergence speed 

depends on the form of J(θ). Figure I.3 shows the constant J(θ) = c curves, for two 

cases and for different values of c in 2D space where Τ

21 ],[ θθθ  . The optimum 0θ is 

located at the center of the curves. The gradient 
θ

θJ



 )(
 is always vertical to the tangent 

to the constant J curves. Indeed, if J(θ)  = c, then: 
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Moreover, at each point θ on a curve J(θ) = c, the gradient 
θ

θJ



 )(
 points to the direction 

of the maximum increase of J(θ). This can be seen by the following: 
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where φcos  is maximum for φ , i.e. when two involved vectors are parallel. Hence, 

θ

θJ



 )(
 always points to the direction of the maximum increase of J(θ). In the case of 

Figure I.3(a), the negative gradient points to the optimum point. In such cases 

convergence can be achieved in a single step. In the case of Figure I.3(b), Δθ points to 

the center at only very few places. Therefore, convergence in such cases is slow and 

Δθ can oscillate back and forth following a zigzag path until it rests at the optimum point 

[158].  

 

 

Figure I.1: In the gradient descent algorithm, the correction of the parameters takes place in the 

direction which decreases the value of the cost function. 
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Figure I.2: A local minimum (
0

1θ ), a global minimum (
0θ ) and a saddle point (

0

2θ ) of J(θ). 
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(a) (b) 

Figure I.3: Curves of constant cost values, a) the negative gradient always points to the optimum, 

b) the negative gradient points to the optimum at a few places and convergence is slow. 
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