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PREFACE

The field of medical informatics has grown rapidly over the past decade
due to the advances in biomedical computing, the abundance of biomedical
and genomic data, the ubiquity of the Internet, and the general acceptance of
computing in various aspects of medical, biological, and health care research
and practice. This book aims to be complementary to several other popular
introductory medical informatics textbooks. The focus of this book is on the
new concepts, technologies, and practices of biomedical knowledge
management, data mining, and text mining that are beginning to bring useful
“knowledge” to biomedical professionals and researchers. The book will
serve as a textbook or reference book for medical informatics, computer
science, information systems, information and library science, and
biomedical, nursing, and pharmaceutical researchers and students.
Biomedical professionals and consultants in the health care industry will also
find the book a good reference for understanding advanced and emerging
biomedical knowledge management, data mining, and text mining concepts
and practices.

Readers of this book will learn the new concepts, technologies, and
practices developed in biomedical informatics through the comprehensive
review and detailed case studies presented in each chapter. Students and
researchers will broaden their knowledge in these new rescarch topics.
Practitioners will be able to better evaluate new biomedical technologies in
their practices.

SCOPE AND ORGANIZATION

The book is grouped by three major topic units. Unit I focuses on the
critical foundational topics of relevance to information and knowledge
management including: bioinformatics challenges and standards, security
and privacy, ethical and social issues, and biomedical knowledge mapping.
Unit II presents research topics of relevance to information and knowledge
management including: representations of biomedical concepts and
relationships, creating and maintaining biomedical ontologies, genomic
information retrieval, public access to anatomic images, 3D medical
informatics, and infectious disease informatics. Unit III presents emerging
biomedical text mining and data mining research including: semantic parsing
and analysis for patient records, biological relationships, gene pathways and
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metabolic networks, exploratory genomic data analysis, and joint learning
using data and text mining.

We have compiled a list of interesting and exciting chapters from major
researchers, research groups, and centers in medical informatics, focusing on
emerging biomedical knowledge management, data mining, and text mining
research. In particular, the three topic units consist of the following chapters,
organized in a logical sequence:

Unit I: Foundational Topics in Medical Informatics

Knowledge Management, Data Mining, and Text Mining in Medical
Informatics: The chapter provides a literature review of various
knowledge management, data mining, and text mining techniques and
their applications in biomedicine.

Mapping Medical Informatics Research: The chapter presents an
overview of key medical informatics researchers and research topics
by applying knowledge mapping techniques to medical informatics
literature and author citation data between 1994 and 2003.
Bioinformatics Challenges and Opportunities: The chapter presents a
number of exciting biomedical challenges and opportunities for
biologists, computer scientists, information scientists, and
bioinformaticists.

Managing Information Security and Privacy in Health Care Data
Mining: The chapter explores issues in managing privacy and security
of health care information used to mine data by reviewing their
fundamentals, components, and principles, as well as relevant laws
and regulations.

Ethical and Social Challenges of Electronic Health Information: The
chapter explores ethical and social challenges of health care
information including implications from biomedical data mining.

Unit II: Information and Knowledge Management

Medical Concept Representation: The chapter presents an overview
of biomedical concept characteristics and collections.

Characterizing Biomedical Concept Relationships: The chapter
examines innovative approaches utilizing biomedical concept
identification and relationships for improved information retrieval
and analysis.

Biomedical Ontologies: The chapter discusses challenges in creating
and aligning biomedical ontologies and examines compatibility issues
among several major biomedical ontologies.

Information Retrieval and Digital Libraries: The chapter presents
information retrieval and digital library techniques of relevance to
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biomedical research.

Modeling Text Retrieval in Biomedicine: The chapter presents
current challenges and example document retrieval systems that help
improve biomedical information access.

Public Access to Anatomic Images: The chapter presents an overview
and case study of several systems that provide Internet access to high
resolution Visual Human images and other associated anatomic
documents and knowledge.

3D Medical Informatics: The chapter describes the emerging
discipline of 3D medical informatics and suggests some of the future
research challenges.

Infectious Disease Informatics and Qutbreak Detection: The chapter
provides an overview of the emerging infectious disease informatics
field and describes relevant system design and components for
information sharing and outbreak detection.

Unit III: Text Mining and Data Mining

Semantic Interpretation for the Biomedical Research Literature: The
chapter discusses several semantic interpretation systems being
developed in biomedicine and presents two applications that exploit
semantic information in MEDLINE citations.

Semantic Text Parsing for Patient Records: The chapter focuses on
semantic methods that map narrative patient information to a
structured coded form.

Identification of Biological Relationships from Text Documents: The
chapter describes computational problems and their solutions in
automated extraction of biomedical relationships from text
documents.

Creating, Modeling, and Visualizing Metabolic Networks: The
chapter presents the FCModeler and PathBinder systems for
metabolic network modeling, creation, and visualization.

Gene Pathway Text Mining and Visualization: The chapter describes
techniques that automatically extract gene pathway relationships from
biomedical text and presents two case studies.

The Genomic Data Mine: The chapter focuses on the genomic data
mine consisting of text data, map data, sequence data, and expression
data, and concludes with a case study.

Exploratory Genomic Data Analysis: The chapter describes
approaches to exploratory genomic data analysis, stressing cluster
analysis.

Joint Learning Using Multiple Types of Data and Knowledge: The
chapter discusses joint learning research in biomedical domains and
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presents two representative case studies in protein function
classification and regulatory network learning,

CHAPTER STRUCTURE

The book aims to present its chapters in a manner understandable and
useful to general IT and biomedical students and professionals. Each chapter
begins with an overview of the field to allow readers to get a quick grasp of
the research landscape. Selected case studies are then provided to allow
readers to get a closer look at the implementation challenges and
opportunities.

Each chapter follows a consistent structure to ensure uniformity:

o Title

¢ Authors and Affiliations

¢ Abstract and Key Words

¢ Introduction: Introduces the importance and significance of the topic.

e Literature Review/Overview of the Field: A coherent and systematic
review of related works in the topic area suitable for non-experts.

¢ Case Studies/Examples: One or two detailed case studies or examples
of selected techniques, systems, implementations, and evaluations.

s Conclusions and Discussion

s Acknowledgement and References

¢ Suggested Readings: A list of essential readings (books or articles)
for readers who wish to gain more in-depth knowledge in this topic
area.

» Online Resources: A list of online resources that are relevant to the
topic, e.g., web sites, open source software, datasets, testbeds, demos,
ontologies, benchmark results, (evaluation) golden standards, etc.

¢ Questions for Discussion: A list of questions that are important to the
topic and that would be suitable for classroom discussions or future
research,

AUDIENCE

Most medical informatics departments in the United States and
international universities will be able to use this book as a senior-level or
graduate-level textbook. Selected medical, nursing, and pharmaceutical
schools in the United States and internationally will be able to use our book
in related health computing courses. Selected computer science and
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information systems departments could use this book in biomedical
computing or data mining courses. Information and library science
departments can also use the book in graduate-level digital library,
information retrieval, or knowledge management courses.

