
 
 

 
 

Abstract 

This work introduces a novel active contour-based scheme for unsupervised segmentation of protein spots 

in two-dimensional gel electrophoresis (2D-GE) images. The proposed segmentation scheme is the first to 

exploit the attractive properties of the active contour formulation in order to cope with crucial issues in 2D-

GE image analysis, including the presence of noise, streaks, multiplets and faint spots. In addition, it is 

unsupervised, providing an alternate to the laborious, error-prone process of manual editing, which is 

required in state-of-the-art 2D-GE image analysis software packages. It is based on the formation of a spot-

targeted level-set surface, as well as of morphologically-derived active contour energy terms, used to guide 

active contour initialization and evolution, respectively. The experimental results on real and synthetic 2D-

GE images demonstrate that the proposed scheme results in more plausible spot boundaries and outperforms 

all commercial software packages in terms of segmentation quality.  
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1 Introduction 

Protein expression is highly indicative of various pathological conditions ranging from neoplasms and 

tumors to infectious diseases and genetic disorders. In this light, protein patterns of normal and diseased 

origin are compared in order to allow the identification of possible differences in protein expression. The 

platform utilized for protein mapping is called two-dimensional gel electrophoresis (2D-GE) [1].  

In 2D-GE, an indicative portion of the total protein component of a cell is resolved and information about 

different post translational modifications attributed to proteins is provided. Proteins travel across the gel in 

two dimensions: horizontal and vertical, which reflect protein isoelectric point and protein molecular 

weight, respectively [2],[3]. They are separated according to the isoelectric point by applying a pH gradient 

to the gel and an electric potential across the gel, which causes each charged protein to migrate towards the 

oppositely charged electrode. The accumulated amounts of separated proteins are detected either by 

radioactive labeling or staining techniques. The results of gel electrophoresis are captured in digital images, 

where proteins are represented as spots over a grey level surface. The amount of each migrated protein can 

be estimated by the cumulative intensity of the associated spot region. The computational analysis of 

protein content on 2D-GE images is a challenging pattern recognition task, which involves several layers of 

processes including 2D-GE image segmentation and quantification.  

2D-GE image segmentation is the process of separating protein spots from 2D-GE image background. 

Various issues arise in this process including the presence of noise as well as of dust particles, fingerprints 

and cracks on the gel surface. In addition, illumination may result in inhomogeneous background intensity, 

whereas protein expression ranges from faint to saturated spots. Moreover, protein mixtures from cells, 

tissues or biological fluids comprise more than 10,000 proteins. The mixture complexity obstructs proteins 

migration, leading to complex regions containing overlapping spots. Such “multiplets” tend to occupy a 

large portion of the gel surface impeding 2D-GE segmentation. 

Several methods have been suggested to tackle with 2D-GE image analysis such as stepwise thresholding 



 
 

[4], edge detection [5]  and watersheds [6].  Stepwise thresholding applies an increasing threshold on the 

2D-GE image of interest, starting from the lowest intensity level which can be associated with a protein 

spot. As the applied threshold increases, each connected image area may be split into multiple connected 

sub-areas. This process is iterative and stops when no more splits are possible. The segmentation result is 

determined by the connected sub-areas remaining in the last split. Edge detection methods aim to identify 

discontinuities in image intensity, often associated with protein spot boundaries. Both stepwise thresholding 

and edge detection methods are highly sensitive to noise, artifacts, non-uniform background and 

overlapping spot clustering [7], whereas manual editing may be required in the case of edge detection [8].  

