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Abstract
Portable chest radiography is a valuable tool for screening patients hospitalized in intensive
care, providing visual cues for diagnosis and physiological measurements. However, its
practicality comes at the cost of quality, which is mainly affected by misaligned body
positioning, thus increasing x-ray misinterpretation rates. This paper presents a novel
methodology for the detection of the lung field boundaries in portable chest radiographs of
patients with bacterial pulmonary infections. Such infections are radiographically manifested
as foci of consolidations which can lead to vague or invisible lung field boundaries, difficult to
distinguish even by experienced physicians. Conventional and state-of-the-art approaches
address mainly stationary radiographs, whereas only a few of them cope with pulmonary
infections. The proposed methodology is based on an active shape model incorporating shape
prior information about the lung fields. The model is initialized by a novel technique utilizing
a set of salient points detected on the peripheral anatomic structures of the lungs. A selective
thresholding algorithm based on a spinal cord sampling process supports both the initialization
and the evolution of the model for the detection of the lung field boundaries. The experiments
show that the proposed methodology outperforms state-of-the-art approaches.

Keywords: portable chest radiography, lung, infections, active shape models, thresholding,
physiological measurements

1. Introduction

The first and the most critical step in computerized analysis of
chest radiographs is the detection of the lung field boundaries.
Once the boundaries of the lung fields are defined, assessment
of the condition of the lungs and physiological measurements
can take place [1, 2]. Plain chest radiographs are usually
obtained in a controlled setup where the patients are positioned
in a standard way at the x-ray device. However, in the case
of critically ill patients, this is not always feasible as they may

3 Author to whom any correspondence should be addressed.

be in pain or disabled. To cope with this problem, portable
x-ray devices are commonly used in intensive care to obtain
the radiographs from various relative distances and angles to
patients immobilized in bed—not necessarily in a standard
position. However, its practicality comes at the cost of quality
mainly because of misaligned body positioning during image
acquisition [3]. Consequently, such radiographs are more
difficult to read and subject to a higher misinterpretation rate.

The detection of the lung field boundaries becomes
even more difficult in the presence of bacterial pulmonary
infections. The most common radiographic manifestation
of such infections is foci of consolidations [4]. These are
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visible as bright shadows interfering with the interior lung
intensities and can lead to weak lung field boundaries, difficult
to distinguish even by experienced physicians. Therefore,
a computational approach that would robustly detect the
boundaries of the lung fields would be an asset to the medical
community.

Since the beginning of the 1960s, a variety of
computational approaches to the detection of the lung field
boundaries in plain chest radiographs have been proposed.
These include rule-based methodologies [6–12], neural
network, Markov random fields and other pattern classification
approaches [1, 13, 14], active contour models [15], active
shape and active appearance models [16] and graph cuts [17].
The studies [6–11] indicate that the detection performance
of most rule-based methodologies can degrade if the quality
of the radiograph is poor or if the positioning of the patient
deviates from the standard. Recently, a rule-based approach
coping with the issue of positioning has been proposed in
[12]. This approach is unsupervised and defines a set of
salient control points around the lung fields. The salient
point detection process is supported by a selective thresholding
algorithm that cuts off image intensities based on local
intensity histograms sampled from the spinal cord. The
detected points are then intuitively interpolated by Bézier
curves [18]. The preliminary results presented indicate its
suitability for portable radiography, its robustness to the
presence of consolidations and its advantage against the graph
cuts approach [17]. A drawback of this methodology is that it
may produce implausible shapes especially if parts of the lung
fields are excluded from the radiograph.