The book could serve as a textbook or reference book for medical
informatics, computer science, information and library science, and
information systems students; medical, nursing, and pharmaceutical
researchers; and bioinformatics/biomedical practitioners in the health care
industries. Biomedical professionals and consultants in the health care
industry including biotech companies will find the book a good reference for
understanding advanced and emerging biomedical knowledge management,
data mining, and text mining concepts and practices. Most of the medical
libraries and/or science/engineering libraries in the United States and other
countries will find our book a must-have for their patrons.
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KNOWLEDGE MANAGEMENT, DATA
MINING, AND TEXT MINING IN
MEDICAL INFORMATICS

Hsinchun Chen', Sherrilynne S. Fuller®, Carol Friedman®, and William
Hersh*

!Management Information Systems Department, Eller College of Management, University of
Arizona, Tucson, Arizona 85721; *University of Washington, Biomedical and Health
Informatics, Seattle, Washington 98195-7155; >Columbia University, Department of
Biomedical Informatics New York, New York 10032; *Oregon Health and Science University,
Medical Informatics and Clinical Epidemiology, Portland, Oregon 97239-3098

Chapter Overview

In this chapter we provide a broad overview of selected knowledge
management, data mining, and text mining techniques and their use in
various emerging biomedical applications. It aims to set the context for
subsequent chapters. We first introduce five major paradigms for machine
learning and data analysis including: probabilistic and statistical models,
symbolic learning and rule induction, neural networks, evolution-based
algorithms, and analytic learning and fuzzy logic. We also discuss their
relevance and potential for biomedical research. Example applications of
relevant knowledge management, data mining, and text mining research are
then reviewed in order including: ontologies; knowledge management for
health care, biomedical literature, heterogeneous databases, information
visualization, and multimedia databases; and data and text mining for health
care, literature, and biological data. We conclude the paper with discussions
of privacy and confidentiality issues of relevance to biomedical data mining.

Keywords

knowledge management; data mining; text mining
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1. INTRODUCTION

The field of biomedical informatics has drawn increasing popularity and
attention, and has been growing rapidly over the past two decades. Due to
the advances in new molecular, genomic, and biomedical techniques and
applications such as genome sequencing, protein identification, medical
imaging, and patient medical records, tremendous amounts of biomedical
research data are generated every day. Originating from individual research
efforts and clinical practices, these biomedical data are available in hundreds
of public and private databases, which have been made possible by new
database technologies and the Internet. The digitization of critical medical
information such as lab reports, patient records, research papers, and
anatomic images has also resulted in large amounts of patient care data.
Biomedical researchers and practitioners are now facing the “info-glut”
problem. Currently, the rate of data accumulation is much faster than the rate
of data interpretation. These data need to be effectively organized and
analyzed in order to be useful.

New computational techniques and information technologies are needed
to manage these large repositories of biomedical data and to discover useful
patterns and knowledge from them. In particular, knowledge management,
data mining, and text mining techniques have been adopted in various
successful biomedical applications in recent years. Knowledge management
techniques and methodologies have been used to support the storing,
retrieving, sharing, and management of multimedia and mission-critical tacit
and explicit biomedical knowledge. Data mining techniques have been used
to discover various biological, drug discovery, and patient care knowledge
and patterns using selected statistical analyses, machine learning, and neural
networks methods. Text mining techniques have been used to analyze
research publications as well as electronic patient records. Biomedical
entitiecs such as drug names, proteins, genes, and diseases can be
automatically extracted from published documents and used to construct
gene pathways or to provide mapping into existing medical ontologies.

In the following sections, we first survey the background of knowledge
management, data mining, and text mining research. We then discuss the use
of these techniques in emerging biomedical applications.
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2. KNOWLEDGE MANAGEMENT, DATA MINING,
AND TEXT MINING: AN OVERVIEW

Knowledge management, data mining, and text mining techniques have
been widely used in many important applications in both scientific and
business domains in recent years.

Knowledge management is the system and managerial approach to the
gathering, management, use, analysis, sharing, and discovery of knowledge
in an organization or a community in order to maximize performance (Chen,
2001). Although there is no universal definition of what constitutes
knowledge, it is generally agreed there is a continuum of data, information,
and knowledge. Data are mostly structured, factual, and oftentimes numeric,
and reside in database management systems. Information is factual, but
unstructured, and in many cases textual. Knowledge is inferential, abstract,
and is needed to support decision making or hypothesis generation. The
concept of knowledge has become prevalent in many disciplines and
business practices. For example, information scientists consider taxonomies,
subject headings, and classification schemes as representations of
knowledge. Consulting firms also have been actively promoting practices
and methodologies to capture corporate knowledge assets and organizational
memory. In the biomedical context, knowledge management practices often
need to leverage existing clinical decision support, information retrieval, and
digital library techniques to capture and deliver tacit and explicit biomedical
knowledge.

Data mining is often used during the knowledge discovery process and is
one of the most important subfields in knowledge management. Data mining
aims to analyze a set of given data or information in order to identify novel
and potentially useful patterns (Fayyad et al., 1996). These techniques, such
as Bayesian models, decision trees, artificial neural networks, associate rule
mining, and genetic algorithms, are often used to discover patterns or
knowledge that are previously unknown to the system and the users
(Dunham, 2002; Chen and Chau, 2004). Data mining has been used in many
applications such as marketing, customer relationship management,
engineering, medicine, crime analysis, expert prediction, Web mining, and
mobile computing, among others.

Text mining aims to extract useful knowledge from textual data or
documents (Hearst, 1999; Chen, 2001). Although text mining is often
considered a subfield of data mining, some text mining techniques have
originated from other disciplines, such as information retrieval, information
visualization, computational linguistics, and information science. Examples
of text mining applications include document classification, document
clustering, entity extraction, information extraction, and summarization.
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Most knowledge management, data mining, and text mining techniques
involve learning patterns from existing data or information, and are therefore
built upon the foundation of machine learning and artificial intelligence. In
the following, we review several major paradigms in machine learning,
important evaluation methodologies, and their applicability in biomedicine.

2.1 Machine Learning and Data Analysis Paradigms

Since the invention of the first computer in the 1940’s, researchers have
been attempting to create knowledgeable, learnable, and intelligent
computers. Many knowledge-based systems have been built for various
applications such as medical diagnosis, engineering troubleshooting, and
business decision-making (Hayes-Roth and Jacobstein, 1994). However,
most of these systems have been designed to acquire knowledge manually
from human experts, which can be a very time-consuming and labor-
intensive process. To address this problem, machine learning algorithms
have been developed to acquire knowledge automatically from examples or
source data. Simon (1983) defined machine learning as “any process by
which a system improves its performance.” Mitchell (1997) gives a similar
definition, which considers machine learning to be “the study of computer
algorithms that improve automatically through experience.” Although the
“machine learning” term has been widely adopted in the computer science
community, in the context of medical informatics, “data analysis” is more
commonly used to represent “the study of computer algorithms that improve
automatically through the analysis of data.” Statistical data analysis has long
been adopted in biomedical research.

In general, machine learning algorithms can be classified as supervised
learning or unsupervised learning. In supervised learning, training examples
consist of input/output pair patterns. Learning algorithms aim to predict
output values of new examples based on their input values. In unsupervised
learning, training examples contain only the input patterns and no explicit
target output is associated with each input. The unsupervised learning
algorithms need to use the input values to discover meaningful associations
or patterns.

Many successful machine learning systems have been developed over the
past three decades in the computer science and statistics communities. Chen
and Chau (2004) categorized five major paradigms of machine learning
research, namely probabilistic and statistical models, symbolic learning and
rule induction, neural networks, evolution-based models, and analytic
learning and fuzzy logic. We will briefly review research in each of these
areas and discuss their applicability in biomedicine.
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2.1.1 Probabilistic and Statistical Models

Probabilistic and statistical analysis techniques and models have the
longest history and strongest theoretical foundation for data analysis.
Although it is not rooted in artificial intelligence research, statistical analysis
achieves data analysis and knowledge discovery objectives similar to
machine learning. Popular statistical techniques, such as regression analysis,
discriminant analysis, time series analysis, principal component analysis,
and multi-dimensional scaling, are widely used in biomedical data analysis
and are often considered benchmarks for comparison with other newer
machine learning techniques.