Watershed methods model a 2D-GE image as a landscape where rain falls downhill formulating pools 

around each local intensity extremum. Areas collecting the water in each pool are called catchment basins 

and can be associated with protein spots. Although this approach copes with the presence of noise, artifacts 

and non-uniform background [9], it calls for additional post-processing since all pixels in the image are 

assigned to a catchment basin, resulting in over-segmentation [10]. Aiming to cope with this issue, Kim et 

al. [11] introduced a hybrid 2D-GE image segmentation approach based on watersheds and stepwise 

thresholding. However, the background removal process incorporated in this hybrid approach cannot cope 

with the presence of faint spots. Similar variations have been introduced for the segmentation of cell images 

[12]-[14]. 2D-GE image analysis software packages, such as PDQuest (Bio-Rad) [15], Melanie 

(GeneBio/GE Healthcare) [16] and Delta2D (Decodon) [17], are dominant in the research field of gel 

analysis. However, such software packages are highly parametric and demonstrate a notable output variance 

[18]. Furthermore, the results obtained by each software package are manually edited by gel analysts so as 

to eliminate false positive spots, reconsider false negative spots or correct the elliptical or circular 

boundaries used to define the spot area.   

Active contours [19] have been the dominant segmentation approach in the last two decades, as they are 

self-adapting and lead to continuous curves, without requiring edge-linking operations. Moreover, the 



 
 

inherent continuity and smoothness of active contours cope with the presence of noise, gaps, and other 

irregularities in object boundaries. Furthermore, when formulated using level-sets [20],[21], active contours 

are able to adapt to topological changes such as contour splitting or merging [22]-[24]. This latter attribute 

is of particular importance in cases of 2D-GE images containing a few hundred up to several thousands of 

protein spots. A first attempt addressing the application of active contours on 2D-GE images appeared in 

2008 [25], whereas our preliminary works introducing some of the ideas incorporated in the proposed 

segmentation scheme can be found in [26]-[29]. However, [25] involved a straightforward application of the 

Chan-Vese model which cannot cope with the presence of streaks, multiplets and faint spots. On the other 

hand, [26]-[28] aimed at protein spot detection and not at 2D-GE image segmentation, whereas [29] 

introduced an initial version of the idea presented in this work with respect to boundary identification of 

overlapping spots without addressing the presence of streaks and faint spots.  

In this work, a novel active contour-based scheme is proposed for the segmentation of protein spots in 2D-

GE images. To the best of our knowledge, this is the first complete segmentation scheme exploiting the 

attractive properties of the active contour formulation in order to cope with crucial issues in 2D-GE image 

analysis, including the presence of noise, streaks, multiplets and faint spots. In addition, it is unsupervised, 

providing an alternate to the laborious, error-prone process of manual editing, which is required in state-of-

the-art 2D-GE image analysis software packages. It comprises of four main processes namely: (a) a 

detection process capable of identifying boundaries of spot overlap in regions occupied by multiplets, based 

on the observation that such boundaries are associated with local intensity minima, (b) histogram adaptation 

and morphological reconstruction so as to avoid unwanted amplifications of noise and streaks, as well as to 

facilitate the identification of faint spots, (c) a contour initialization process aiming to form a level-set 

surface initializing the subsequent level-set evolution, based on the observation that protein spots are 

associated with regional intensity maxima, and (d) a level-set evolution process guided by region-based 

energy terms determined by image intensity as well as by information derived from the previous processes.  



 
 

The remainder of this paper is organized in four sections. Section 2 provides the theoretical background of 

the Chan-Vese active contour and mathematical morphology, respectively whereas Section 3 presents the 

main components of the proposed scheme.  Section 4 demonstrates the experimental results on real and 

synthetic 2D-GE images, as well as comparisons with PDQuest 8.0.1, Melanie 7 and Delta2D software 

packages. Finally, conclusions and future perspectives of this work are discussed in Section 5. 

 

2 Background 
 

2.1 The Chan-Vese active contour on 2D-GE images 

The Chan-Vese active contour [30] is a region-based level-set model which is particularly suited to 2D-

GE image segmentation due to its robustness to the presence of noise, its topological adaptability, as well as 

its capability of detecting smooth boundaries or boundaries that are not defined by gradient, as is the case 

with protein spots. The mathematical formulation of the Chan-Vese active contour adopts the reduced case 

of the Mumford-Shah problem [31], resulting in the following evolution equation:  
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where H is the Heaviside function.  