Supervised state-of-the-art approaches that have provided
excellent solutions to the detection of the lung field boundaries
include active shape and active appearance models [1, 5,
16]. Active shape models (ASMs) [19] represent the shape
of an image region by the principal components of landmark
point vectors, whereas the grey-level appearance of that region
is limited to its border and consists of the normalized first
derivative of the intensity profiles centred at each landmark
that run perpendicular to the region’s contour. The evolution
of the model involves the minimization of the distance between
the true and the modelled first derivative profiles of the
region. Active appearance models (AAMs) [20] have been
proposed as an alternative to ASMs. In AAMs, a combined
principal component analysis of the landmarks and pixel
values inside the region is made facilitating the generation
of plausible instances of both geometry and texture. The
evolution of the model is steered by the difference between
the true pixel values and the modelled pixel values within
the region. The comparative advantage of the ASMs and the
AAMs over pattern classification and rule-based approaches
is that they incorporate a priori shape information, thus
they are capable of producing more plausible shapes in
their output. However, their dependence on local image
derivatives makes them sensitive to fitting weak boundaries
thus increasing the likelihood of the contour to leak through
these boundaries. Experimental results of the application of
an ASM for the detection of the lung field boundaries in
the presence of a bacterial infection have been presented in

[5], where the results reported indicate the prevalence of such
errors. Although ASMs have not yet been applied explicitly
on portable radiographs, their shape-constrained deformability
makes them a competent candidate.

In this paper, we propose a novel methodology for
lung field boundary detection suitable for portable chest
radiographs of patients with bacterial pulmonary infections.
The proposed methodology is based on the ASM approach
which is initialized and enhanced by techniques from [12],
in order to limit contour leaking in the presence of lung
consolidations. The initialization of the ASM is determined by
a novel technique utilizing a set of salient points detected on
the peripheral anatomic structures of the lungs. A selective
thresholding algorithm based on a spinal cord sampling
process supports both the initialization and the evolution of
the model for the detection of the lung field boundaries. This
methodology provides robustness to the lung field deformation
in the presence of weak boundaries and produces plausible
shapes even if parts of the lung fields are excluded from the
radiograph. Moreover, as in [12] but unlike the conventional
approaches, the lung field regions overlapped by the heart are
not excluded since abnormalities due to bacterial infections
may be present, even behind the heart [4].

The remainder of this paper consists of three sections.
Section 2 describes the proposed methodology. Section 3
presents the results of its experimental evaluation in
comparison with relevant state-of-the-art approaches. The
conclusions derived from this study are summarized in the
last section, where perspectives for future research are also
provided.

2. Methodology

The proposed methodology assumes that (a) the patient’s body
may not necessarily be aligned with the portable x-ray device,
since he/she may be immobilized in bed and (b) the spinal
cord lies roughly somewhere in the middle of the radiograph,
considering that both the patient’s lungs are examined.

Let I be a new chest radiograph of size N × M pixels.
The detection of the lung field boundaries is realized in three
phases:

(1) salient points detection;

(2) selective thresholding;

(3) ASM-based image segmentation.

In the first phase, a set of points indicating two regions
bounded by the outer ribcage and the spinal cord is detected.
This set of points is used as input to the next phases. In the
second phase, the chest radiograph I is processed so that image
regions irrelevant to the problem investigated are subtracted
from it. In the last phase, the processed image is used to
guide the evolution of the ASM, which is modified so as to
achieve robust and accurate detection of the lung fields. The
three phases of the proposed methodology are described in the
following subsections.
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Figure 1. Salient point detection. The image is sampled with rectangular windows as that indicated with dashed borders on the right. An
example profile extracted from this window is illustrated on the left. The detected maxima indicated as black points on the right. The black
vertical lines indicate the midlines of the central, left and right columns. The white vertical lines are located at [L + (C − L)/2] and [R +
(R − C)/2].

2.1. Salient point detection

The peripheral anatomic structures to the lungs, such as the
spinal cord and the ribcage, remain unaffected by the presence
of a pulmonary bacterial infection. Based on this consideration
the first phase of the proposed methodology aims to detect a set
of salient points that fall approximately on outer ribcage and
the spinal cord, indicating two regions, each of which encloses
a lung field.