One of the more advanced and popular probabilistic models in
biomedicine is the Bayesian model. Originating in pattern recognition
research (Duda and Hart, 1973), this method was often used to classify
different objects into predefined classes based on a set of features. A
Bayesian model stores the probability of each class, the probability of each
feature, and the probability of each feature given each class, based on the
training data. When a new instance is encountered, it can be classified
according to these probabilities (Langley et al., 1992). A variation of the
Bayesian model, called the Naive Bayesian model, assumes that all features
are mutually independent within each class. Because of its simplicity, the
Naive Bayesian model has been adopted in different domains (Fisher, 1987,
Kononenko, 1993). Due to its mathematical rigor and modeling elegance,
Bayesian learning has been widely used in biomedical data mining research,
in particular, genomic and microarray analysis.

A machine learning technique gaining increasing recognition and
popularity in recent years is the support vector machines (SVMs). SVM is
based on statistical learning theory that tries to find a hyperplane to best
separate two or multiple classes (Vapnik, 1998). This statistical learning
model has been applied in different applications and the results have been
encouraging. For example, it has been shown that SVM achieved the best
performance among several learning methods in document classification
(Joachims, 1998; Yang and Liu, 1999). SVM is also suitable for various
biomedical classification problems, such as disease state classification based
on genetic variables or medical diagnosis based on patient indicators.

2.1.2 Symbolic Learning and Rule Induction

Symbolic learning can be classified according to its underlying learning
strategy such as rote learning, learning by being told, learning by analogy,
learning from examples, and learning from discovery (Cohen and
Feigenbaum, 1982; Carbonell et al., 1983). Among these, learning from
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examples appears to be the most promising symbolic learning approach for
knowledge discovery and data mining. It is implemented by applying an
algorithm that attempts to induce a general concept description that best
describes the different classes of the training examples. Numerous
algorithms have been developed, each using one or more different
techniques to identify patterns that are useful in generating a concept
description. Quinlan’s ID3 decision-tree building algorithm (Quinlan, 1983)
and its variations such as C4.5 (Quinlan, 1993) have become one of the most
widely used symbolic learning techniques. Given a set of objects, ID3
produces a decision tree that attempts to classify all the given objects
correctly. At each step, the algorithm finds the attribute that best divides the
objects into the different classes by minimizing entropy (information
uncertainty). After all objects have been classified or all attributes have been
used, the results can be represented by a decision tree or a set of production
rules.

Although not as powerful as SVM or neural networks (in terms of
classification accuracy), symbolic learning techniques are computationally
efficient and their results are easy to interpret. For many biomedical
applications, the ability to interpret the data mining results in a way
understandable to patients, physicians, and biologists is invaluable. Powerful
machine learning techniques such as SVM and neural networks often suffer
because they are treated as a “black-box.”

2.1.3 Neural Networks

Artificial neural networks attempt to achieve human-like performance by
modeling the human nervous system. A neural network is a graph of many
active nodes (neurons) that are connected with each other by weighted links
(synapses). While knowledge is represented by symbolic descriptions such
as decision trees and production rules in symbolic learning, knowledge is
learned and remembered by a network of interconnected neurons, weighted
synapses, and threshold logic units (Rumelhart et al., 1986a; Lippmann,
1987). Based on training examples, learning algorithms can be used to adjust
the connection weights in the network such that it can predict or classify
unknown examples correctly. Activation algorithms over the nodes can then
be used to retrieve concepts and knowledge from the network (Belew, 1989;
Kwok, 1989; Chen and Ng, 1995).

Many different types of neural networks have been developed, among
which the feedforward/backpropagation model is the most widely used.
Backpropagation networks are fully connected, layered, feed-forward
networks in which activations flow from the input layer through the hidden
layer and then to the output layer (Rumelhart et al., 1986b). The network
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usually starts with a set of random weights and adjusts its weights according
to each learning example. Each learning example is passed through the
network to activate the nodes. The network’s actual output is then compared
with the target output and the error estimates are then propagated back to the
hidden and input layers. The network updates its weights incrementally
according to these error estimates until the network stabilizes. Other popular
neural network models include Kohonen’s self-organizing map and the
Hopfield network. Self-organizing maps have been widely used in
unsupervised learning, clustering, and pattern recognition (Kohonen, 1995);
Hopfield networks have been used mostly in search and optimization
applications (Hopfield, 1982). Due to their performances (in terms of
predictive power and classification accuracy), neural networks have been
widely used in experiments and adopted for critical biomedical classification
and clustering problems.

2.14 Evolution-based Algorithms

Evolution-based algorithms rely on analogies to natural processes and
Darwinian survival of the fittest. Fogel (1994) identifies three categories of
evolution-based algorithms: genetic algorithms, evolution strategies, and
evolutionary programming. Among these, genetic algorithms are the most
popular and have been successfully applied to various optimization
problems. Genetic algorithms were developed based on the principle of
genetics (Holland, 1975; Goldberg, 1989; Michalewicz, 1992). A population
of individuals in which each individual represents a potential solution is first
initiated. This population undergoes a set of genetic operations known as
crossover and mutation. Crossover is a high-level process that aims at
exploitation while mutation is a unary process that aims at exploration.
Individuals strive for survival based on a selection scheme that is biased
toward selecting fitter individuals (individuals that represent better
solutions). The selected individuals form the next generation and the process
continues. After some number of generations the program converges and the
optimum solution is represented by the best individual. In medical
informatics research, genetic algorithms are among the most robust
techniques for feature selection problems (e.g., identifying a subset of genes
that are most relevant to a disease state) due to their stochastic, global-search
capability.

2.15 Analytic Learning and Fuzzy Logic

Analytic learning represents knowledge as logical rules and performs
reasoning on such rules to search for proofs. Proofs can be compiled into
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more complex rules to solve similar problems with a smaller number of
searches required. For example, Samuelson and Rayner (1991) used analytic
learning to represent grammatical rules that improve the speed of a parsing
system.

While traditional analytic learning systems depend on hard computing
rules, there is usually no clear distinction between values and classes in the
real world. To address this problem, fuzzy systems and fuzzy logic have been
proposed. Fuzzy systems allow the values of False or True to operate over
the range of real numbers from 0 to 1 (Zedah, 1965). Fuzziness has been
applied to allow for imprecision and approximate reasoning. In general, we
see little adoptation of such approaches in biomedicine.

2.1.6 Hybrid Approach

As Langley and Simon (1995) pointed out, the reasons for differentiating
the paradigms are “more historical than scientific.” The boundaries between
the different paradigms are usually unclear and many systems have been
built to combine different approaches. For example, fuzzy logic has been
applied to rule induction and genetic algorithms (e.g., Mendes et al., 2001),
genetic algorithms have been combined with neural network (e.g.,
Maniezzo, 1994; Chen and Kim, 1994), and because neural network has a
close resemblance to probabilistic model and fuzzy logic they can be easily
mixed (e.g., Paass, 1990). It is not surprising to find that many practical
biomedical knowledge management, data mining, and text mining systems
adopt such a hybrid approach.

2.2 Evaluation Methodologies

The accuracy of a learning system needs to be evaluated before it can
become useful. Limited availability of data often makes estimating accuracy
a difficult task (Kohavi, 1995). Choosing a good evaluation methodology is
very important for machine learning systems development.

There are several popular methods used for such evaluation, including
holdout sampling, cross validation, leave-one-out, and bootstrap sampling
(Stone, 1974; Efron and Tibshirani, 1993). In the holdout method, data are
divided into a training set and a testing set. Usually 2/3 of the data are
assigned to the training set and 1/3 to the testing set. After the system is
trained by the training set data, the system predicts the output value of each
instance in the testing set. These values are then compared with the real
output values to determine accuracy.

