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Abstract. This paper presents a novel approach to bimodal texture 
segmentation. The proposed approach features a local binary pattern-based 
scheme to transform bimodal textures into bimodal gray-scale intensities, 
segmentable by the Lee-Seo active contour model. This process avoids the 
iterative calculation of active contour equation terms derived from textural 
feature vectors, thus reducing the associated computational overhead. The 
proposed approach is region-based and invariant to the initialization of the 
level-set function, as it converges to a stationary global minimum. It is 
experimentally validated on 18 composite texture images of the Brodatz album, 
obtaining high quality segmentation results, whereas the convergence times are 
up to an order of magnitude smaller than the ones reported for other active 
contour approaches for texture segmentation. 
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1   Introduction 

Active contour models have been extensively applied for texture segmentation in the 
recent years [1]-[5]. Despite their numerous advantages, such as contour smoothness, 
noise robustness and topological adaptability, these models usually involve an energy 
functional, which converges to a local minimum, not necessarily corresponding to the 
target boundaries. Active contour models designed so as to obtain a global minimum 
would allow the development of integrated texture segmentation approaches, which 
could be reliably applied in various domains including medical image analysis, 
industrial monitoring of product quality, content-based image retrieval, and remote 
sensing.  

The main idea in the active contour approach involves the deformation of initial 
contours towards the boundaries of the image regions to be segmented. A well known 
active contour model, introduced by Chan and Vese [6] has received considerable 
attention due to its advantages: 1) it is region-based, enabling the delineation of 
regions defined by smooth intensity changes, and 2) its level set formulation provides 
adaptability to topological changes. However, the Chan-Vese model does not 
guarantee convergence to a global minimum, whereas contour evolution depends on 
the intensities rather than on the textural content of the image to be segmented.  

Recently, a modified version of the Chan-Vese model has been proposed by Lee 
and Seo [7], designed so as to obtain a stationary global minimum. This attribute 
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guarantees that a vision system employing Lee-Seo model is capable of reliably 
capturing the desired boundaries. Moreover, the stationarity of its associated solution 
facilitates the imposition of a reasonable termination criterion on the algorithm, 
contributing to its efficiency. 

State of the art research in active contour models has concentrated on the use of 
texture as a guiding force to contour evolution. Most of the previous active contour 
approaches for texture segmentation involved Gabor and wavelet features [1]-[3]. The 
Local Binary Pattern (LBP) operator [8], offers an alternative approach for texture 
representation. Unlike the Gabor features, which are calculated from the weighted 
mean of pixel values over a small neighborhood, LBP considers each pixel in the 
neighborhood separately, providing even more fine-grained information. In addition, 
the LBP texture features are invariant to any monotonic change in gray level 
intensities, resulting in a more robust representation of textures under varying 
illumination conditions. Comparative studies have demonstrated that the use of LBP 
features may result in higher classification accuracy than the Gabor and wavelet 
features, with a smaller computational overhead [8]-[10].  

In this paper we propose a novel approach for bimodal texture segmentation that 
incorporates an LBP-based representation of textures under a Lee-Seo segmentation 
framework. The proposed approach encodes the spatial distribution of the most 
discriminative LBPs of an input image into gray-level intensities producing a new 
image, which is subsequently segmented by the Lee-Seo model. This approach avoids 
the iterative calculation of active contour equation terms derived from textural feature 
vectors, reducing the associated computational overhead. However, the proposed 
approach maintains high segmentation quality, taking advantage of the region-based, 
level-set formulation of the Lee-Seo model, as well as of its convergence to a 
stationary global minimum. 

The rest of this paper is organized in five sections. Sections 2 and 3 provide an 
outline of the Lee-Seo model and the LBP features respectively. Section 4 describes 
the proposed approach, whereas the results from its application on bimodal textures 
are apposed in Section 5. Finally, in Section 6 the conclusions of this study are 
summarized. 

2   Lee-Seo Active Contour Model 

The Lee-Seo model as posed in [7] can take the form of a minimization problem: if Ω 
is considered as a bounded open subset of 2R , with Ω∂  the boundary, we seek for 
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where Ru →Ω:0  is the given image, φ  is the level-set function introduced in [11], 
2]1,0[:)( RsC →  a piecewise parameterized curve, +c  and −c  are unknown constants 

representing the average value of 0u  inside and outside the curve, α is an arbitrary 
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small positive value, and parameters 0>μ  and 0, >−+ λλ  are weights for the 
regularizing term and the fitting terms, respectively.  

