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Abstract 

This paper investigates novel LBP-guided active contour approaches to texture segmentation. The Local Binary Pattern (LBP) 

operator is well suited for texture representation, combining efficiency and effectiveness for a variety of applications. In this light, 

two LBP-guided active contours have been formulated, namely the scalar-LBP Active Contour (s-LAC) and the vector-LBP Active 

Contour (v-LAC). These active contours combine the advantages of both the LBP texture representation and the vector-valued 

Active Contour Without Edges model, and result in high quality texture segmentation. s-LAC avoids the iterative calculation of 

active contour equation terms derived from textural feature vectors and enables efficient, high quality texture segmentation. v-

LAC evolves utilizing regional information encoded by means of LBP feature vectors. It involves more complex computations than 

s-LAC but it can achieve higher segmentation quality. The computational cost involved in the application of v-LAC can be 

reduced if it is preceded by the application of s-LAC. The experimental evaluation of the proposed approaches demonstrates 

their segmentation performance on a variety of standard images of natural textures and scenes.  

 

Keywords: Local Binary Patterns, Texture Segmentation, Active Contours.  

 

1 Introduction 

Texture segmentation methods based on active contour approaches have received considerable attention over the 

past few years (Theodoridis and Koutroumbas, 2006; Paragios and Deriche, 1999; Lehmann et al, 2001; Sandberg et 

al, 2002; Aujol et al, 2003; Rousson et al, 2003; Sagiv et al, 2004; Huang et al, 2004; He et al, 2004; Allili et al, 2004; 

Pujol and Radeva, 2004; Lee et al, 2005), by exploiting advances in the active contour research such as contour 

smoothness, noise robustness and topological adaptability. This emerging trend in the area of texture segmentation 

has been reinforced by the vector formulation of recent active contour approaches (Chan et al, 2002; Sandberg and 

Chan, 2005) introduced to provide a natural platform for the embedment of textural features. Such methods constitute 

an essential first step in computer vision applications, which are as diverse as medical image analysis, industrial 

monitoring of product quality, content-based image retrieval and remote sensing. 

The main notion of the active contour approach to texture segmentation relies on the deformation of initial contours 

towards the boundaries of image regions to be segmented. The deformation is realized by minimizing an energy 

functional, designed so that its local minimum is reached at target boundaries. Active contour models lead to 
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continuous, closed or open, curves without requiring edge-linking operations. The original active contour approach 

(Kass et al, 1988) is boundary-based utilizing intensity gradients to guide contour evolution. However, in the case of 

objects whose boundaries are either smooth or not necessarily defined by gradient, such methods may result in 

boundary “leakage” (Chan and Vese, 2001). Moreover, the parametric formulation of the original active contour 

approach does not allow for changes in the topology of the evolving contour, such as splitting or merging.  

Alternative active contour approaches have been proposed to surpass the aforementioned limitations: Caselles et 

al, (1997) introduced the Geodesic Active Contour (GAC) model which uses the level set method, originally proposed 

in (Osher and Sethian, 1988), in order to facilitate topological adaptability. However, the GAC model inherits the 

dependency on gradients of the original active contour approach and thus cannot prevent boundary “leakage” (Suri et 

al, 2002). Chan and Vese, (2001) proposed the Active Contour Without Edges (ACWE) model which is a level set and 

region-based active contour model, following the Mumford-Shah segmentation approach (Mumford and Shah, 1989). 

The ACWE model deals with the problem of boundary “leakage” by utilizing intensity integrals calculated over the 

regions inside and outside the contour. This model was later extended and then generalized by Chan et al, (2002) 

and Sandberg and Chan, (2005) respectively, for vector-valued images by replacing the scalar gray-level intensities 

with vectors of color channel intensities to guide contour evolution. However, the information derived from intensity 

integral operations can be misleading for texture segmentation tasks as regions of different textures may have equal 

average intensities. Therefore the utilization of ACWE based on image intensities can be considered unsuitable for 

texture segmentation, either in its original or in its generalized form. However, its region-based formulation could be 

exploited for capturing textural information, derived from features not necessarily exhibiting high gradients at object 

boundaries. 

Latest advances in active contour research focus on the incorporation of textural features to guide the contour 

evolution. The methods that have been proposed span two categories:  

1) Gabor and wavelet-based methods. Gabor-based methods involve transformation of input images into different 

scales, frequencies and orientations by Gabor filtering. The associated filter-bank responses are used to generate 

textural feature vectors to guide the contour evolution. In this context, Sandberg et al, (2002) proposed a method that 

utilizes Gabor filter-bank responses to generate vector-valued images, successively segmented by the ACWE model 

for vector-valued images (Chan et al, 2002). Paragios and Deriche, (1999) proposed a supervised texture 

segmentation method, in which a Gabor filter-bank is applied to the input and to a preferable pattern image. The filter-

bank responses are represented as multi-component conditional probability density functions and a textural feature 

vector encoding boundary information is generated. The maximum vector component is used to guide the GAC 

model. He et al, (2004) proposed an unsupervised texture segmentation method employing Geodesic Active Regions 

(Paragios, 2000) guided by the responses of a Gabor filter bank. Sagiv et al, (2004) proposed a method according to 

which the input image is filtered by a Gabor filter-bank to create a feature space and extract a two-dimensional 
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Riemmannian manifold of local textural features via the Beltrami framework (Sochen et al, 1998). The textural feature 

vector generated by this method is used to guide the GAC model as well as an Integrated Active Contour (IAC) model 

extending both ACWE and GAC models. 