Despite the aforementioned advantages, the Chan-Vese active contour still fails to accurately segment 

2D-GE images containing considerable amounts of overlapping or faint protein spots. Figure 1 illustrates an 



 
 

example of two overlapping protein spots and the segmentation results obtained by a straightforward 

application of the Chan-Vese active contour. It is evident that the Chan-Vese active contour merges 

overlapping spot boundaries. Moreover, the convergence of the Chan-Vese active contour is not completely 

insensitive to initialization [32].  

[Figure 1] 

 

2.2 Mathematical morphology 

Mathematical morphology [33] is a well-known image analysis approach, which can be applied for the 

extraction or suppression of image components of interest by designing a suitable structuring element (SE). 

Morphological operations, including dilation and erosion, are capable of preserving topological properties 

such as connectivity and homotopy [34], whereas they are suitable for detecting intensity peaks associated 

with protein spots in 2D-GE images.  

The shape and size of the SE is often selected in accordance with the shape of the objects of interest [35]. 

In the case of 2D-GE images, where the dominant shape of protein spots is circular, a disk-shaped SE may 

lead to better results. As it comes to size, a large disk tends to ignore most of regional intensity maxima. 

Based on these considerations, the SE is selected disk-shaped and the radius r is selected small in order to 

minimize missed regional intensity maxima.  

A regional intensity maximum Μ at elevation t is defined by: 





∈∀<
∈∀=

M\)M(δp,t)p(I
Mp,t)p(I

SE
   (3) 

where p is the pixel location,  I(p) is the intensity of  p and SEδ  is the region generated by the dilation of  M 

according to the SE. 

 



 
 

3 Proposed 2D-GE image segmentation scheme 
 

The proposed segmentation scheme comprises of four main processes for: (a) detection of multiplets, (b) 

histogram adaptation and morphological reconstruction, (c) contour initialization and (d) level-set 

evolution.  

 

3.1 Detection of local intensity minima in multiplets 

It can be observed that the region of overlap between two protein spots is associated with local intensity 

minima, with respect to a particular direction. Figure 2 illustrates this point by three-dimensional 

representations of protein spot intensities, in cases of partly overlapped (Fig. 2a) and highly overlapped 

(Fig. 2b) protein spots. This observation motivated us to incorporate information derived by such local 

intensity minima in the proposed 2D-GE image segmentation scheme. 

 [Figure 2] 

The original image is pre-processed with a k×k median filter [36] aiming to reduce the side effects of 

noise on the following processes. The pre-processed image is scanned with parallel straight-line segments of 

variable lengths and multiple directions (Fig. 3) so as to facilitate the detection of local intensity minima, 

associated with each particular direction. 

[Figure 3] 

Local intensity minima are identified for each parallel straight-line segment, however the ones which are 

eventually selected conform to the following two criteria: a) intensity value exceeds a threshold value T1 

and b) intensity value is a global minimum over a square sub-segment of width exceeding a minimum value 

w. These criteria are imposed to exclude local intensity minima associated with background clutter. Figure 4 

illustrates: a) a real 2D-GE image, b) the detection results obtained by the local intensity minima process, 

with each minimum marked as black and a1-b1 respective sub-images as marked in a and b. In Fig. 4b1 it is 

evident that the detection process actually identifies boundaries of spot overlap. Therefore, alterations in the 



 
 

pre-processing techniques as well as further manual editing are not required.  

[Figure 4] 

 

3.2 Image enhancement and morphological reconstruction 

A popular histogram equalization variant called contrast-limited adaptive histogram equalization 

(CLAHE) [37] is utilized to enhance the segmentation performance of the proposed scheme with respect to 

the presence of faint spots in 2D-GE images. CLAHE involves a grayscale transformation function which 

has been effectively applied on various medical imaging modalities including mammographic [38] and chest 

CT [39] imaging. The core idea is to adaptively enhance image contrast in a local fashion, contrary to the 

original histogram equalization which is uniformly applied on the entire image.  