Radiograph I is uniformly sampled from top to bottom
with sh non-overlapping rectangular windows of h × M,
pixels, where h < N (figure 1). For each sample an average
horizontal profile, i.e. the average grey level of its rows,
per column, is estimated. Radiographic image profiles have
been proved valuable in several radiographic image analysis
tasks [5–8, 11] as they provide a simple though effective
means to navigate through a radiograph by using only one-
dimensional information and elementary signal processing
techniques. The proposed methodology utilizes horizontal
profiles of consecutive image samples in order to obtain spatial
instances of the radiograph from which the spinal cord and
the ribcage boundaries are detectable even if the patient is
bent. This sampling approach does not consider standard
lung field positioning as the approaches mentioned in [5–
8, 11]. An example profile is illustrated in figure 1. The
two valleys around the central peak correspond to the lung
fields, whereas the peaks after these valleys correspond to the
ribcage boundaries. Each profile is smoothed by following
a moving average approach that facilitates noise insensitivity.
The local maxima detected for each profile are illustrated as
black points on the radiograph of figure 1. The localization of
the maxima remains practically unaffected by the presence of
consolidations, since their density, and therefore their intensity,
is generally lower than the density of the spinal cord and of
the ribcage [4, 21].

In the following, possibly relevant maxima are selected
and classified into three sets: (a) spinal cord points, (b) points
of the left side of the ribcage and (c) points of the right side of
the ribcage. To this direction, sv non-overlapping rectangular
windows of N × w, w < M, pixels uniformly sample the
radiograph from left to right and the average intensity of
each sample is estimated. Considering a chest radiograph
that displays both the patient’s lungs, it is assumed that the

spinal cord lies roughly somewhere in the middle of the image.
This is implemented by assigning as candidate spinal cord
points those bilaterally closer to the column with the maximum
average intensity within columns [M/4] and [3M/4]. This
column will be referred to as the central column C.

Similarly, a left column L and a right column R are
determined as the columns with the maximum average
intensity between columns 0 and [M/4], and between columns
[3M/4] and M, respectively. Considering the relative positions
of the lung fields with respect to the spinal cord [7], the
points closest to the left side of column [L + (C − L)/2] are
selected as candidate points belonging to the left side of the
ribcage and the points closest to the right side of column [R +
(R − C)/2] are selected as candidate points belonging to the
right side of the ribcage.

The salient point detection algorithm is implemented as
follows:

Step 1. Detect local maxima of horizontal profiles:

• Acquire sh consecutive non-overlapping rectangular
samples of h × M, h < N pixels from the whole image.

• For each of sh samples

– calculate its average horizontal profile;
– detect the local maxima of each profile.

Step 2. Detect a central, a left and a right column:

• Acquire sv non-overlapping rectangular samples of N ×
w, w < M pixels from the whole image.

• For each of sv samples

– calculate the average intensity.

• Set as central column C the midline of the sample with
the maximum average intensity between columns M/2 −
M/4 and M/2 + M/4.

• Set as left column L the midline of the sample with
the maximum average intensity between columns 0 and
M/2 − M/4.

• Set as right column R the midline of the sample with the
maximum average intensity between columns M/2 + M/4
and M − 1.

Step 3. Classify the detected local maxima to the spinal cord,
and to the outer left and right boundaries of the left and the
right lung field, respectively.
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Figure 2. Selective thresholding. (a) Histograms hi , i = 1, . . . , sh are calculated from samples acquired at the spinal cord points. The
histogram peaks indicated with dashes are accumulated to H. (b) The output of the selective thresholding algorithm.

• For each of sh samples:

– Set the local maxima closest to C as spinal cord
points.

– Set the local maxima closest to the left side of column
L + (C − L)/2 as points of the outer left boundary of
the left lung field.

– Set the local maxima closest to the right side of
column R + (R − C)/2 as points of the outer right
boundary of the right lung field.

2.2. Selective thresholding

The second phase applies the selective thresholding algorithm,
preliminarily described in [12], in order to subtract regions that
do not belong to the lung fields, from the chest radiograph.
This algorithm is based on the fact that every anatomic
structure visible in the radiograph is characterized by a set
of intensities depicting its density [21].

The selective thresholding algorithm begins with
sampling the spinal cord at the points detected in the previous
step of this methodology. Sampling is performed with
square windows centred at each point (figure 2). From each
sample the highest histogram peak along with its neighbouring
histogram components are selected. The selected components
from all samples are accumulated in a new single histogram H.
The non-zero components of that histogram will correspond
to the most prevalent intensities of the spinal cord, the heart
and other anatomic structures that overlap the spinal cord.