 The Gabor-based texture segmentation methods are credited as being state-of-the-art in texture analysis. 

However, despite their theoretical elegance and their psychovisual interpretation (Sagiv et al, 2004), these methods 

tend to be computationally demanding. Furthermore, Gabor filter responses are monotonic functions of gray-level 

intensities. This renders Gabor-based methods sensitive to changes of the illumination conditions (Mäenpää, 2003).  

Liapis et al, (2004) and Aujol et al, (2003) introduced two supervised texture segmentation methods employing the 

Discrete Wavelet Frames Transform. Textural feature vectors extracted from the wavelet domain are utilized to guide 

level set active contours. Wavelet features are suitable for the representation of non-stationary textures. However, 

there are cases for which Gabor features result in better texture representation than wavelet features (Pichler et al, 

1996; Aujol and Chan, 2006).  

2) Statistical methods. Lehmann et al, (2001) proposed a supervised texture segmentation method that employs an 

active contour model guided by co-occurrence matrices. This method involves the application of the active contour 

model to prototype images, from which co-occurrence matrix features of target textures are extracted. Co-occurrence 

matrix features are also extracted from test images, and the similarity of the prototype and the testing image features 

is evaluated. The metrics, used to evaluate the similarity, weight linear combinations of the active contour model 

parameters used for the segmentation of the prototype images. The active contour model parameters resulting from 

these linear combinations are used for the segmentation of the test images. Pujol and Radeva, (2004) proposed a 

supervised method for learning the local appearance of the texture classes based on a set of co-occurrence matrix 

features. This method employs Fisher Linear Discriminant Analysis (Duda et al, 2001) to obtain an optimal reduced 

feature space. It applies a Gaussian mixture model to construct a likelihood map in which each pixel is been assigned 

the likelihood of representing each texture class. As a last step, they use a regularized version of the likelihood map 

to guide a generalized Gradient Vector Flow active contour model (Xu and Prince, 1998). The overhead introduced in 

the computation of co-occurrence matrix features as well as their moderate texture classification performance make 

them unappealing for incorporation to an active contour texture segmentation framework (Randen and Husoy, 1999).  

Another statistical method for texture segmentation with active contour models has been proposed by Rousson et 

al, (2003). According to this method a seven-dimensional feature vector comprised of four gray-level intensity features 

and three features that capture texture orientation, is built. The gray-level intensity and the textural features are 

assumed to follow Parzen and Gaussian distributions, respectively. The distribution functions are embedded in a level 

set active contour model inspired from (Paragios and Deriche, 1999). Huang et al, (2004) introduced a new class of 

active contour models, metamorphs, which are formulated so as to integrate both shape and textural information. 

Metamorphs constitute a generalization of previous parametric and level set active contour models. They capture 
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texture information using a nonparametric kernel-based approximation of the intensity probability density function 

inside the contour. Allili et al, (2004) modeled the intensity distribution of each image region by a mixture of Gaussian 

distributions and adopted the energy minimization approach introduced in (Kimmel, 2003).  Lee et al, (2005) proposed 

a framework allowing the use of image feature statistics describing intensity distribution, orientation, polarity, 

anisotropy etc and applied a level set active contour model inspired by GAC and ACWE. The contour evolution 

follows an equation involving an edge stopping function, which is calculated as the inverse of the determinant of a 

metric tensor based on the Kullback-Leibler divergence. Awate et al, (2006) recently introduced a general active 

contour framework, which facilitates the exploitation of higher-order statistics derived from various textural features. 

The Local Binary Pattern (LBP) operator, introduced by Ojala et al, (1996), is defined so as to provide a condensed 

encoding of local microstructures that captures textural information. It has been supported by various comparative 

studies on texture analysis (Ojala et al, 1996; Paclic et al, 2002; Mäenpää and Pietikäinen, 2004) which demonstrate 

that LBP texture representation can be superior to Gabor, wavelet and co-occurrence approaches, with a smaller 

computational overhead. Unlike the Gabor approach, which utilizes textural features calculated from the weighted 

mean of pixel values over a small neighborhood, the LBP operator considers each pixel in the neighborhood 

separately, providing even more fine-grained information. The textural features estimated using the LBP operator are 

invariant to any monotonic change in gray-level intensities, resulting in a robust representation of textures under 

varying illumination conditions and can be made multiscale and invariant against rotation (Mäenpää, 2003).   