CLAHE separately applies histogram equalization on q×q small non-overlapping image regions called 

tiles. The histogram of each transformed tile approximates the uniform distribution, which results in 

amplification of faint regions such as the faint protein spots in 2D-GE images. The local nature of CLAHE 

prevents unwanted amplifications of noise and streaks, as opposed to the original histogram equalization 

which has the same amplifying effect on noise and artifacts as on faint spots. In addition, CLAHE imposes a 

constraint on the resulting contrast providing a mechanism to cope with a possible over-saturation of the 

resulting image. This constraint can be adjusted by a parameter h, called clip limit. The clip limit h 

determines the maximum number of pixels which are allowed to occupy a bin in the resulting histogram. In 

cases of over-saturation, where certain histogram bins are occupied by more than h×(2gray level depth-1) pixels, 

the excessive amount of pixels is redistributed over the rest of the histogram. The neighboring transformed 

tiles are then merged using bilinear interpolation to reduce artificially induced boundaries and the pixel 

intensity values are updated in accordance with the adapted histograms [40].  

Figure 5 illustrates the images resulted from the application of: a) histogram equalization and b) CLAHE, 

on the original 2D-GE image of Fig. 4b. A sub-image of this original 2D-GE image is illustrated in c, 



 
 

whereas the corresponding sub-images of Fig. 5a and b are magnified in Fig. 5a1 and 5b1, respectively. It 

can be observed that both techniques amplify spots which were faint in the original 2D-GE image; however 

CLAHE avoids unwanted amplifications of noise and streaks, which is not the case with the plain histogram 

equalization. Figure 6 illustrates the histograms of: a) the original 2D-GE image illustrated in Fig. 4b, as 

well as the histograms of the images illustrated in b) Fig. 5a and c) Fig. 5b. It can be observed that the 

histogram of the image resulted by the application of CLAHE is much denser than the one generated by 

plain histogram equalization, indicating that the former maintains much more detailed image-related 

information. 

It should be noted that the application of CLAHE could not benefit the detection of local intensity minima 

described in Section 3.1, as well as the contour initialization process which is described in Section 3.3. 

Accordingly, both processes are applied on the original 2D-GE image. This can be justified by considering 

that the clipping involved in CLAHE redistributes pixels over the histogram, introducing intensity minima 

which are not necessarily associated with spot boundaries, as well intensity maxima which are not 

necessarily associated with spots. 

[Figure 5] 

[Figure 6] 

The protein spot regions depicted on the enhanced image generated from CLAHE technique are still 

characterized by intensity inhomogeneity which would affect the subsequent active contour evolution. 

Another morphological processing step is performed in order to cope with this issue. The enhanced image is 

binarized according to a threshold value T2. However, the protein spot regions of the binary image contain 

holes as a result of intensity inhomogeneity. The flood-fill morphological operation [33] is applied so as to 

eliminate such holes. This morphological operation alters the connected background pixels to foreground 

pixels until it reaches the object boundaries.  



 
 

Figure 7 illustrates the results obtained by the flood-fill morphological operation on: a) the original 2D-GE 

image illustrated in Fig. 4b, and b) on the enhanced image of Fig. 5b, which is generated by the application 

of CLAHE. A sub-image of the original 2D-GE image is illustrated in c), whereas a1 and b1 are the 

corresponding sub-images of Fig. 7a and Fig. 7b, respectively. Missing regions in Fig. 7a1, as compared to 

Fig. 7b1, correspond to faint protein spots.  It is evident that the utilization of CLAHE is essential, since 

most faint spots are missed when CLAHE is omitted. The obtained binarized image represents protein spots, 

including faint ones, as well as the boundaries of spot overlap in regions occupied by multiplets. This 

indispensable information is incorporated in contour evolution, as described in Section 3.4.  

[Figure 7] 

 

3.3 Contour initialization 

The Chan-Vese active contour is not completely insensitive to initialization [32]; therefore it is essential 

to initialize the level-set function so that the associated zero levels approximate the actual protein spots. 

Emerging from the observation that regional intensity maxima of a 2D-GE image are associated with 

protein spots, the proposed initialization process aims to detect such maxima in order to construct a level-set 

surface of multiple cones centered at maxima positions. This surface can serve as a spot-targeted 

initialization of the level-set function. Such an initialization process is particularly important within the 

context of the proposed scheme, in a sense that it provides the capability of unsupervised segmentation. In 

this light, this process is one of the novel elements of the proposed scheme, since it extends a 

straightforward active contour application, which would have required supervised initialization so as to 

avoid sub-optimal segmentation results. It should be noted that the level-set function is initialized on the 

2D-GE image instead of the binarized image described in Section 3.2, since regional intensity maxima are 

not maintained in the latter image.  