Keeping +c  and −c  fixed, and minimizing F  with respect to φ , we deduce the 

associated Euler-Langrange equation for φ . Parameterizing the descent direction by 

an artificial time 0≥t , the equation in  ),,( yxtφ  (with ),(),,0( 0 yxyx φφ =  defining the 
initial contour) is 
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The stationarity of the global minimum obtained at the convergence of the Lee-Seo 
model allows the imposition of a termination criterion. For example, as |),(| yxφ  

converges to α, the Normalized Step Difference Energy (NSDE) can be defined as 
follows: 
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The NSDE is calculated at each iteration and as soon as it becomes smaller than an 
experimentally determined constant, the algorithm is terminated. 

3   Local Binary Patterns 

We adopt the formulation of the LBP operator defined in [8]. Let T be a texture 
pattern defined in a local neighborhood of a grey-level texture image as the joint 
distribution of the gray levels of P (P > 1) image pixels:  

),...,( 10, −= Pc gggtT  (4) 

where gc is the grey-level of the central pixel of the local neighborhood and gp (p = 
0,…, P-1) represents the gray-level of P equally spaced pixels arranged on a circle of 
radius R (R > 0) that form a circularly symmetric neighbor set. 

Much of the information in the original joint gray level distribution T’ is conveyed 
by the joint difference distribution: 

),...,(' 10 cPc ggggtT −−≈ −  (5) 

This is a highly discriminative texture operator. It records the occurrences of various 
patterns in the neighborhood of each pixel in a P-dimensional vector. 

The signed differences gp-gc are not affected by changes in mean luminance, 
resulting in a joint difference distribution that is invariant against gray-scale shifts. 
Moreover, invariance with respect to the scaling of the gray-levels is achieved by 
considering just the signs of the differences instead of their exact values: 
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For each sign s(gp-gc) a binomial factor 2p is assigned. Finally, a unique LBPP,R value 
that characterizes the spatial structure of the local image texture is estimated by: 
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The distribution of the LBPP,R values calculated over an image region, comprises a 
highly discriminative feature vector for texture segmentation, as demonstrated in 
various studies [8]-[10].  

4   Proposed Approach 

The underlying idea of the proposed approach is to encode the spatial distribution of 
the most discriminative LBPP,R values of an input image into gray-level intensities so 
as to produce a new image that satisfies the assumption of approximately piecewise 
constant intensities. This is a basic assumption of the active contour model, which is 
subsequently applied on the new image. As this approach avoids the iterative 
calculation of active contour equation terms derived from textural feature vectors, the 
proposed approach can be more efficient than other active contour approaches. 

The proposed algorithm begins with the calculation of the LBPP,R values of all 
pixels of the input image I. A binary image is assigned to each of the existent LBP 
values. For each i= LBPP,R(x,y), the pixel (x,y) of the binary image Bi is labeled white, 
indicating the presence of the LBP value i, otherwise it is labeled black.  

In the sequel, each Bi is divided into constant-sized blocks and the number 
Pwhite(i,j) of white pixels contained in each block j of Bi is counted. Since white pixels 
in Bi indicate the presence of the LBP value i, their density may vary for regions of 
different texture, characterized by different LBP distributions. The maximum inter-
block difference of white pixel densities in Bi, as expressed by contrast index ξi: 

)),((min)),((max jiPjiP white
j

white
j

i −=ξ  (9) 

can be used for the discrimination of bimodal textures. The contrast index ξi is 
expected to be smaller if white pixels are mainly concentrated in some image blocks, 
indicating that the associated LBP value characterizes the texture of an image region. 
Otherwise, if the white pixels are entangled within the blocks and cannot be associated 
with the texture of an image region, the contrast index ξi is expected to be increased. 

The binary images Bi, i=1,2,…2p are sorted according to their contrast index ξi, and 
the r top-ranked images are selected. The logical OR operator is applied on all 
combinations K of the selected r binary images. The resulting “cumulative” binary 
images CBk, k=1,2,…K, contain information derived from subsets of the existent 
LBPs. This is in agreement with [8], according to which an appropriately selected 
subset of LBPs maintains most of the textural information associated with the set of 
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the existent LBPs. The “cumulative” binary image CBm with the maximum contrast 
index is selected, according to:   

))(max(arg k
k

m ξ=  
(10) 

This image will be comprised of regions characterized by distinguishable white pixel 
densities, associated with different textures. Equation (10) imposes that the binary 
images Bi used to generate CBm, have their highest white pixel densities on regions of 
the same texture.  

In order to limit the effect of local variances in the spatial frequency of the LBPs, a 
Gaussian kernel WG is convolved with CBm. This results in a smoothed image CBG of 
nearly homogeneous image regions, which satisfy the assumption of Lee-Seo model 
for piecewise constant intensities. Such smoothing operations have been proved to 
enhance texture discrimination, as the notion of texture is undefined at the single pixel 
level and is always associated with some set of pixels [12]. Moreover, convolution 
with Gaussian kernel WG ensures that the gray level of each pixel in the smoothed 
image CBG depends on the distances of the local binary patterns, which are present in 
the neighborhood of the pixel and have been associated with the texture of interest in 
the previous steps of the algorithm. Finally, it should be taken into account that 
smoothing accelerates the convergence of the subsequently applied active contour. 
Fig. 1 illustrates an example of an original image composed of Brodatz textures, along 
with the resulting smoothed image CBG. 