Recent applications utilizing the LBP distributions for texture representation include object detection (Zhang et al, 

2006), realtime facial expression recognition (Feng et al, 2005), and landform segmentation of light detection and 

ranging imagery (Lucieer and Stein, 2005). Unsupervised texture segmentation algorithms utilizing the LBP 

distributions have been mainly based on hierarchical splitting and agglomerative merging (Ojala and Pietikäinen, 

1999), as well as on region-competition approaches (Qing et al, 2005). However, such methods involve iterative 

calculations of histograms with potentially large numbers of bins that are computationally intensive and memory 

consuming (Ojala and Pietikäinen, 1999). This fact partially reverses the advantage of small computational overhead 

associated with the calculation of the LBP values. It should be noted that a texture segmentation method 

encompassing the advantages of both LBP texture representation methodology and of active contours, has not yet 

been proposed.  

This study investigates LBP-guided active contour approaches to texture segmentation. In this context, two novel 

approaches have been formulated:  

1. Scalar-LBP Active Contour (s-LAC)  

2. Vector-LBP Active Contour (v-LAC) 

s-LAC encodes the spatial distribution of the most discriminative LBPs of an input image into gray-level intensities 

producing a new image which is subsequently segmented by ACWE model. This approach avoids the iterative 
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calculation of active contour equation terms derived from textural feature vectors, and enables efficient, high quality 

texture segmentation. v-LAC utilizes multidimensional feature vectors representing LBP distributions that encode the 

textural properties of image regions rather than the single pixel information utilized in the case of vector-valued 

ACWE. Moreover, unlike vector-valued ACWE, the similarity between the LBP distributions is quantified by means of 

the log-likelihood statistic, which favors segmentations corresponding to image regions of minimum total entropy. 

Although computationally demanding, v-LAC can lead to higher segmentation quality than s-LAC. In order to reduce 

the computational cost involved in v-LAC segmentation the successive application of both s-LAC and v-LAC is 

proposed.   

The rest of this paper is organized in five sections. Sections 2 and 3 outline the ACWE model and the LBP 

features, respectively. Section 4 describes the proposed s-LAC and v-LAC approaches for texture segmentation. The 

results from the experimental evaluation of the proposed approaches on textures and natural scenes acquired from 

standard image databases are apposed in Section 5. Finally, in Section 6 the conclusions of this study are 

summarized. 

2 Active Contour Without Edges  

 
The vector-valued ACWE model as posed in (Chan et al, 2002), follows the Mumford-Shah segmentation approach 

(Mumford and Shah, 1989) and has the form of a minimization problem: if we consider Ω as a bounded open subset 

of 2R , with Ω∂  the boundary, we seek for the infimum of the energy functional F:  
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where iu0 , i=1,…,b are the components that describe the original image u0, 
2]1,0[:)( RsC →  is a parameterized curve, 

ic+  and 
ic− , i=1,2,…,b are unknown constants representing the average value of 

iu0  inside and outside the curve, and 

parameters µ, +
iλ  and −

iλ , i=1,…,b are weights for the regularizing term and the fitting terms, respectively. Each 

component ),(0 yxu i , i=1,…,b, is defined over a single pixel (x, y). For example in (Chan et al, 2002), each ),(0 yxu i , i = 

1, 2, 3 represent a component of the RGB color space at pixel (x, y). The foreground and the background regions 

resulting from the segmentation of the image by the contour C, are denoted as “inside C” and “outside C”, 

respectively. 

The vector-valued ACWE model uses the level set method (Osher and Sethian, 1988) which provides an efficient 

means for moving curves and surfaces, on a fixed regular grid, allowing for automatic topology changes, such as 

merging and splitting. Following (Osher and Sethian, 1988), the curve C is represented implicitly, by the zero level set 

of a Lipschitz function ,: R→Ωφ  such that:  
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the level set formulation of the energy functional F is:  
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By minimizing ),,( φ−+ ccF  with respect to the unknown constant vectors 
ic+  and 

ic− , the following relations are 

obtained:  
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which represent the averages of iu0  inside and outside the curve C respectively. 

By keeping 
ic+  and 

ic−  fixed and by minimizing F with respect to φ , we deduce the associated Euler-Langrange 

equation for φ . Parameterizing the descent direction by an artificial time 0≥t , the equation in ),,( yxtφ  (with 

),(),,0( 0 yxyx φφ =  defining the initial contour) is: 
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where a smooth approximation of the Heaviside function H is used, as in (Chan et al, 2002). Starting with an initial 

contour, defined by 
0φ , at each time step the vector averages 

ic+  and 
ic−  are updated and φ  evolves according to the 

partial differential equation (7). Equations (1)-(7) describe the original, scalar ACWE model (Chan and Vese, 2001) 

for b=1. More details for the numerical aspects of the level set evolution can be found in (Aubert and Vese, 1997). 