 
 

Aiming to include salient intensity maxima positions associated with protein spots and avoid spurious 

ones associated with background noise peaks, we impose the following constraints on the selection of 

regional intensity maxima: 

a) intensity should be equal to the maximum intensity value over an m×m adjacent region.  

b) every pixel over a z×z square neighborhood of each selected regional intensity maximum should have 

intensity which exceeds a threshold value T3  

The positions of selected regional intensity maxima are used as centers of cones forming the surface of 

the initial level-set function. Apart from cone centers, the proposed initialization process determines the 

zero-level regions associated with each cone. A disk-shaped SE (see Section 2.2) is used to form these 

regions, considering that the dominant shape of protein spots in 2D-GE images is approximately cyclical.  

The original 2D-GE image is dilated with a disk-shaped SE. SE radius r is set according to the results of 

preliminary experimentation on 2D-GE images, which indicate that a certain radius value minimizes the 

detection of false negative protein spots whereas it allows the detection of local intensity maxima associated 

with small spots even in cases where they overlap with larger spots in complex regions. This radius value 

occurs to be smaller than the typical size of a protein spot, which ranges from 20 to 100 pixels. 

Figure 8 illustrates a three-dimensional representation of the level-set surface of multiple cones obtained 

by the application of the proposed initialization process on a real 2D-GE image.  

 [Figure 8] 

 

3.4 Contour evolution 

Aiming to enhance segmentation performance, contour evolution is initialized by the spot-targeted level-

set surface generated by the previous initialization process. In addition, the active contour evolves in 

separate g×g image sub-regions, which are centered at the cone centers of the level-set surface. The active 

contour converges according to the following equation: 
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where 1u , 2u  are a 2D-GE image, and the binarized image which is the output of morphological processing 

described in Section 3.2, respectively. In addition, ++
21 ,cc  and −−

21 ,cc  are the average foreground and 

background intensities of 1u  and 2u , calculated by Eq. (2), whereas ++
21 ,λλ  and −−

21 ,λλ  are the weights for the 

regularizing and fitting terms of 1u  and 2u , respectively.  Equation (4) describing contour evolution of the 

proposed scheme extends Eq. (1) in the sense that it encompasses information derived by: 1) the 2D-GE 

image 1u , 2) the binarized image 2u  obtained by the application of adaptive histogram equalization and 

morphological processing of the original 2D-GE image, as described in Section 3.2. The latter information 

is essential to identify the presence of faint spots as well as the boundaries of spot overlap in regions 

occupied by multiplets. 

 

4 Results 
 

The experimental evaluation of the proposed scheme has been conducted on a dataset of 16 real digital 

grayscale 2D-GE images provided by the Biomedical Research Foundation of the Academy of Athens, as 

well as on a dataset of 30 synthetic 2D-GE images, so as to facilitate qualitative and quantitative 

comparisons with state-of-the-art 2D-GE image analysis software packages. The size of each real and 

synthetic 2D-GE image used was approximately 2000×3000 and 1500×2000 pixels respectively, whereas 

image gray-level depth of both image types was 16-bit. The proposed scheme has been implemented in 

Matlab R2009b and executed on a 3.2 GHz Intel Pentium workstation.  