By setting these intensities to zero, a significant part of, or
even the whole image regions corresponding to the anatomic
structures that overlap the spinal cord are subtracted from
I. Moreover, since many other structures in the radiograph,
except for the lung fields, are of similar densities to those
across the spinal cord, they are expected to have similar
intensity distributions. For example, the spinal cord consists
of bone tissue similar to the clavicles. Therefore, a part of
these structures will also be subtracted from I.

Further subtraction of irrelevant image regions is
performed by setting all the intensities of I that are higher
than the maximum intensity m of H, to zero. This operation
subtracts from I image regions that are unlikely to belong to the
lung fields since the spinal cord is generally brighter that both
normal lung parenchyma and consolidations. Such regions
may include dense objects used for patient’s monitoring or
support.

The selective thresholding algorithm is implemented as
follows:

Step 1. Sample the radiograph across spinal cord:

• For each of sh salient points detected on the spinal cord

– acquire a square image sample of x2 pixels.

• For each image sample i = 1, . . . , sh:

– calculate its intensity histogram hi ,
– select a set of histogram components phi centred at

its highest peak.

Step 2. Accumulate the values phi from all samples into a
single histogram H.
Step 3. Find the last non-zero component m of H.
Step 4. Generate an output image T(I) from I as follows:

• set the intensities of I that correspond to the non-zero
components of H, to zero;

• set the intensities of I that are larger than m, to zero.

The results of this algorithm can improve if the spinal cord
points are populated by interpolation before the application of
step 1. This is due to the increase of the samples acquired,
which leads to a more representative statistical distribution of
intensities in H.

2.3. ASM-based image segmentation

The shape of a lung field can be described by n landmark
points (x1,y1), . . . , (xn, yn) forming a shape vector x =
(x1, y1, . . . , xn, yn)

T . The ASM approach [19] applies
principal component analysis (PCA) to build a shape model
from a set of training shape vectors of ground truth lung field
boundaries in different chest radiographs.

Let x̄ denote the mean of N training shape vectors.

x̄ = 1

N

N∑
i=1

xi. (1)

The covariance matrix of the shape vectors is

Cx = 1

N

N∑
i=1

(xi − x̄)(xi − x̄)T (2)

from which t eigenvectors φi , i = 1, . . . , t corresponding to the
largest eigenvalues λi , i = 1, . . . , t, are estimated. The value
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of t is determined as the smallest t for which the following
inequality holds [5]

t∑
i=1

λi � fv

2n∑
i=1

λi (3)

where fv is the desired percentage of the shape variation to be
represented by the t principal eigenvectors. The eigenvectors
form the matrix

� = (φ1| φ2| · · · |φt ) (4)

which is used for the approximation of a shape x in

x = x̄ + � · bx, (5)

where bx holds the shape parameters. Since � is orthogonal
the shape parameters can be estimated from equation (5)

bx = �T(x − x̄). (6)

In addition to the shape, the ASM models also the local
appearance of the image region around each landmark.
The local appearance is represented by the normalized first
derivatives of image intensity profiles sampled around each
landmark, perpendicular to the contour. The derivatives are
used instead of image intensities in order to reduce the effects
of global intensity changes. Considering that the intensity
profiles of x are gi = (gi1, gi2, . . . , gi2k+1)

T, k > 0, centred
around each landmark i = 1, . . . , n, the normalized first
derivatives di = (di1, di2, . . . , di2k)

T are estimated by

dil = gil+1 − gil∑2k
j=1 |gij+1 − gij |

, l = 1, . . . , 2k. (7)

The local appearance model is represented by the mean
d̄i and the covariance matrix Cdi of the normalized first
derivatives, estimated for any landmark i = 1, . . . , n over
the N training shapes.

The trained ASM is applied on a new chest radiograph
after proper initialization and evolves to detect the lung field
boundaries.