  

3 Local Binary Patterns 

 
The LBP operator, as defined in (Ojala et al, 2002), utilizes a binary representation of local texture patterns. Let T 

be such a texture pattern, defined in a local neighborhood of a gray-level texture image as the joint distribution of the 

gray-levels of P (P > 1) image pixels:  

 ),...,,( 10 −= PgggT τ   (8) 
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where g is the gray-level of the central pixel of the local neighborhood and gp (p = 0,…, P-1) represents the gray-level 

of P equally spaced pixels arranged on a circle of radius R (R > 0), forming a circularly symmetric neighbor set. 

Assuming that the differences gp-g are not affected by changes in mean luminance g, the joint difference distribution 

),...,( 10 gggg P −− −τ  is invariant against gray-level shifts. Moreover, the LBP approach achieves invariance with 

respect to the scaling of the gray-levels by considering H(gp-g) instead of gp-g, i.e. the joint signed difference 

distribution T’: 

 ))(),...,((' 10 ggHggHT P −−= −τ  (9) 

The LBP encoding is obtained by assigning a binomial factor 2
p
 to each term H(gp-g). A unique LBPP,R value that 

encodes the spatial structure of the local image texture 'T  is estimated by: 
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The distribution of the LBPP,R values calculated over an image region, comprises a highly discriminative feature 

vector for texture segmentation, as demonstrated in various comparative studies (Ojala et al, 1996; Paclic et al, 2002; 

Mäenpää and Pietikäinen, 2004). More detailed information concerning the LBP can be found in (Mäenpää and 

Pietikäinen, 2004).  

 

4 LBP-Guided Active Contours   

4.1 Scalar-LBP Active Contour (s-LAC) 

 
The underlying idea of s-LAC is to encode the spatial distribution of the most discriminative LBPP,R values of an 

input image into gray-level intensities so as to produce a new image that satisfies the assumption of approximately 

piecewise constant intensities. This is the basic assumption of the ACWE model, which is subsequently applied on 

the new image. As this approach avoids the iterative calculation of active contour equation terms derived from textural 

feature vectors, s-LAC can be more efficient than other active contour approaches. 

s-LAC algorithm begins with the calculation of the LBPP,R values of all pixels of the input image I. A binary image is 

assigned to each of the existent LBP values. For each i=LBPP,R(x,y), the pixel (x,y) of the binary image Bi  is labeled 

white, indicating the presence of the LBP value i, otherwise it is labeled black.  

In the sequel, each Bi is divided into constant-sized blocks and the occurrence probability Ppvalue(i,j) of the pixel 

value pvalue (white or black) in each block j of Bi is estimated. Since white pixels in Bi indicate the presence of the 

LBP value i, their density may vary for regions of different texture, characterized by different LBP distributions. The 

conditional entropy Hi, given an LBP value i: 

 ∑ ∑ ⋅−=
pvalue j

pvaluepvaluei jiPjiPH ),(log),( 2
  (11) 

can be used to evaluate the texture discrimination capability of the LBP value i. From an information-theoretic point of 
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view, eq. (11) is highly intuitive (Hermes and Buhmann, 2003). Since the conditional entropy Hi of an image with 

respect to an LBP value i, measures the level of uncertainty about this value, Hi is expected to be smaller if white 

pixels are mainly concentrated in some image blocks. Thus, a small value for conditional entropy Hi indicates that the 

corresponding LBP value i is dominant on an image region. 

The binary images Bi, i=1,2,…2
P 

are sorted according to their conditional entropy Hi, and the r top-ranked images 

are selected. The logical OR operator is applied on the K=2
r
-1 non-empty combinations of the selected r binary 

images. The resulting “cumulative” binary images CBk, k=1,2,…K, contain information derived from subsets of the 

existent LBPs. This is in agreement with (Mäenpää, 2003), according to which an appropriately selected subset of 

LBPs maintains most of the textural information associated with the set of the existent LBPs. The “cumulative” binary 

image CBM with the minimum conditional entropy is selected, according to:  

 ))(min(arg k
k

HM =   (12) 

Equation (12) imposes that the selected “cumulative” image CBM will be comprised of regions characterized by 

distinguishable white pixel densities. 

In order to limit the effect of local variances in the spatial frequency of the LBPs, a Gaussian kernel WG is 

convolved with CBM. This results in a smoothed image CBG of nearly homogeneous image regions, which satisfy the 

assumption of ACWE model for piecewise constant intensities. Such smoothing operations have been proved to 

enhance texture discrimination, as the notion of texture is undefined at the single pixel level and is always associated 

with some set of pixels (Unser and Eden, 1990). The convolution with the Gaussian kernel WG ensures that the gray 

level of each pixel in the smoothed image CBG depends on the distances of the LBPs, which are present in the 

neighborhood of the pixel and have been associated with the texture of interest in the previous steps of the algorithm. 