Parameter tuning was based on preliminary experimentation, which resulted in the values presented in 

Table I. The preliminary experiments were performed on three pilot 2D-GE images, whereas the search on 

the parameter space was guided by the following considerations: 



 
 

- the window size k and the width w of the square sub-segment considered in local intensity minima 

detection, as well as the size z of the square neighborhood considered in contour initialization process, were 

all set to 3. This value is the smallest value for these three parameters, whereas higher values of k resulted 

in missing spots in the contour initialization process and higher values of both w and z resulted in slight 

reduction of the obtained segmentation quality, 

- thresholds T1,T2,T3 were experimentally identified as 150, 160 and 75, since these values approximate: 1) 

the upper extreme of the intensity range of the background clutter, 2) the lower extreme of the intensity 

range of faint spots on the images resulted from histogram equalization and 3) the lower extreme of the 

intensity range of faint spots on the original 2D-GE images, respectively. Perturbations of T1,T2,T3 within 

the ranges [147,152], [158,162] and [72,77], resulted in insignificant variations of the obtained 

segmentation quality,   

- tile size q considered for CLAHE was experimentally identified as 40, since this values approximates the 

typical size of a faint protein spot. Perturbations of q within the range [37,42] resulted in insignificant 

variations of the obtained segmentation quality,     

- clip limit h is set to 0.01 since this order of magnitude reduces over-saturation and lead to the optimal 

segmentation quality in all pilot 2D-GE images. Perturbations of h within the range [0.006,0.03] resulted in 

insignificant variations of the obtained segmentation quality, 

- size m of adjacent regions and radius r considered in contour initialization process as well as image sub-

region size g considered in contour evolution process were experimentally identified as 20, 4 and 50, since 

these values approximate: 1) the lower extreme of protein spot sizes and consider salient intensity maxima 

associated with protein spots, 2) the lower extreme of protein spot radii and allow the detection of regional 

intensity maxima in cases of small spots overlapping with larger spots in multiplets and 3) the average size 

of a typical protein spot. Perturbations of m, r and g within the ranges [17,24], [3,5] and [42,59] resulted in 

insignificant variations of the obtained segmentation quality, 



 
 

- following relevant literature [30], the weights of the energy terms +
1λ , −

1λ , +
2λ  and −

2λ  were set to 1 whereas 

the weight μ was adjusted to as 0.006·255², since this value lead to the optimal segmentation quality in all 

pilot 2D-GE images. Perturbations of μ within the range [0.003·255²,0.009·255²] resulted in insignificant 

variations of the obtained segmentation quality. 

The variations in segmentation quality are considered as insignificant when the values of the associated 

segmentation quality measures (i.e. volumetric overlap and volumetric error, as defined in Eq. 8), as derived 

for each one of the three pilot 2D-GE images are overlapping. The latter occurs when the values of the 

segmentation quality measure derived for a pilot 2D-GE image are within the ranges defined by the mean 

values and the standard deviations of the same measure, as derived for the other two pilot 2D-GE images. It 

should be pointed out that parameter tuning is performed once on a small number of pilot 2D-GE images 

generated with a certain experimental setup (pH, staining etc) and the resulting parameter values can be 

used for all 2D-GE images generated with the same setup. On the contrary, state-of-the-art software 

packages require parameter tuning for each single 2D-GE image, as confirmed by expert biologists.  

 

Table 1 

Parameter values 

Detection of local intensity minima in multiplets k = 3 T1  = 150 w = 3    

Image enhancement and morphological 

reconstruction 

q = 40 h = 0.01 T2 = 160    

Contour initialization m = 20 z = 3 T3  = 75 r = 4   

Contour evolution g = 50 μ = 0.006·255² +
1λ  = 1 −

1λ  = 1 +
2λ =1 −

2λ = 1 

 

Figure 9 illustrates example segmentation results obtained by the application of the proposed scheme, as 

well as of PDQuest 8.0.1, Melanie 7 and Delta2D image analysis commercial software packages, on a real 



 
 

2D-GE image. It should be noted that the output images resulting from the application of the software 

packages varied with respect to size and resolution. The software packages were applied on inverted 

versions of the 2D-GE images, whereas parameter settings and calibrations involved were performed by 

expert biologists, following their experience.  

[Figure 9] 

It is evident that the proposed scheme results in more plausible spot boundaries (Fig. 9a1) than all three 

image analysis software packages, namely PDQuest 8.0.1 (Fig. 9b1), Melanie 7 (Fig. 9c1) and Delta2D (Fig. 