2.3.1. Initialization. The application of the ASM [19] on
a new chest radiograph requires that the initial position, the
rotation and the scale of the mean shape of each lung field are
defined. To overcome this limitation, we propose a novel
approach for the initialization of the ASM. The proposed
initialization approach aims to provide an initial model that
falls close to the target lung field boundaries.

Primarily, the outer left and right salient points detected in
the first phase of our methodology are interpolated by Bézier
curves [18] and connected, so as to segment I into two regions
(figure 3(a)). We have considered the Bézier curves because
they feature robustness to outliers [12]. These curves are
intuitively controlled by the salient points, in the sense that they
are attracted by the internal control points, without necessarily
passing through them. The segmented image is binarized so
that the pixel values under the curve are equal to 1, and the
pixel values over the curve are equal to 0. This binary image
is denoted as BI (I ) (figure 3(b)).

Secondly, a binary instance BT (I) of T(I) is obtained by
setting its non-zero pixel values to 1 (figure 3(c)). The two

(a) (b) 

(c) (d ) 

(e) ( f ) 

(g) (h) 

Figure 3. Proposed ASM initialization. (a) Interpolation of the
outer left and right salient points detected in the first phase of our
methodology; (b) the binary image BI (I ); (c) the binary instance
BT (I) of T(I) (illustrated in figure 2(b)); (d) the result of
BIT (I ) = BI (I )∧BT (I), the points in the middle indicate the spinal
cord points dividing the image into two parts, BL

IT (I ) and BR
IT (I );

(e) left part of BL
IT (I ); (f ) right part of BR

IT (I ); (g) the rotation
angle θ between the (black) line produced by linear regression and
the (white) vertical axis of the image; (h) initial contours x̄i , i = L,
R, obtained from the data set used in the experiments.

binary images BI (I ) and BT (I) are then combined with the
logical ‘and’ operator to produce a new binary image BIT (I )

(figure 3(d)), which can be considered as a rough mask for
the two lung fields. This mask is further divided by the spinal
cord points into two parts: a left part BL

IT (I ) (figure 3(e))
and a right part BR

IT (I ) (figure 3(f )), corresponding to each
of the two lung fields. The centre of mass of each part is
chosen for the positioning of the centre of mass of the mean
shape of each lung field. The centre of mass is estimated by
the two first-order geometric moments of the binary image
[24]. The rotation of both mean shapes is determined by the
angle θ between the line obtained with linear regression from
the spinal cord points and the vertical axis of the image [25]
(figure 3(g)). Given a fixed position and the rotation angle
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of the mean shape of the left and the right lung field, the
corresponding lung field model is iteratively scaled up until
it reaches a maximum overlap with the shapes of the non-
zero regions of BL

IT (I ) and BR
IT (I ), respectively (figure 3(h)).

The overlap ω between the areas of two shapes; a1 and a2, is
defined by the ratio [26]

ω = a1 ∩ a2

a1 ∪ a2
. (8)

The translation, rotation and scaling of the shape model
are realized by the application of the following well-known
geometric transformation on each of its landmarks (x, y) [23](

x ′

y ′

)
=

(
�x

�y

)
+ ψ ·

(
cos θ − sin θ

sin θ cos θ

) (
x

y

)
, (9)

where �x and �y correspond to the horizontal and vertical
translations of the shape’s centre of mass, θ is the rotation
angle of the spinal cord and ψ is the scaling factor of the
shape.

The proposed ASM initialization algorithm is imple-
mented as follows:

Step 1. Generate rough binary masks BL
IT (I ), BR

IT (I ) for each
lung field:

• calculate BIT (I ) = BI (I ) ∧ BT (I).
• divide BIT (I ) into two parts based on the spinal cord

points and generate images BL
IT (I ) and BR

IT (I ) from each
part, such that BIT (I ) = BL

IT (I ) ∨ BR
IT (I ).

Step 2. For each Bi
IT (I ), i = L, R:

• Calculate its centre of mass oi by its first-order geometric
moments.

Step 3. Calculate the rotation angle θ of the spinal cord by
linear regression of the spinal cord points.