Furthermore, smoothing accelerates the convergence of the subsequently applied active contour (Akgul and 

Kambhamettu, 2003). 

In the last step of the algorithm, the ACWE model is applied to CBG. The region-based formulation of this active 

contour model enables the segmentation of an image into two discrete regions, even if these regions are not explicitly 

defined by high intensity gradients. In addition, the level set formulation of the ACWE model allows its adaptation to 

topological changes, such as splitting or merging, in case regions of the same texture are interspersed in the image. 

The steps of the proposed algorithm can be summarized as follows: 

 1.  Calculate LBP values 

  For each pixel (x,y) in I  Calculate LBPP,R(x,y) 

 2.  Generate binary images Bi, i=1,2,…,2
P
 

  Initialize Bi(x,y) = 0 

  For each LBPP,R(x,y) do 

   i = LBPP,R(x,y)  
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   Bi(x,y) = 1 

  End 

 3.  Generate “cumulative” binary image CBM 

  Rank all Bi according to ξi 

  For each combination COMBk={Bi1, Bi2 ,… , Bil}, k = 1,2,…K, l = card(COMBk) of the r top-ranked Bi do 

   CBk = (Bi1 OR Bi2 OR … OR Bil) 

  End 

  Find CBM using (12) 

 4.  Smoothing and Segmentation  

 CBG = CBM * WG  

 Segment CBG using ACWE. 

Figure 1 illustrates a schematic representation of the algorithm step by step, as applied on a composite image of 

the Brodatz collection (Brodatz, 1996). Figure 2 illustrates the set COMBi of the binary images Bi1, Bi2, Bi3, Bi4 

(generated at step 2) that were used to generate the cumulative image CBM at the third step of the algorithm.  
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Fig. 1. Schematic representation of the steps of the s-LAC algorithm and images generated at each step. The input image is 
Brodatz D17D55. The binary, the cumulative, and the smoothed images have been inverted for illustrational purposes. 

 

    

Fig. 2. Four binary images Bi1, Bi2, Bi3, Bi4 that were used to generate the cumulative image CBM illustrated in Fig. 1. The images 
have been inverted for illustrational purposes. 

 

 

4.2 Vector-LBP Active Contour (v-LAC) 

 

In this section, we introduce an alternative LBP-guided active contour approach, v-LAC. As in the case of s-LAC, v-

LAC is formulated acknowledging that texture is undefined at the single pixel level and it is always associated with an 
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image region (Unser and Eden, 1996). It utilizes vectors D
i
(x, y), i=1,2,…,b, where each component D

i
(x, y) 

corresponds to the i-th bin of the LBP distribution, and b = 2
P
 is the number of bins comprising each distribution. D

i
(x, 

y) encodes the textural properties of k×k-pixel image regions centered at pixel (x, y).  

In order to incorporate the regional information encoded by means of LBP distributions into (1), we consider the 

replacement of the vector ),(0 yxu  which represents the image components at a single pixel, with D
i
(x, y). Moreover, 

motivated by Ojala et al, (2002) in which the log-likelihood statistic is suggested as an accurate similarity measure for 

LBP distributions, we consider the replacement of 2

0 |),(| ii cyxu +−  and 2

0 |),(| ii cyxu −−  in (1), with ))log(),(1( ii cyxD +−  and 

))log(),(1( ii cyxD −−  respectively. These considerations lead to the derivation of a new energy functional: 
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The Euler-Langrange formulation of (13) is: 
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where φ  is the level set function, implicitly representing curve C.  

5 Experimental Results 

 
Experiments were performed to investigate the performance of the proposed LBP-guided active contours on 

texture segmentation. The dataset used is comprised of composite texture images from the Brodatz album (Brodatz, 

1996), and natural scenes from the Vistex (MIT Media Lab), Li and Wang (Li and Wang, 2003) and the Berkeley 

(Martin et al, 2001) databases (examples illustrated in Fig. 3). The size of each image of the dataset used was 

256×256. The active contour algorithms were implemented in Microsoft Visual C++ and executed on a 3.2 GHz Intel 

Pentium IV workstation. Densely distributed small circular contours were used for the initialization of the algorithms. 

As a segmentation quality measure we have considered the overlap q: 

  
GA

GA
q

∪
∩

=  (15)  

where A is the region delineated by the algorithm and G is the ground truth region. However, this measure has been 

estimated only for the segmentations of composite texture images, for which the ground truth regions are explicitly 

defined.  