9d1). PDQuest 8.0.1 results in elliptical boundaries which do not correspond to the irregular shape of the 

actual spot boundaries, whereas such elliptical boundaries tend to include background regions. In the cases 

of Melanie 7 and Delta2D, the segmentation results obtained suffer from over-segmentation and are subject 

to laborious, error-prone and time-consuming correction process by the expert biologists.  

In order to quantitatively evaluate the proposed scheme, experiments were performed on the set of 

synthetic images generated by the synthetic 2D-GE image generation software, developed by the Real-time 

Systems & Image Analysis Lab. Figure 10 illustrates an example of a synthetic 2D-GE image, as well as the 

corresponding ground truth. Such a synthetic image is populated by approximately 200 spots, following beta 

distribution. As a result of trial-and-error experimentation, parameters a and b of the beta function were set 

to 4 and 3 respectively, resulting in spatial frequency of singlet and multiplet occurrence which emulates 

real 2D-GE images. Synthetic background emulates inhomogeneity, streaks and clutter, which characterize 

the background of real 2D-GE images.  

[Figure 10] 

The intensity profile of each spot is chosen flat top in order to emulate the saturation characterizing actual 

protein spots and is defined by:  



 
 













+≤








 −

≤

=

otherwise,,0

rr,
πσ2

cos

,1

),( φ0
φ

02

0

σrr

rr

yxI  (5) 

where r0 is the radius of the flat top, r is the Euclidean distance from the center of the spot and σ2
φ is an 

angle-dependent variance coefficient:  
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where σx  and σy are the variance coefficients along the primary axes. Figure 11 illustrates example 

segmentation results obtained by the proposed scheme, as well as by PDQuest 8.0.1, Melanie 7 and Delta2D 

software packages on a synthetic 2D-GE image. 

 

[Figure 11] 

The segmentation results are quantified according to the spot volume V, as defined in [16]:  

∑=
∈regiony,x

)y,x(IV  (7) 

where I(x,y) is the intensity value of pixel (x,y). 

Comparison of the segmentation results with the corresponding ground truth image, as generated by the 

2D-GE image simulation software allows the categorization of each pixel in one of the following four 

region types: “actual spot region (ASR)”, “false spot region (FSR)”, “false background region (FBR)” and 

“actual background region (ABR)”. 

The spot volumes which are calculated according to Eq. (7) for the above four cases of regions, 

correspond to the “actual spot volume” (ASV), “false spot volume” (FSV), “false background volume” 

(FBV) and “actual background volume” (ABV), respectively. The segmentation performances are 



 
 

quantitatively evaluated in terms of volumetric overlap vo and volumetric error ve, which are defined as 

follows:  

FBVASV
ASVvo
+

= , 
FBVASV

FSVve
+

=  (8) 

Table II presents the results obtained by the proposed scheme, as well as by PDQuest 8.0.1, Melanie 7 and 

Delta2D software packages. Figure 12 provides a visualization of the results of Table II. It is evident that 

the proposed scheme outperforms all three software packages in terms of vo and ve. In particular, the E 

obtained by the proposed scheme is approximately 3-4 times smaller than the one obtained by the software 

packages, indicating that it is much more effective in avoiding the identification of FSR. Moreover, the 

proposed scheme demonstrates a remarkably lower variance in both performance measures, as a result of its 

robustness over streaks, multiplets and faint spots.  

 

Table 2 

Segmentation results 

 Proposed Scheme PDQuest 8.0.1 Melanie 7  Delta2D 
vo 92.0±1.2% 80.2±4.6% 86.5±3.2% 82.4±3.6% 
ve 20.0±3.2% 83.1±8.9% 55.0±6.7% 64.3±7.6% 

 

[Figure 12] 

 

5 Conclusions 
 

In this work, a novel active contour-based scheme is proposed for unsupervised segmentation of 2D-GE 

images. The proposed segmentation scheme is the first to exploit the attractive properties of the active 

contour formulation in order to cope with crucial issues in 2D-GE image analysis, including the presence of 

noise, streaks, multiplets and faint spots. It incorporates: (a) a detection process capable of identifying 

boundaries of spot overlap in regions occupied by multiplets, based on the observation that such boundaries 



 
 

are associated with local intensity minima, (b) histogram adaptation and morphological reconstruction so as 

to avoid unwanted amplifications of noise, streaks and facilitate the identification of faint spots, (c) a 

contour initialization process aiming to form a level-set surface initializing the subsequent contour 

evolution, based on the observation that protein spots are associated with regional intensity maxima, and (d) 

a contour evolution process guided by region-based energy terms determined by image intensity as well as 

by information derived from the previous processes of the proposed scheme.  