Step 4. Initialize lung field models:
For each model xi = x̄i + �i · bi

x, i = L, R:

• Set scale ψi = ψinitial.
• Set initial overlap ωi

max = 0.
• Repeat the following until maximum ωi is found.

– Transform x̄i using oi , θ , ψi in equation (9).
– Estimate the overlap ωi of x̄i with the non-zero area

of Bi
IT (I ).

– ψi = ψi + ψstep

• Set model parameters bi
x = 0.

2.3.2. Evolution. The initialized ASM evolves according
to a simple iterative scheme [19]. Each landmark can move
along a direction perpendicular to the contour by s positions
on either side of the contour, evaluating 2s + 1 positions, in
total. The new position (x ′

i , y
′
i ) of each landmark i = 1, . . . , n,

on the search direction, is determined as the one minimizing
the Mahalanobis distance

μ(d′
ij ) = (d′

ij − d̄i )
TC−1

di (d′
ij − d̄i ), (10)

where d′
ij is a vector of normalized first derivatives estimated

from the 2s + 1 pixel intensity profile centred at each of
the possible new landmark positions (x ′

ij , y
′
ij ), i = 1, . . . ,

Figure 4. Detection of the lung fields after initialization with the
contours illustrated in figure 3(h). The model for each lung field has
been built with the data set used in the experiments.

ASMMethodology 
[12]

Proposed 
methodology

0.60
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0.70
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0.80

0.85

0.90
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left lung fields

right lung fields

Figure 5. Graphical representation of the results presented in
table 1.

n, j = 1, . . . , 2s + 1. After all the landmarks are updated,
the shape model is fitted to the new landmarks. The ASM
evolves until a proportion pclose of landmarks ends up within
s/2 of its previous position, or until a number of Mmax

iterations is reached. The convergence of this algorithm
improves by repeating this process with intensity profiles
sampled at multiple resolutions Rmax, considering respective
local appearance models of multiresolution image pyramids
[22, 23].

The evolution of the ASM on a new chest radiograph is
likely to get affected by the presence of irrelevant anatomic
structures or external objects. Consequently, the lung field
boundaries may be missed and contour leaking may be
observed, especially if the boundaries are weakly defined. To
alleviate this problem we introduce limitations to the evolution
of the ASM by imposing constraints derived from T(I).

The proposed approach for the evolution of the ASM
considers the possibility that the non-zero pixels of T(I)
correspond to the lung fields and prohibit the contour to move
towards them in I. This way it is less likely for the ASM contour
to leak inside the lung fields. The initialization of the model as
described in the previous subsection and the incorporation of
multiresolution local appearance models help the algorithm to
avoid trapping into irrelevant regions. Moreover, the a priori
shape information included in the ASM helps the algorithm to
achieve a plausible delineation of the lung fields even if part
of them remains joint with their surroundings, or artefacts are
present, in T(I).

The proposed ASM evolution algorithm is implemented
as follows:

Step 1. Update landmark positions:

6



Meas. Sci. Technol. 20 (2009) 104019 D K Iakovidis et al.

(d ) (e) ( f ) 

(g) (h) (i ) 

(a) (b) (c) 

Figure 6. Delineations of the right lung fields obtained by the application of the proposed methodology (a)–(c), the methodology proposed
in [12] (d)–(f ) and the original ASM (g)–(i), on the same x-ray images.

• For each possible new landmark position (x ′
ij , y

′
ij ), i =

1, . . . , n, j = 1, . . . , 2s + 1:

– Calculate a profile of normalized first derivatives
d′

ij = (dij1, dij2, . . . , dij2k)
T on I, centred at this

landmark position perpendicular to the contour.
– Calculate the Mahalanobis distance μ(d′

ij ).
– From all d′

ij , such that T (I (x ′
ij , y

′
ij )) = 0, find

μmin(d′
i ) = min

j=1,...,2s+1
(μ(d′

ij )).

– (x ′
i , y

′
i )= (x ′

ij , y
′
ij ) is the new position of landmark i.