In cross-validation, a data set is randomly divided into a number of
subsets of roughly equal size. Ten-fold cross validation, in which the data set
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is divided into 10 subsets, is most commonly used. The system is trained and
tested for 10 iterations. In each iteration, 9 subsets of data are used as
training data and the remaining set is used as testing data. In rotation, each
subset of data serves as the testing set in exactly one iteration. The accuracy
of the system is the average accuracy over the 10 iterations. Leave-one-out is
the extreme case of cross-validation, where the original data are split into »
subsets, where n is the size of the original data. The system is trained and
tested for » iterations, in each of which n—1 instances are used for training
and the remaining instance is used for testing.

In the bootstrap method, » independent random samples are taken from
the original data set of size n. Because the samples are taken with
replacement, the number of unique instances will be less than n. These
samples are then used as the training set for the learning system, and the
remaining data that have not been sampled are used to test the system (Efron
and Tibshirani, 1993).

Each of these methods has its strengths and weaknesses. Several studies
have compared them in terms of their accuracies. Hold-out sampling is the
easiest to implement, but a major problem is that the training set and the
testing set are not independent. This method also does not make efficient use
of data since as much as 1/3 of the data are not used to train the system
(Kohavi, 1995). Leave-one-out provides the most unbiased estimate, but it is
computationally expensive and its estimations have very high variances,
especially for small data sets (Efron, 1983; Jain et al., 1987). Breiman and
Spector (1992) and Kohavi (1995) conducted independent experiments to
compare the performance of several different methods, and the results of
both experiments showed ten-fold cross validation to be the best method for
model selection.

In light of the significant medical and patient consequences associated
with many biomedical data mining applications, it is critical that a
systematic validation method be adopted. In addition, a detailed, qualitative
validation of the data mining or text mining results needs to be conducted
with the help of domain experts (e.g., physicians and biologists), and
therefore this is generally a time-consuming and costly process.

3. KNOWLEDGE MANAGEMENT, DATA MINING,
AND TEXT MINING APPLICATIONS IN
BIOMEDICINE

Knowledge management, data mining, and text mining techniques have
been applied to different areas of biomedicine, ranging from patient record
management to clinical diagnosis, from hypothesis generation to gene
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clustering, and from spike signal detection to protein structure prediction. In
this section, we briefly survey some of the relevant research in the field,
covering the applications of learning techniques in knowledge management,
and data mining and text mining in biomedicine. More exhaustive and
detailed reviews and discussions of selected knowledge management, data
mining, and text mining techniques and applications in biomedicine can be
found in the subsequent chapters in this book.

3.1 Ontologies

Before we examine different biomedical applications, it is important to
understand the role of ontologies in knowledge management and knowledge
discovery, especially for text mining applications. An ontology is a
specification of conceptualization. It describes the concepts and
relationships that can exist and formalizes the terminology in a domain
(Gruninger and Lee, 2002). Ontologies are often used to facilitate knowledge
sharing between people, information processing, data mining,
communication between software agents, or other knowledge processing
applications.

Many ontologies have been developed in the biomedical field. The
Unified Medical Language System (UMLS), supported by the National
Library of Medicine (NLM), is a major resource for facilitating computer
programs to process and manage biomedical documents (McCray et al.,
1993; Humphreys et al., 1993; Campbell et al., 1998; Humphreys et al.,
1998). The UMLS offers three knowledge sources: the Metathesaurus, the
Semantic Network, and the Specialist Lexicon. The Metathesaurus is a large
multilingual controlled vocabulary database for biomedicine that allows
users to map biomedical names and textual terms to concepts (i.e., controlled
vocabulary terms), or to identify a set of different terms that are associated
with a single concept. The Metathesaurus is formed by integrating about 100
different controlled vocabularies including the Medical Subject Headings
(MeSH), a controlled vocabulary, and SNOMED-CT, a controlled clinical
vocabulary established by the College of American Pathologists. The
Semantic Network provides the categorization of the concepts in the
Metathesaurus and also the relationships among the concepts. The Specialist
Lexicon, designed to facilitate natural language processing for biomedical
text, is a lexicon containing syntactic definitions for both biomedical terms
and general English terms. These resources provide a framework and
ontology for knowledge representation in biomedicine. UMLS resources
have been widely used in biomedical language processing (Baclawski et al.,
2000; Bodenreider and McCray, 2003; Perl and Geller, 2003; Rosse and
Mejino, 2003; Zhang et al., 2003; Caviedes and Cimino, 2004). Several
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studies have investigated the mapping of concepts from the Metathesaurus to
the Semantic Network (Cimino et al., 2003; Rindflesch and Fiszman, 2003).

Besides biomedical documents, it is also important for researchers and
computers to understand the different terminologies for genes and proteins.
The Gene Ontology (GO) project is an effort to address the need for
consistent descriptions of gene products in different databases (The Gene
Ontology Consortium, 2000). Aiming to produce a dynamic, controlled
vocabulary of genes that can be applied to all eukaryotes, the project
includes many databases, including FlyBase (Drosophila), the
Saccharomyces Genome Database (SGD), the Mouse Genome Database
(MGD), and several other major genome databases. GO consists of three
structured ontologies that describe genes and gene products. GO terms are
also cross-referenced with indexes from other databases. Similarly, the
Human Genome Nomenclature (HUGO) specifies the standard, approved
names and symbols for human genes (Wain et al., 2002). Most of this data
can be searched on the Web as text files. There are numerous public
databases specifying gene and gene products that are associated with
multiple organisms as well as with specific model organisms.

3.2 Knowledge Management

Artificial intelligence techniques have been used in knowledge
management in biomedicine as ecarly as the 1970s, when the MYCIN
program was developed to support consultation and decision making
(Shortliffe, 1976). In MYCIN, the knowledge obtained from experts was
represented as a set of IF-THEN production rules. Systems of this type
would be later known as expert systems and become very popular in the
1980s. Expert systems relied on expert knowledge that was engineered into
it, which was a time-consuming and labor-intensive process.

The performance of MYCIN was encouraging and it even outperformed
human experts in some cases (Yu et al., 1979). Despite its early success, it
was never used in actual clinical settings. Other medical diagnostic systems
were also seldom used clinically. The reasons were two-fold. First, people
were skeptical about computer technologies and system performances.
Computers were not popular at that time, and many physicians did not
believe that computers could perform better than humans. Second,
computers were big, expensive machines in the 1970s. It was not feasible to
support complex programs like MYCIN on an affordable computer to
provide fast responses (Shortliffe, 1987). However, with the improved
performance and lower cost of modern computers and medical knowledge-
based systems, we believe there is a great opportunity for adopting selected
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knowledge management systems and technologies in the biomedical context,
in particularly, not as a human replacement (i.e., expert systems) but as a
biomedical decision making aide.

3.21 Knowledge Management in Health Care

It has been generally recognized that patient record management systems
is highly desired in clinical settings (Heathfield and Louw, 1999; Jackson,
2000; Abidi, 2001). The major reasons include physicians’ significant
information needs (Dawes and Sampson, 2003) and clinical information
overload. Hersh (1996) classified textual health information into two main
categories: patient-specific clinical information and knowledge-based
information, which includes research reported in academic journals, books,
technical reports, and other sources. Both types of information are growing
at an overwhelming pace.

Although early clinical systems were mostly simple data storage systems,
knowledge management capabilities have been incorporated in many of
them since the 1980s. For example, the HELP system, developed at the
Latter Day Saints Hospital in Utah, provides a monitoring program on top of
a traditional medical record system. Decision logic was stored in the system
to allow it to respond to new data entered (Kuperman et al., 1991). The
SAPHIRE system performs automatic indexing of radiology reports by
utilizing the UMLS Metathesaurus (Hersh et al., 2002). The clinical data
repository at Columbia-Presbyterian Medical Center (Friedman et al., 1990)
is another example of a database that is used for decision support (Hripcsak,
1993) as well as well as physician review. The clinical data repository at the
University of Virginia Health System is another example (Schubart and
Einbinder, 2000). In their data warehouse system, clinical, administrative,
and other patient data are available to users through a Web browser. Case-
based reasoning also has been proposed to allow physicians to access both
operative knowledge and medical literature based on their medical
information needs (Montani and Bellazzi, 2002). Janetzki et al. (2004) use a
natural language processing approach to link electronic health records to
online information resources. Other advanced text mining techniques also
have been applied to knowledge management in health care and will be
discussed in more detail later in the chapter.