In the final step, the Lee-Seo model is applied to CBG. The region-based 
formulation of this active contour model enables the segmentation of an image into 
two discrete regions, even if these regions are not explicitly defined by high intensity 
gradients. In addition, its level set formulation allows the Lee-Seo model to adapt to 
topological changes, such as splitting or merging, in case regions of the same texture 
are interspersed in the image. Finally, the Lee-Seo model is guaranteed to converge to 
a stationary global minimum. 

The steps of the proposed algorithm can be summarized as follows: 

1.  Calculate LBP values 
For each pixel (x,y) in I Calculate LBPP,R(x,y)

2.  Generate binary images Bi, i = 1,2,…,2
P

 Initialize Bi(x,y) = 0 
 For each LBPP,R(x,y) do 
  i = LBPP,R(x,y)
  Bi(x,y) = 1 
 End 
3.  Generate “cumulative” binary image CBm

 Rank all Bi according to i
For each combination COMBk={Bi1, Bi2,… ,Bil},
k = 1,2,…K, l = card(COMBk) of the r top-
ranked Bi do 
CBk = (Bi1 OR Bi2 OR … OR Bil)

 End 
 Find CBm using (12) 
4.  Smoothing and segmentation  

CBG = CBm * WG

 Segment CBG using the Lee-Seo model.  
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5   Results 

Experiments were performed to investigate the performance of the proposed approach 
on texture segmentation. The dataset used is comprised of 18 composite texture 
images from the Brodatz album [13]. The proposed approach was implemented in 
Microsoft Visual C++ and executed on a 3.2 GHz Intel Pentium IV workstation. As a 
segmentation quality measure, the overlap q was considered: 

GA

GA
q

∪
∩=  (11) 

where A is the region delineated by the approach and G is the ground truth region.  
The LBP operator considered in the experiments was LBP8,1. The block size used 

was set to 16×16, and a number of r=5 top-ranked binary images (see Section 4) was 
found to be sufficient for the performed segmentation tasks. 

    

(a)                              (b) 

Fig. 1. Example of a smoothed image CBG, generated in step 4 of the proposed algorithm,  (a) 
original image composed of Brodatz textures, (b) corresponding image CBG 

    
(a) (c) (e) (g) 

    
(b) (d) (f) (h) 

Fig. 2. Segmentation results of the application of the proposed approach for bimodal texture 
segmentation, (a,c,e,g) original images composed of Brodatz textures, (b,d,f,h) segmented 
images 
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Figure 1 illustrates an example of an original image composed of Brodatz textures, 
along with the resulting smoothed image CBG, which is generated in step 4 of the 
proposed algorithm. Figure 2 illustrates four examples of the application of the proposed 
approach for bimodal texture segmentation. The segmentation results obtained are 
very promising, with the frames composed of different texture patterns being 
successfully segmented. The overlaps measured are 99.1%, 96.9%, 99.7%, and 99.1% 
for the segmentations illustrated in Fig. 1b, 1d, 1f, and 1h respectively, whereas the 
average overlap obtained was 98.9±0.7%. The convergence times observed for the 
available images, ranged between 2 and 3 seconds depending on the complexity of the 
target boundaries. These convergence times are an order of magnitude smaller than 
the ones reported in other active contour approaches for texture segmentation [2].  

6   Conclusion  

In this paper, we presented a novel approach for bimodal texture segmentation. The 
proposed approach features a local binary pattern scheme to transform bimodal 
textures into bimodal gray-scale intensities, segmentable by the Lee-Seo active 
contour model. This process avoids the iterative calculation of active contour equation 
terms derived from textural feature vectors, thus reducing the associated 
computational overhead. In addition, the region-based, level-set formulation of the 
Lee-Seo model allows segmenting regions defined by smooth intensity changes, as 
well as adapting to topological changes. Finally, the Lee-Seo model is invariant to the 
initialization of the level-set function and guarantees convergence to a stationary 
global minimum. The stationarity of the associated solution facilitates the imposition 
of a reasonable termination criterion on the algorithm, contributing to its efficiency.  

In our experimental study, the proposed approach achieved very promising 
segmentation results, whereas the required convergence times were an order of 
magnitude smaller than the ones reported in other active contour approaches for 
texture segmentation [2]. 

The proposed approach in its current form is limited to bimodal segmentation. 
However, future perspectives of this work include an extension for multimodal 
texture segmentation, as well as applications on various domains, and incorporation of 
the uniform LBP operator, introduced in [8].  
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