Step 2. Fit the current shape model to the updated landmarks:

• Set x ′ = (x ′
1, y

′
1, . . . , x

′
n, y

′
n)

T .
• Calculate the new model parameters for x′ from

equation (6).
• Constrain each component |bl| < c

√
λl of bx′ , c > 0, l =

1, . . . , t, to ensure plausible shapes.

Step 3. Repeat steps 1–3 until a proportion of pclose of points
ends up within s/2 of the previous positions, or Mmax iterations
are reached.
Step 4. Move to the next resolution level.

Step 5. Repeat steps 1–5 until the finest resolution level Rmax

is reached.

3. Experimental evaluation

The effectiveness of the proposed approach was evaluated on
a set of 107 anonymous chest radiographs obtained with a
portable x-ray device from patients with pulmonary bacterial
infections, manifested as consolidations. The patients were
hospitalized in an intensive care unit of the Chest Hospital
of Athens ‘Sotiria’. This is a challenging data set since the
majority of the radiographs are misaligned and in some cases
parts of the lung fields are even excluded from the radiograph,
while a variety of external objects used for patients’ monitoring
and support are also present.

All radiographs used in the experiments were digitized
at 8 bits and have been downscaled to fit a 256 × 256 pixel
bounding box. For each model parameter, a fixed setting
was selected that yielded good performance, after initial pilot
experiments. A shape model explaining 98% of the variance
(fv = 0.98) was constructed. Other settings include three
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(c)(b)(a)

( f )(e)(d )

(i)(h)(g)

Figure 7. Delineations of the left lung fields obtained by the application of the proposed methodology (a)–(c), the methodology proposed in
[12] (d)–(f ), and the original ASM (g)–(i), on the same x-ray images.

levels of resolution (Rmax = 3), 30 iterations per resolution
level (Mmax = 30), profiles of length five (s = 2). When
fitting the shape model to the displaced landmarks, each
mode was constrained within two times the standard deviation.
Additional values of parameters associated with the sizes
used for the salient point detection and selective thresholding
include w = h = 9 and x = 32, as these are supported by the
preliminary experiments performed in [12].

The performance of the proposed methodology was
assessed in terms of 	, a widely accepted measure of accuracy
for binary segmentation tasks [16]:

	 = TP

TP + FP + FN
, (11)

where TP stands for true positive (the area classified as lung by
both the proposed methodology and the expert), FP for false
positive (area classified as background by the expert and as
lung by the proposed methodology) and FN for false negative
(area classified as lung by the expert and as background by the
proposed methodology). 	 = 1 holds for a perfect result and
	 = 0 holds if there is no overlap at all between the detected
and true lung fields. This measure more closely reflects the

idea of a good segmentation than the average distance between
the true and detected landmark locations, because the latter is
not sensitive to shifts of the landmarks along the contour [27].
In addition, 	 is a more suitable measure of segmentation
performance than the accuracy used in [12], since the latter
counts TN pixels as correctly detected, providing deceptively
high results in cases of relatively small target objects.

A leave-one-out cross-validation scheme was employed
for the evaluation of the supervised methodologies, involving
a total of 107 experiments. In each experiment, 106 different
images sampled from the data set were used for training and
1 image not belonging to the training set, for testing. Table 1
presents the mean values of 	 obtained for each of the lung
fields by using the proposed methodology, the original ASM
and the preliminary unsupervised methodology proposed in
[12]. These results are also graphically illustrated in figure 5. It
can be noted that the proposed methodology outperforms both
previous methodologies. In addition, it exhibits a considerably
lower variance in the values of 	, which indicates robust
behaviour over the various unfavourable conditions included
in the utilized data set. The performance of the original ASM is
comparable to the performance of the methodology proposed
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Figure 8. Indicative delineation obtained by the proposed
methodology in a case of partially excluded lung field.

Table 1. Mean values and standard deviation (std) of 	 obtained for
the detection of the lung fields using the proposed and
state-of-the-art methodologies.