 The experimental evaluation of the proposed scheme has been conducted on datasets of both real and 

synthetic 2D-GE images, so as to facilitate quantitative comparisons with state-of-the-art 2D-GE image 

analysis software packages, including PDQuest 8.0.1, Melanie 7 and Delta2D. As it can be derived by the 

experimental results, the proposed scheme: (a) is capable of identifying spot boundaries within regions 

occupied by multiplets, (b) is capable of identifying boundaries of faint spots, (c) copes with the presence of 

noise, as a result of the region-based formulation of the energy terms in contour evolution equation, (d) 

results in more plausible spot boundaries than PDQuest 8.0.1, Melanie 7 and Delta2D 2D-GE image 

analysis software packages as it can be observed on the segmentation results on both real and synthetic 2D-

GE images, (e) outperforms all three 2D-GE image analysis software packages in terms of segmentation 

quality measures, calculated from the segmentation results obtained on synthetic 2D-GE images, and (f) is 

unsupervised, providing an alternate to the laborious, error-prone and time-consuming process of manual 

editing, which is required in state-of-the-art 2D-GE image analysis software packages. 

Future perspectives of this work involve integration of the proposed scheme within a 2D-GE image 

analysis system, applicable in everyday practice of biologists. 
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Figure Captions 

Fig. 1. Example of two overlapping spots: (a) initial image, (b) segmentation results obtained by the 

straightforward application of the Chan-Vese model. 

Fig. 2. 3-D representations of protein spots: (a) partly overlapped and (b) highly overlapped. 

Fig. 3. Multiple directions of straight-line segments for local intensity minima detection. 

Fig. 4. (a) Real 2D-GE image, (b) detection results obtained by the local intensity minima process, (a1) sub-

image of (a), and (b1) sub-image of (b). 

Fig. 5. 2D-GE images obtained by the application of: (a) histogram equalization and (b) CLAHE, on the 2D-

GE image of Fig. 4b. A sub-image of the original 2D-GE image is illustrated in (c), whereas the 

corresponding sub-images of (a) and (b) are magnified in 5(a1) and 5(b1), respectively. 

Fig. 6. Histograms of: (a) the original 2D-GE image, (b) the image resulted from the application of 

histogram equalization on the image of Fig. 4b and (c) the image resulted from the application of CLAHE 

on Fig. 4b. 



 
 

Fig. 7. Results obtained by the flood-fill morphological operation on: (a) the image illustrated in Fig. 4b and 

(b) on the enhanced image of Fig. 5b, which is generated by the application of CLAHE. A sub-image of the 

original 2D-GE image is illustrated in (c), whereas (a1) and (b1) are the corresponding sub-images of (a) and 

(b), respectively. 

Fig. 8. 3-D representation of the level-set surface of multiple cones obtained by the application of the 

proposed initialization process on a real 2D-GE image. 

Fig. 9. Segmentation results obtained by the application of: (a) the proposed scheme, (b) PDQuest 8.0.1, (c) 

Melanie 7, and (d) Delta2D software package, whereas (a1)-(d1) are sub-images of (a)-(d) respectively.   

Fig. 10. (a) Synthetic 2D-GE image, and (b) the corresponding ground truth. 

Fig. 11. Segmentation results of the application of: (a) the proposed scheme, (b) PDQuest 8.0.1, (c) Melanie 

7 and (d) Delta2D software package, (a1)-(d2) sub-images of (a)-(d) respectively. 

Fig. 12. Overall segmentation results in terms of vo and ve, obtained by the proposed scheme, as well as by 

PDQuest 8.0.1, Melanie 7 and Delta2D software packages, on the set of synthetic 2D-GE images. 
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