    The results are organized in three parts. The first two parts present the results obtained by s-LAC and v-LAC 

approaches, whereas the third part compares the performance of the proposed LBP-guided active contours with the 

performance achieved by a baseline segmentation algorithm and state of the art active contours reported in the 

literature.    
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(a)  (b) (c)  (d) 

    

(e)  (f) (g)  (h) 

    

(i)  (j) (k)  (l) 

    

(m)  (n) (o)  (p) 

    

(q)  (r) (s)  (t) 

Fig. 3. Test images from the dataset used in the experiments: (a) Brodatz D4D84, (b) Brodatz D8D84 (c) Brodatz D17D55, (d) 
Brodatz D9D77, (e) Brodatz D6D17, (f) Brodatz D3D5, (g) Brodatz D56D56 (re-scaled), (h) Brodatz D38D106, (i) Brodatz 
D17D24, (j) Brodatz D79D5, (k) Vistex Fabric2Fabric1, (l) Vistex Fabric10Fabric13, (m) Vistex Fabric5Fabric7, (n) Vistex 
Food0Food5 (o) Vistex Fabric09Brick05 (p) Vistex ValleyWater1, (q) Vistex GroundWaterCity1, (r) Wang 804, (s) Berkeley 
28096, and (t) Vistex GrassPlantSky6. 
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5.1 s-LAC segmentation results 

The LBP operator considered in the experiments with s-LAC was LBP8,1. The parameters involved were determined 

by performing preliminary segmentation experiments on a randomly selected subset of the available dataset 

(comprised of the images (a)-(d) of Fig. 3). The block size was set at 16×16 pixels, as this provided the highest 

average overlap on this subset. Moreover, a total of r=5 top-ranked binary images in the third step of the s-LAC 

algorithm was found to be sufficient for the performed segmentation tasks, as for r>5 a marginal improvement of the 

segmentation quality was observed.  

A rough grid search of the parameter space of the active contour was performed on the subset of images selected 

for parameter tuning. Subsequent grid searches were performed for fine tuning within smaller ranges around the 

highest average parameter values obtained from the rough parameter search. The highest average overlap was 

obtained for 5== −+ λλ  and 
225601.0 ⋅=µ . The values of the parameters +λ  and −λ  were considered to be equal to 

each other, and the values of µ where considered proportional to the image size, in accordance with (Chan and Vese, 

2001). It was observed that a variation of approximately 10% of +λ  and −λ , and of approximately 30% of µ  around 

the values used results in overlap values that differ no more than 1.0%. This indicates that slight perturbations of +λ  

and −λ  have a greater impact on the obtained overlaps than slight perturbations of µ . 

Figure 4 illustrates example segmentation results obtained by the application of s-LAC on the images of Fig.3. The 

overlaps measured are presented in Table 1. Their average overlap is estimated to be 95.2±2.9%. The results show 

that s-LAC managed to segment all the composite Brodatz images accurately. It is worth noting that the segmentation 

is quite satisfying even for the Brodatz images D3D5, D38D106 and D79D5 illustrated in Fig. 4f, 4h and 4h 

respectively, which contain non-stationary textures.  

 

Table 1 

Overlaps obtained by the s-LAC algorithm for the segmentation of the images illustrated in Fig. 3. . 

Image Overlap (%) 

 

Image Overlap (%) 

 

Image Overlap (%) 

 

a 99.0 f 87.5 k 96.7 

b 99.2 g 98.5 l 97.1 

c 96.1 h 93.1 m 94.3 

d 93.9 i 95.6 n 92.8 

e 95.4 j 94.7 o 94.2 

 

The segmentations obtained by the application of s-LAC on the natural scenes illustrated in Figs. 4o-4t, 
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demonstrate the robustness of s-LAC to illumination changes, which is mainly attributed to the LBP texture 

representation. It can be observed that the textures of natural scenes are generally less uniform than the 

homogeneous textures of the test mosaics. In addition, due to the infinite scale of texture differences present in such 

images, choosing the right scale is a very subjective matter. For these reasons, there is often no ‘correct’ 

segmentation for a natural scene (Ojala and Pietikäinen, 1999). The bird illustrated in Fig. 4s has been successfully 

localized by s-LAC, although it occupies a rather small portion of the image. However, the roughly defined boundaries 

indicate that the statistical sample of LBPs within the bird’s region may not be sufficient to differentiate its textural 

content from the surrounding background.  

The convergence times of s-LAC observed for the available images, range between 3 and 4 seconds depending on 

the complexity of the target boundaries. 

    

(a)  (b) (c)  (d) 

    

(e)  (f) (g)  (h) 

    

(i)  (j) (k)  (l) 
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(m)  (n) (o)  (p) 

    

(q)  (r) (s)  (t) 

Fig. 4. Segmentation of the images illustrated in Fig. 3 using the s-LAC algorithm. 

5.2 v-LAC segmentation results  

By definition v-LAC utilizes feature vectors comprising LBP distributions. Equation (14) shows that the 

dimensionality of the LBP feature vectors affects negatively the performance of v-LAC. In the case of the LBP8,1 

operator the feature vectors are 256-dimensional. Such a high dimensionality can prove v-LAC almost impractical for 

the segmentation of typical images in terms of time performance. However, a considerable speedup of v-LAC, 

resulting in a marginal loss of precision, can be achieved by utilizing the LBP4,1 instead of the LBP8,1 operator. The 

LBP4,1 results in 16-dimensional feature vectors, efficiently, without any overhead introduced by additional 

dimensionality reduction techniques (Mäenpää et al, 2003). A rule of thumb suggests that the number of entries for 

each bin of a histogram should be at least 10. Considering that the LBP4,1 produces a 16-bin histogram, the number 

of entries required for the whole histogram is at least 16×10=160. Therefore, k=13 corresponds to the minimum k×k 

neighborhood that satisfies this requirement (13
2
 =169>160). 