Lung field Left Right

Mean Std Mean Std

ASM supported by 90.6 2.7 92.3 1.2
selective thresholding
Methodology proposed in [12] 70.2 8.4 73.8 6.3
ASM 69.8 13.2 74.9 9.8

in [12] although the latter is unsupervised. This could be
attributed to the diversity of the radiographs in the problem
investigated. However, although theoretically the performance
of a supervised methodology such as the original ASM has the
potential to increase if more, representative, training samples
are provided, it is usually impractical to find such samples.

In order to point out the advantages of the proposed
methodology we have selected three indicative radiographs
from our data set and perform a qualitative comparison of the
three methodologies. The lung field delineations obtained by
their application on the left and right lung fields are illustrated
in figures 6 and 7, respectively.

Figures 6 and 7 show that the unsupervised methodology
proposed in [12] may result in implausible shapes. This is
more evident on the right lung fields, especially in the case
illustrated in figure 6(d), where the algorithm is misled by
edges originating from artefacts below the right lung field. On
the other hand, the original ASM could not prevent leaking of
the contour into the lung fields, especially in cases where the
boundaries of the lung fields are weakly defined (figures 6(h)
and (i), 7(h) and (i)). Moreover, it occasionally excludes
the region of the heart overlapping the right field boundaries
(figure 7(g), (h)).

The proposed methodology robustly achieves accurate
delineations, even in the presence of weakly defined
boundaries (figures 6(b) and (c), 7(b) and (c)), whereas it
does not exclude the region of the heart, where abnormalities
due to bacterial infections can also be present (figures 7(a)–
(c)). In addition, the a priori shape information included in
the proposed methodology allows the algorithm to achieve
a plausible delineation of the lung fields even if artefacts
(figure 6(a)) or dense external objects used for patient’s

monitoring and support (figures 6(b), (c)) are present.
Moreover, the proposed methodology is not affected by the
misalignment of the utilized images and it is capable of
producing plausible delineations even if part of the lung fields
is not included in the radiograph (figure 8)

4. Conclusions and future research perspectives

A novel methodology for the detection of the lung
field boundaries in chest radiographs was presented and
experimentally evaluated. It has been developed to cope
with weak and deformed lung field boundaries, which is
a prevalent situation in real clinical setups, especially in
intensive care. It has been inspired by two state-of-the-art
approaches [12, 16], which have been effectively combined
into a single, improved, model-based methodology featuring
both robustness and accuracy.

The results from its experimental evaluation of the
proposed method on a challenging data set of portable
radiographs obtained from critically ill patients with bacterial
pulmonary infections lead to the following conclusions:

• it is capable of detecting the lung field boundaries in
portable radiographs with high accuracy regardless of the
patients’ positioning, thus it provides an excellent means
for lung area or volume measurements [2];

• it generally remains unaffected by the presence of
abnormalities originating from bacterial pulmonary
infections;

• it outperforms the methodology proposed in [12] by
incorporating shape information about the lung fields,
since it produces plausible output even if parts of the
lung fields are excluded from the radiograph;

• it outperforms the original ASM approach by
incorporating the selective thresholding algorithm so as
to limit contour leaking;

• it is resistant to the presence of dense external objects used
for patient’s monitoring and support;

• as in [12] but unlike current approaches, it does not
exclude the overlapping region of the heart from the lung
fields, where abnormalities due to bacterial infections can
also be present.

The proposed method can be used for the measurement
of the area of the segmented lung fields. For example,
comparing the areas of the two lung fields could provide useful
information about the presence of atelectasis [3], whereas in
[2] it has been shown that area measurements of the lung
fields can be used for the estimation of the lung volumes.
Moreover, the extraction of measures quantifying the intensity
and the texture of the segmented regions could provide
useful information about the presence and the extent of lung
consolidations.

Future research perspectives include further improvement
of the proposed methodology by incorporating additional
features in the formulation of the model, analysis of the
detected lung fields for automatic assessment of pulmonary
bacterial infections and measurement of physiological
parameters. The evaluation of the proposed scheme in
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the presence of other kinds of abnormalities including
abnormalities attached to the lung field boundaries is also a
challenging perspective. This research will contribute to the
development of a multimodal data mining system for adverse
events detection, which will be capable of co-evaluating
radiographic findings of patients with bacterial infections
[28].
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