3.2.2 Knowledge Management for Biomedical Literature
Besides clinical information, knowledge management has been applied to

research articles and reports, mostly via selected information retrieval and
digital library techniques. The National Library of Medicine (NLM) offers
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the PubMed service, which includes over 13 million citations for biomedical
articles from MEDLINE and other relevant journals. Many search systems
have been built to help users retrieve relevant biomedical research papers
and reports in database systems and over the Web. Automatic indexing and
retrieval techniques are often applied. For example, the Telemakus system
offers researchers a framework for information retrieval, visualization, and
knowledge discovery (Fuller et al., 2002; Fuller et al., 2004; Revere et al.,
2004). Using information extraction and visualization techniques, the system
allows researchers to search the database of research articles for a
statistically significant finding. The HelpfulMed system allows users to
search for biomedical documents from several databases including
MEDLINE, CancerLit, PDQ, and other evidence-based medicine databases
(Chen et al., 2003). The HelpfulMed database includes high-quality health
care-related Web pages collected from reputable sites using a neural-
network-based spreading activation algorithm (Chau and Chen, 2003). The
system also provides a term-suggestion tool called Concept Mapper, which
allows users to consult a system-generated thesaurus and the NLM’s UMLS
to refine their search queries (Houston et al., 1999; Leroy and Chen, 2001).

MARVIN is an example of medical information retrieval systems that
applied selected machine learning techniques (Baujard et al., 1998). Built on
a multi-agent architecture, the system filters relevant documents from a set
of Web pages and follows links to retrieve new documents. While
MARVIN’s filtering was based on simple document similarity metrics, other
algorithms such as maximum-distance, artificial neural networks, and
support vector machines have been applied to filtering medical Web pages
(Palakal et al., 2001; Chau and Chen, 2004). A Bayesian model based on
term strength analysis also has been used in biomedical document retrieval
(Wilbur and Yang, 1996). Shatkay et al. (2000; 2002) use a probabilistic
similarity-based search to retrieve biomedical documents that share similar
themes.

Other text mining techniques also have been used to facilitate the
management and understanding of biomedical literature. For example,
natural language processing and noun phrasing techniques have been applied
to extract noun phrases from medical documents (Tolle and Chen, 2000).
Noun phrases often convey more precise meanings than single terms and are
often more useful in further analysis. Named-entity extraction also has been
widely applied to automatically identify from text documents the names of
entities of interest (Chau et al., 2002). While mostly tested on general
entities such as people names, locations, organizations, dates, times, number
expressions, and email addresses (Chinchor, 1998), named-entity extraction
has been used to extract specific biomedical entities such as gene names,
protein names, diseases, and symptoms with promising results (Fukuda et
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al., 1998; Leroy et al., 2003). The extracted entities and relations are useful
for information retrieval and knowledge management purposes. Both entity
and relation extraction techniques will be discussed in more detail in our
review of text mining later in the article.

3.2.3 Accessing Heterogeneous Databases

In the post-genome era, biomedical data are now being generated at a
speed much faster than researchers can handle using traditional methods
(National Research Council, 2000). The abundance of genomic and
biomedical data has created great potential for research and applications in
biomedicine, but the data are often distributed in diverse databases. As
biological phenomena are often complex, researchers are faced with the
challenge of information integration from heterogeneous data sources
(Barrera et al., 2004). Many techniques have been proposed to allow
researchers and the general public to share their data more effectively. For
example, Sujansky (2001) proposes a framework to integrate heterogeneous
databases in biomedicine by providing a uniform conceptual schema and
using selected query-translation techniques. The BLAST programs are widely
used to search protein and DNA databases for sequence similarities
(Altschul et al., 1997). The MedBlast system, making use of BLAST, allows
researchers to search for articles related to a given sequence (Tu et al,
2004). Sun (2004) uses automated algorithms to identify equivalent concepts
available in different databases in order to support information retrieval. A
software agent architecture also has been proposed to help users retrieve data
from distributed databases (Karasavvas et al., 2004).

3.24 Information Visualization and Multimedia Information Access

Information (and knowledge) visualization for biomedical informatics is
critical for understanding and sharing knowledge. With the rapid increase in
computer speed and reduction in cost, graphical visualization has become
increasingly popular in biomedical applications. Visualization techniques
support display of more meaningful information and facilitate user
understanding. Maps, trees, and networks are among some of the most
popular information visualization representations. In the HelpfulMed system
discussed earlier, documents retrieved from different databases are clustered
using a self-organizing map algorithm (Kohonen, 1995) and a two-
dimensional map is generated to display the document clusters (Chen et al.,
2003). Bodenreider and McCray (2003) apply radial diagrams and
correspondence analysis techniques to visualize semantic groups in the
UMLS semantic network. Han and Byun (2004) use a three-dimensional
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display to visualize protein interaction networks. Virtual reality also has
been applied in visualizing metabolic networks (Rojdestvenski, 2003).

Three-dimensional displays, interactive visualization, multimedia
displays, and other advanced visualization techniques have been applied
successfully in many biomedical applications. The most prominent example
is the NLM’s Visible Human Project (Ackerman, 1991), which produces
three-dimensional representations of the normal male and female human
bodies by obtaining transverse CT, MR, and cryosection images of
representative male and female cadavers. The data is complete and
anatomically detailed as the male was sectioned at one millimeter intervals
and the female at one-third of a millimeter intervals. The data provides a
good testbed for medical imaging and multimedia processing algorithms and
has been applied to various diagnostic, educational, and research uses.

Because text processing algorithms cannot be applied to multimedia data
directly, image processing and indexing techniques are often needed for
selected biomedical applications. These techniques enable users to visualize,
retrieve, and manage multimedia data such as X-ray and CAT-scan images
more effectively and efficiently. For example, Yoo and Chen (1994)
developed a system to provide a natural navigation of patient data using
three-dimensional images and surface rendering techniques. Antani et al.
(2004) study different shape representation methods to measure the
similarity between X-ray images in order to enable users to manage and
organize these images. Their system allows users to retrieve vertebra shapes
significant to the pathology indicated in the query. Due to the increasing
popularity and maturity of medical imaging systems, we foresee a pressing
need for advanced multimedia processing and knowledge management
capabilities in biomedicine.

33 Data Mining and Text Mining

Data mining techniques have been widely used to find new patterns and
knowledge from biomedical data. While Bayesian models were widely used
in the early days, more advanced machine learning methods, such as
artificial neural networks and support vector machines, have been applied in
recent years. These techniques are used in different areas of biomedicine,
including genomics, proteomics, and medical diagnosis, among others. In
the following, we review some of the major applications of data mining and
knowledge discovery techniques in the field.
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3.3.1 Data Mining for Health care

Because of their predictive power, data mining techniques have been
widely used in diagnostic and health care applications. Data mining
algorithms can learn from past examples in clinical data and model the
oftentimes non-linear relationships between the independent and dependent
variables. The resulting model represents formalized knowledge, which can
often provide a good diagnostic opinion.