The grid search approach of the parameter space described in Section 5.1 for the case of s-LAC led to the 

following set of parameter values: biii ,..2,1,105.7 5 =⋅== −+ λλ  and 22561.0 ⋅=µ . It was observed that a variation of 

approximately 5% of +λ  and −λ , and of approximately 20% of µ  around the values used, results in overlap values 

that differ no more than 1.0%. As in the case of s-LAC this indicates that slight perturbations of +λ  and −λ  have a 

greater impact on the obtained overlaps than slight perturbations of µ . However, these estimates show that v-LAC is 

more sensitive to parameter perturbations than s-LAC. 

The segmentation results obtained by the application of v-LAC on the available set of test images, using the LBP4,1 

operator, are illustrated in Fig. 5. The overlaps measured using v-LAC are presented in Table 2. These values are 

consistently higher than the overlaps obtained by the application of s-LAC on the same images, with an average value 

of 97.2±1.6%. A remarkable improvement in the segmentation quality has been achieved by v-LAC in the case of Fig. 

5f. This result indicates that v-LAC segmentation is less affected by non-stationarity of the textures characterizing 

different image regions.  

Table 2 
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Overlaps obtained by the v-LAC algorithm for the segmentation of the images illustrated in Fig. 3.  

Image Overlap (%) 

 

Image Overlap (%) 

 

Image Overlap (%) 

 

a 99.8 f 96.4 k 97.9 

b 99.7 g 97.8 l 97.3 

c 97.5 h 96.7 m 96.4 

d 94.7 i 99.3 n 95.3 

e 96.2 j 97.3 o 95.3 

 

It is worth noting that the utilization of the log-likelihood distance in the formulation of v-LAC, instead of the 

Euclidean distance, resulted in a considerable enhancement of the segmentation quality which reached 10%.  

The segmentations obtained by the application of v-LAC on natural scenes are also of higher quality, when 

compared to the respective s-LAC segmentations. The boundary of the ground illustrated in Figs. 5p-5t have been 

delineated in a tighter fashion by v-LAC. Furthermore, unlike s-LAC in Fig. 4s, no leakage is observed in the bird’s 

boundaries determined by v-LAC in Fig. 5s. The bird’s head has been reasonably excluded from the segmented 

region, as it is evidently dissimilar to the rest of the bird’s body. 

Although v-LAC outperforms s-LAC in terms of segmentation quality, its computational requirements raise up to an 

order of magnitude for the particular experimental setup with convergence times ranging between 40 and 60 seconds. 

 v-LAC segmentation can be accelerated by successively applying both s-LAC and v-LAC. First, a fast, however 

accurate, segmentation can be obtained by the application of s-LAC. The level-set function resulting from s-LAC at 

convergence can be subsequently used for the initialization of v-LAC. v-LAC will then proceed to a fine-grained 

texture segmentation in a relatively small number of iterations. The overall segmentation times observed for the 

successive application of s-LAC and v-LAC are reduced up to 20 seconds, whereas the individual overlaps obtained 

for the segmentation of the composite texture images are approximately the same with the ones obtained with v-LAC 

with a divergence per image of 0.1% on average. The average overlap obtained is 97.2±1.5%. This is a consequence 

of the fact that v-LAC is practically invariant to initialization and obtains almost identical segmentation results either by 

an initialization of densely distributed small circular contours or by an initialization derived from the segmentation 

result of s-LAC. This is achieved, as in the case of ACWE, by utilizing the regularized heaviside function H, suggested 

by Chan and Vese, (2001) to facilitate convergence to a global minimizer. 
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(a)  (b) (c)  (d) 

    

(e)  (f) (g)  (h) 

    

(i)  (j) (k)  (l) 

    

(m)  (n) (o)  (p) 

 

    

(q)  (r) (s)  (t) 

Fig. 5. Segmentation of the images illustrated in Fig. 3 using the v-LAC algorithm. 

 

5.3 Comparisons with baseline and state of the art segmentation algorithms 

 



 18 

As a baseline to compare the segmentation quality obtained by s-LAC and v-LAC we have considered the JSEG 

image segmentation algorithm (Deng and Manjunath, 2001). JSEG was applied on each composite image of the 

available dataset, for multiple combinations of its parameters (scales 1-4; quantization threshold 0-600; and region 

merging threshold 0.0-1.0). The highest overlaps achieved for each composite image are presented in Table 3 and 

can be considered as a means to evaluate the difficulty to segment these images. It can be observed that both s-LAC 

and v-LAC obtain higher overlaps than JSEG. Moreover, JSEG obtains lower overlaps in images which contain non-

stationary textures, as it is the case with Fig. 3f, 3h and 3j, indicating that these images pose the most challenging 

segmentation tasks.  