Classification is the most widely used technique in medical data mining.
Dreiseit]l et al. (2001) compare five classification algorithms for the
diagnosis of pigmented skin lesions. Their results show that logistic
regression, artificial neural networks, and support vector machines
performed comparably, while k-nearest neighbors and decision trees
performed worse. This is more or less consistent with the performances of
these classification algorithms in other applications (e.g., Yang and Liu,
1999). Classification techniques are also applied to analyze various signals
and their relationships with particular diseases or symptoms. For example,
Acir and Guzelis (2004) apply support vector machines in automatic spike
signal detection in ElectroEncephaloGrams (EEG), which can be used in
diagnosing neurological disorders related to epilepsy. Kandaswamy et al.
(2004) use artificial neural network to classify lung sound signals into six
different categories (e.g., normal, wheeze, and rhonchus) to assist diagnosis.

Data mining is also used to extract rules from health care data. For
example, it has been used to extract diagnostic rules from breast cancer data
(Kovalerchuk et al., 2001). The rules generated are similar to those created
manually in expert systems and therefore can be easily validated by domain
experts. Data mining has also been applied to clinical databases to identify
new medical knowledge (Prather et al., 1997; Hripcsak et al., 2002).

3.3.2 Data Mining for Molecular Biology

New sequencing technologies and low computation cost have resulted in
an overwhelming abundance of biological data that can be accessed easily
by researchers. It is not feasible to analyze these data manually, and the gap
between the amount of submitted sequence data and related annotations,
structures, or expression profiles is rapidly growing.

Data mining has begun to play an important role in addressing this
problem. Clustering is probably the most widely used data mining technique
for biological data. For example, clustering analysis is often applied to
microarray gene expression data to identify groups of genes sharing similar
expression profiles. Eisen et al. (1998) applied hierarchical clustering on the
Saccharomyces cerevisiae gene expression data and achieved promising
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results. Various other clustering algorithms also have been tested on gene
expression data, including k-means clustering (Herwig et al.,, 1999),
backpropagation neural networks (Sawa and Ohno-Machado, 2003), self-
organizing maps (Tamayo et al., 1999; Herrero et al., 2001), fuzzy clustering
(Belacel et al., 2004), expectation maximization (Qu and Xu, 2004), and
support vector machines (Brown et al., 2000). Qin et al. (2003) used the idea
of kernel (as in support vector machines) and combined it with hierarchical
clustering. Gene expression analysis also has been applied in cancer class
discovery and prediction (Golub et al., 1999; Hsu et al., 2003).

Besides clustering, other predictive data mining techniques also have
been applied to biomedical data. For example, neural network models have
been widely used in predicting protein secondary structure (Qian and
Sejnowski, 1988; Hirst and Sternberg, 1992). Increasingly, data mining
algorithms also have been used for prediction in various biomedical
applications including protein backbone angle prediction (Kuang et al.,
2004), protein domains (Nagarajan and Yona, 2004), biological effects
(Krishnan and Westhead, 2004), and DNA binding (Ahmad et al., 2004).
These predictive methods are often based on classification (supervised
learning) algorithms such as neural networks or support vector machines.

333 Text Mining for Literature and Clinical Records

Text mining has been widely used to analyze biomedical literature.
Because of the large amount of research articles in public databases and the
diversity of biomedical research, it is not uncommon that researchers
encounter some sequences or new genes that they have no knowledge about.
It is quite likely that some important relationships between biological entities
remain unnoticed because relevant data are scattered and no researcher has
linked them together (Swanson, 1986; Smalheiser and Swanson, 1998).
Given the large amount of published literature and that many researchers
only specialize in a small sub-domain (e.g., several particular genes), text
mining techniques could be invaluable in discovering new knowledge
patterns or hypotheses from the large amount of existing and new literature
in biomedicine (Yandell and Majoros, 2002).

Text mining for biomedical literature often involves two major steps.
First, it must identify biomedical entities and concepts of interests from free
text using natural language processing techniques. For instance, if we want
to study the relationship between a gene (e.g., p53) and a disease (e.g., brain
tumors), the names of both entities need to be correctly identified from the
relevant textual documents. Many text mining algorithms have been applied
to this problem. For example, Fukuda et al. (1998) use simple morphological
clues to recognize the names of proteins and other materials with high
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accuracy. Support vector machines have been used in entity extraction by
classifying words into the 24 entity classes in the GENIA corpus (Kazama et
al., 2002). Tanabe and Wilbur (2002) use part-of-speech tagging and a
Bayesian model to identify genes and proteins in text. Hatzivassiloglou et al.
(2001) compared three machine learning techniques, namely Naive Bayesian
model, decision trees, and inductive rule learning, to resolve the
classification of a biological entity (e.g., protein, gene, and RNA) after it
was identified. Their results showed that the three learning models had
comparable performance. Other studies have investigated the mapping
between abbreviations and full names such that these names will not be
considered by the system as different entities (Yu et al., 2002).

After the entity names have been identified, further analyses are
performed to see whether these entities have any relationships, such as gene
regulations, metabolic pathways, or protein-protein interactions (Blaschke et
al., 1999; Dickerson et al., 2003). Shallow parsing is often used to focus on
specific parts of the text to analyze predefined words such as verbs and
nouns (Leroy et al., 2003). Sekimizu et al. (1998) identified the set of most
frequently used verbs in a collection of abstracts and developed a set of rules
to identify the subjects and objects of the verbs. Pustejovsky et al. (2002)
used relational parsing and finite state automata to identify inhibit
relationships from biomedical text. The GENIES system, based on the
MedLEE parser (Friedman and Hripcsak, 1998), also has been used to
extract molecular pathways from texts (Friedman et al.,, 2001). The
Telemakus system extracts information by analyzing the headings and
surrounding texts of tables and figures (Fuller et al., 2002; Revere et al.,
2004). The Genescene system utilizes an ontology-based approach to
relation extraction by integrating the Gene Ontology, the Human Genome
Nomenclature, and the UMLS (Leroy and Chen, forthcoming). The system
combines natural language processing and co-occurrence analysis techniques
to identify terms and gene pathway relations from biomedical abstracts. The
EDGAR system extracts drugs, genes, and relationships from text
(Rindflesch et al., 2000). Wren et al. (2004) developed a system that uses a
random network model to rank the relationships identified from text.
Machine learning techniques also have been used to automate the process of
annotation. For instance, Kretschmann et al. (2001) used a C4.5 algorithm to
generate rules for keyword annotation in the SWISS-PROT database.

Text mining also has been applied to patient records and other clinical
documents to facilitate knowledge management. It adopts a process similar
to that of text mining from literature. For example, the system reported by
Harris et al. (2003) extracts terms from clinical texts. Using natural language
processing techniques, the MedLEE system (Friedman and Hripcsak, 1998)
has been applied to free-text patient records. It extracts useful entities in
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order to identify patients having tuberculosis or breast cancer based on their
admission chest radiographs and mammogram reports, respectively (Knirsch
et al., 1999; Jain and Friedman, 1997). Chapman et al. (2004) use a similar
text mining approach for automated fever detection from clinical records to
detect possible infectious disease outbreaks.

3.4 Ethical and Legal Issues for Data Mining

Medical records and biological data generated from human subjects
contain private and confidential information. Patients’ and human subjects’
data must be handled with great caution in order to protect their privacy and
confidentiality. Researchers do not automatically acquire the rights to use
patient or subject data for data mining purposes unless they obtain the
patients’ or subjects’ consent (Berman, 2002). In the US, the 1996 Health
Insurance Portability and Accountability Act (HIPAA) set the standards for
using and handling patient data in electronic format. The “Common Rule”
also specifies how to protect human subjects in federally-funded research. In
Europe, the EU Data Protection Directive specifies rules on handling and
processing any information about individuals. Violations of these standards
could result in legal responsibilities and penalties including fine and
imprisonment. Data mining results that are relevant to patients and subjects
need to be interpreted in the proper medical context and with the help of the
biomedical professionals.

In biomedical data mining, under most conditions patient data should not
be individually identifiable, i.e., no record should provide sufficient data to
identify the individual related to the record. These include anonymous data
(data collected without patient-identification information), anonymized data
(data collected with patient-identification information which is removed
later), or de-identified data (data with patient-identification information
encoded or encrypted) (Cios and Moore, 2002).

4. SUMMARY

In this chapter we provide a broad overview of selected knowledge
management, data mining, and text mining techniques and their use in
various emerging biomedical applications. However powerful they may be,
these techniques need to be used with great care in the biomedical
applications. One concern, as discussed earlier, is that medical data are often
sensitive and involve private and confidential information. It is important
that patients’ confidentiality and privacy are not compromised due to the
introduction of advanced knowledge management, data mining, and text
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mining technologies. Another caveat is that findings generated from selected
machine learning techniques need to be interpreted carefully. Knowledge
and patterns discovered by computers need to be experimentally or clinically
validated in order to be considered rigorous, just like any knowledge
generated by human. Errors and incorrect associations could propagate
quickly through electronic media, especially when large databases and
powerful computational techniques are involved.

Nonetheless, these new knowledge management, data mining, and text
mining techniques are changing the way new knowledge is discovered,
organized, applied, and disseminated. With the increasing speed of
computers, the connectivity of the Internet, the abundance of biomedical
data, and the advances in medical informatics research, we believe we will
continue to generate, manage, and harvest biomedical knowledge effectively
and efficiently, allowing us to better understand the complex biological
processes of life and assist in addressing the well-being of human kind.
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This excellent introductory book provides a comprehensive overview of the applications of
computer and information technologies in health care and biomedicine.
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Press.
The book describes bioinformatics from a technical perspective and explains in detail the
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This introductory book includes useful reviews of various machine learning techniques and
their applications.

Chen, H., Lally, A. M., Zhu, B., and Chau, M. (2003). “HelpfulMed: Intelligent Searching for
Medical Information over the Internet,” Journal of the American Society for Information
Science and Technology, 54(7), 683-694, 2003.

This article provides an overview of medical information retrieval techniques on the
Internet, including Web crawling, co-occurrence analysis, and document visualization.

Eisen, M., Speliman, P., Brown, P., and Botstein, D. (1998). “Cluster Analysis and Display of
Genome-wide Expression Patterns,” in Proceedings of the National Academy of Sciences,
95, 14863-14868.

This article presents a study on performing clustering techniques on gene expression data.

Swanson, D. R. (1986). “Fish Oil, Raynaud’s Syndrome, and Undiscovered Public
Knowledge,” Perspectives in Biology and Medicine, 30(1), 7-18.
This article describes the interesting story of how public knowledge could remain
“undiscovered” as there were no researchers linking the literature in two separate fields,
and how the computer was used to discover such knowledge.

Yandell, M. D. and Majoros, W. H. (2002). “Genomics and Natural Language Processing,”
Nature Reviews Genetics, 3(8), 601-610.
This article reviews research studies that apply natural language processing and text
mining techniques in genomics.

ONLINE RESOURCES

National Center for Biotechnology Information (NCBI)  http://www.ncbi.nlm.nih.gov/
NCB]I, a division of the National Library of Medicine, provides access to many excellent
molecular biology resources, including GenBank (an annotated collection of all publicly
available DNA sequences), Entrez (a cross-database search engine), and BLAST (a
sequence similarity search engine).

Unified Medical Language Systems (UMLS)
http://www.nlm.nih.gov/research/umls/
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Developed by the Lister Hill Center of the NLM, UMLS provides a large-scale and
widely-used medical ontology for information retrieval and text mining applications in
biomedicine. The three major components include the Metathesaurus, the Semantic
Network, and the Specialist Lexicon.

ExPASy Proteomics Server
http://us.expasy.org/
The ExPASy (Expert Protein Analysis System) proteomics server is hosted by the Swiss
Institute of Bioinformatics (SIB). It focuses on the analysis of protein sequences and
structures. It provides access to Swiss-PROP, TrEMBL, and other proteomics and
sequence analysis tools and resources.

Protein Data Bank
http://www.rcsb.org/pdb/
The Protein Data Bank is the single worldwide repository for 3-D biological
macromolecular structure data.

European Bioinformatics Institute (EBI)
http://www.ebi.ac.uk/
EBI is the European equivalent of NCBI and is part of the European Molecular Biology
Laboratory (EMBL). It manages several biological databases including: nucleic acid,
protein sequences, and macromolecular structures.

GenomeNet
http://www.genome.jp/
Developed in Japan, GenomeNet includes several databases for genome research and
molecular and cellular biology. Its services include the Kyoto Encyclopedia of Genes and
Genomes (KEGG) and the DBGET Integrated Database Retrieval System, among others.

GenomeWeb
http://www.rfcgr.mre.ac.uk/GenomeWeb/
This site provides a comprehensive directory of genome-related Web sites and information.

Saccharomyces Genome Database (SGM)
http://www.yeastgenome.org
This database contains information about the molecular biology and genetics of the yeast
Saccharomyeces cerevisiae. Commonly known as the baker's or budding yeast, its genome
has been widely studied in bioinformatics.

The Visible Human Project
http://www.nlm.nih.gov/research/visible/
This site includes a detailed description of NLM’s Visible Human Project, instructions on
how to obtain the data, and some other related resources and conference information.

The UCI Machine Learning Repository
http://www.ics.uci.edu/~mlearn/MLRepository.html
This repository at the University of California, Irvine, contains data in many different
domains (including biomedicine) that have been widely used to test and compare machine
learning techniques.

WEKA
http://www.cs.waikato.ac.nz/ml/weka/
Developed at the University of Waikato in New Zealand, WEKA is an open-source
machine learning software written in Java, containing a wide range of useful algorithms.
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QUESTIONS FOR DISCUSSION

1.

What are the similarities and differences between bioinformatics and
medical informatics? How can research in the two areas be beneficial to
each other?

What is an intelligent system? Can an intelligent system be more
intelligent than humans? What are the important characteristics of an
intelligent system in biomedicine?

Discuss the characteristics of major machine learning paradigms and
their applicability in biomedicine.

Explain what knowledge management is and why it is useful for medical
informatics, What are some of the good examples of biomedical
knowledge management systems? How can a knowledge management
system be created and used in industry?

Please compare the knowledge discovery process by computers with that
in humans. Do you think that data mining and text mining techniques
have begun to change the way that research is done in biomedicine?

What are the social, ethical, and legal concerns for future biomedical
knowledge management, data mining, and text mining applications?
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Chapter Overview

The ability to create a big picture of a knowledge domain is valuable to both
experts and newcomers, who can use such a picture to orient themselves in
the field’s intellectual space, track the dynamics of the field, or discover
potential new areas of research. In this chapter we present an overview of
medical informatics research by applying domain visualization techniques to
literature and author citation data from the years 1994-2003. The data was
gathered from NLM’s MEDLINE database and the ISI Science Citation
Index, then analyzed using selected techniques including self-organizing
maps and citation networks. The results of our survey reveal the emergence
of dominant subtopics, prominent researchers, and the relationships among
these researchers and subtopics over the ten-year period.