 

Table 3 

Overlaps obtained by a baseline algorithm (JSEG) for the segmentation of the images illustrated in Fig. 3.  

Image Overlap (%) 

 

Image Overlap (%) 

 

Image Overlap (%) 

 

a 72.3 f 58.1 k 62.8 

b 68.7 g 62.3 l 63.2 

c 94.2 h 59.6 m 64.0 

d 78.9 i 91.4 n 64.5 

e 88.7 j 56.8 o 92.1 

 

The segmentations of the composite textures illustrated in Fig. 6, as obtained by GAC and IAC in (Sagiv et al, 

2004), have 94.3% and 98.9% overlaps respectively (Fig. 6b). For the same images, s-LAC gave 94.5% and 97.2% 

overlaps (Fig. 6c), whereas v-LAC gave 96.9% and 99.1% overlaps (Fig. 6d). These results indicate that the 

segmentation quality obtained by s-LAC and v-LAC can be comparable or higher than the one obtained by state of 

the art active contours.   
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(a) (b) (c) (d) 

Fig. 6. (a) Test composite texture images used in (Sagiv et al, 2004), (b) segmentations obtained by GAC (upper image) and IAC 
(lower image) in (Sagiv et al, 2004), (c) segmentations obtained by s-LAC and (d) segmentations obtained by v-LAC. 

 
 
 

In the comparative evaluation of five texture segmentation methods included in (Acharyya and Kundu, 2001) the 

best result reported for the Brodatz D17D55 image (Fig. 3c), was 98.3% correctly classified pixels. For the same 

image, s-LAC and v-LAC results in 98.7% and 99.4% correctly classified pixels, respectively. In another comparative 

study (Randen and Husoy, 1999), the best classification rate reported among nine different methods was 98.1% for 

the Brodatz D4D84 image (Fig. 3a). For the same image, s-LAC and v-LAC achieved 99.0% and 99.8% respectively.  

The overall segmentation time, obtained when s-LAC and v-LAC are applied successively, is more than 12 times 

less than the segmentation times reported on the recent wavelet-based active contour texture segmentation method 

proposed in (Aujol et al, 2003), whereas Sagiv et al, (2004) do not address the overall segmentation times of IAC. 

However, in the case of IAC, illumination invariance is obtained by modifying the original equation of ACWE evolution 

(7) so as to incorporate the inverse of the determinant of the Gabor features submanifold’s metric, whereas LBP-

guided active contours avoid the time consuming calculation of such quantities.  

6 Conclusions 

 
In this study, we investigated novel approaches to texture segmentation that utilize LBP-based features for the 

guidance of active contours. Two LBP-guided active contours have been proposed: s-LAC and v-LAC. Their 

experimental evaluation on textures and natural scenes, acquired from standard databases, showed that s-LAC 

enables efficient, high quality texture segmentation by avoiding the iterative calculation of the active contour equation 

terms derived from LBP feature vectors. Moreover, the experiments showed that s-LAC is robust to illumination 

changes, a capability mainly associated with the LBP texture representation, whereas it allows the segmentation of 

regions with non-stationary textures. These capabilities are also valid for v-LAC, which although computationally more 

demanding, it can lead to higher segmentation quality than s-LAC, especially if the distance between the LBP feature 

vectors is measured by means of the log-likelihood statistic. The LBP-guided active contours compete state of the art 

active contours in texture segmentation. It has been shown that s-LAC can result in a comparable or better 

segmentation performance than the texture segmentation approaches presented in (Sagiv et al, 2004; Randen and 

Husoy, 1999; Acharyya and Kundu, 2001), with less computational effort. On the other hand, v-LAC can provide 
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segmentations of higher quality at the cost of time performance. The iterations of the v-LAC algorithm can be reduced 

by the successive application of s-LAC and v-LAC, thus requiring less computational effort than the active contours in 

(Aujol et al, 2003; Sagiv et al, 2004) to perform the segmentation task.  

In the experimental evaluation of the proposed LBP-guided active contours, we considered LBPs of a single pixel 

radius, favoring microtexture segmentation and computational efficiency. However, in case of macrotextures, larger 

LBP radii could be straightforwardly used instead. Depending on the application, further optimizations of the proposed 

LBP-guided active contours could also include the utilization of the rotation invariant LBP operator (Ojala et al, 2002), 

as well as of the multiphase active contour formulation (Vese and Chan, 2002) for the segmentation of multiple 

textures. 

Future perspectives of this work include the formulation of LBP-guided active contours for bimodal segmentation of 

textures with stationary global minimum (Lee and Seo, 2006), and applications on various domains, including medical 

and satellite images. 
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