Keywords
information visualization; domain analysis; self-organizing map; citation
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1. INTRODUCTION

The rapid evolution of medical informatics and its subdomains makes it
crucial for researchers to stay abreast of current developments and emerging
trends. This task is made difficult, however, not only by the large amounts
of available information, but by the interdisciplinary nature of the field.
Relevant information is spread across diverse disciplines, posing a particular
challenge for identifying relevant literature, prominent researchers, and
research topics (Sittig, 1996, Andrews, 2002, Vishwanatham, 1998). Any
attempt to understand the intellectual structure and development of the field
must furthermore consider all of the contributing disciplines; as Bérner et al.
(2003) point out, "researchers looking at the domain from a particular
discipline cannot possibly have an adequate understanding of the whole." In
this chapter we report the results of an analysis of the medical informatics
domain within an integrated knowledge mapping framework. We provide a
brief review of the literature on knowledge mapping, then describe in detail
the analysis design and results of our medical informatics literature mapping
with three types of analysis: basic analysis, content map analysis, and
citation network analysis.

2. KNOWLEDGE MAPPING: LITERATURE
REVIEW

Domain analysis is a subfield of information science that attempts to
reveal the intellectual structure of a particular knowledge domain by
synthesizing disparate information, such as literature and citation data, into a
coherent model (White and McCain 1997, Small 1999). Such a model
serves as an overview to newcomers to the field, and reveals the field's
dynamics and knowledge transfer patterns to experts.

A significant portion of domain analysis research has been focused on
citation analysis. Historically, a great deal of manual effort was needed to
gather citation data for this type of analysis by combining different literature
resources and tracing through the citations. A manual analysis approach,
however, is inherently subjective, and is impractical for the vast amounts of
time-sensitive information available for most domains today (Bémer et al.,
2003). Digital citation indexes such as Researchindex (formerly CiteSeer)
developed by NEC Research Institute (Lawrence et al. 1999) and IST's
Science Citation Index (SCI) eliminate the need for manual data collection,
but still lead to large amounts of citation data that are difficult to analyze
using traditional techniques. Recent developments in the field of domain
visualization attempt to alleviate this citation information overload problem
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by applying information visualization techniques to produce visual (and
often interactive) representations of the underlying intellectual structure of
the domain reflected in the large-scale citation data. A wide range of
techniques have been applied to citation visualization, including clustering
display based on co-citation (Small, 1999), the “Butterfly” display
(Mackinlay et al., 1999), Pathfinder network scaling (Chen and Paul, 2001),
and hyperbolic trees (Aureka, 2002).

Content, or “semantic,” analysis is another important branch of domain
analysis. This type of analysis relies on natural language processing
techniques to analyze large corpora of literature text. Techniques ranging
from simple lexical statistics to key phrase co-occurrence analysis to
semantic and linguistic relation parsing are applied to reveal topic
distribution and associations within the domain. To alleviate the similar
information overload problem as for the citation data, many visualization
techniques have been developed to produce content maps of large-scale text
collections. Prominent examples include ThemeScape and Galaxies (Wise et
al., 1995), the underlying techniques of which are multidimensional scaling
and principle component analysis, and WebSOM (Honkela et al., 1997) and
ET Map (Chen et al., 1996) which are based on the self-organizing map
algorithm.

The application of visualization techniques to both citation and content
analysis is consistent with the exploratory nature of domain analysis and
forms the foundation of knowledge (domain) mapping. These visualization
results provide valuable support for users’ visual exploration of a scientific
domain to identify visual patterns that may reflect influential researchers and
studies, emerging topics, hidden associations, and other findings regarding
the domain.

The effectiveness of domain analysis specifically in medical informatics
is demonstrated by surveys by Sittig (1996) and Vishwanathan (1998), who
used citation-based analyses to identify core medical informatics literature,
and by Andrews (2002), who uses author co-citation analysis (ACA) to
create multidimensional maps of the relationships between influential
authors. We have also seen large-scale content mapping of the general
medical literature (Chen et al., 2003), but not specifically of the medical
informatics field.

In this study, we adopt the knowledge mapping framework proposed by
Huang et al. (2003) that leverages large-scale visualization tools for
knowledge mapping in fast-evolving scientific domains. Under this
framework we perform three types of analysis -- basic analysis, content map
analysis, and citation network analysis -- to provide a multifaceted mapping
of the medical informatics literature. Through analyzing documents and
citation information we identify influential researchers in the field and the
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nature of their contributions, track knowledge transfer among the
researchers, and identify domain subtopics and their trends of development.
The results of our study present a comprehensive picture of medical
informatics over the past ten years.

3. RESEARCH DESIGN

The Huang et al. (2003) framework proposes a generic set of analytical
units, three analysis types, and various visualization technologies for
representing the results of patent analysis. The analytical units include
geographical regions, industries/research fields, sectors, institutions,
individuals, and cross-units. Our medical informatics analysis focuses on
individuals (authors), and research fields (subtopics) as units of analysis.
We rely on two visualization techniques: self-organizing maps (SOMs) for
revealing semantic grouping of topics, authors, and development trends; and
citation networks for exploring knowledge transfer patterns. The details of
our application of the Huang et al. three-pronged analysis are outlined
below.

3.1 Basic Analysis

This first type of analysis provides "performance evaluation,” namely, a
measure of the level of an analytical unit's contribution to the field. Two
types of measures are used for the contribution analysis, the productivity (or
quantity) measures and impact (or quality) measures. We perform basic
analysis at the author level to identify major researchers in medical
informatics. The most prolific authors are determined by the number of
publications attributed to them in our data set, with the highest-ranking
authors deemed the most productive. A simple and commonly-used author
impact measure is the number times an author is cited by others. The idea is
that citation implies an acknowledgement of authority on the part of the
citing author to the cited one, and that an author's citation level reflects the
community's perceived value of their contribution to the field. This idea is
supported by a substantial amount of academic literature on citation
indexing. Garfield's 1955 vision of an interdisciplinary science citation
index introduced the concept of citation as an impact factor indicator, and
the concept has since been applied by the Researchlndex in its citation
context tool (Lawrence et al. 1999), Liu et al. (2004) in their AuthorRank
indicator, and several domain analysis surveys (Andrews, 2002,
Vishwanatham, 1998, Sittig, 1996, White and McCain, 1997, Chen et al.,
2001, Noyons et al., 1999).
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We expand on simple citation count by assigning authors an Authority
score based on the HITS algorithm (Kleinberg, 1998), which was intended
for identifying important web pages based on hyperlink citation structure.
Following the formulation of the original HITS algorithm, two types of
scores are defined for each author in our author citation analysis: an
Authority score and a Hub score. An author with a high Authority score has
a significant impact/influence on other authors, meaning his/her work has
been extensively cited (directly and indirectly) by other authors. A high Hub
score, on the other hand, indicates that an author’s work has cited many
influential studies. The Authority and Hub scores mutually reinforce each
other: authors citing influential authors (with high Authority scores) tend to
have high Hub scores; authors cited by authors who have cited influential
authors (with high Hub scores) tend to be influential (with high Authority
scores). With an author citation data set, we initialize the Authority scores
as the number of times the authors are cited by others and the Hub scores as
the number of times the authors cite others. The two scores are then
computed following an iterative updating procedure:

Authority Score(p) = Z Hub Score(g)

q hascited p

Hub Score(q) = ) Authority Score(p)
¢ has cited p
The Authority score we use for our study is obtained with three iterations of
score updating. It essentially incorporates the number of citations received
by an author, the authors citing him/her, authors citing those citing authors,
and so on.

3.2 Content Map Analysis

Content analysis is used in the Huang et al. framework to identify and
track dominating themes in a field. Analyzing the content of the work
produced by a specific analytical unit also provides valuable information on
what subdisciplines that unit contributes to, and how the contribution
changes over time. This approach augments traditional citation-based
performance indicators (such as author co-citation) by operating directly on
literature content, instead of inferring content from relationships between
analytical units.

We use the self-organizing map (SOM) algorithm to perform content
mapping of the medical informatics literature. Initially proposed by Kohonen
(1990), the SOM algorithm analyzes similarities of entities with a large
number of attributes and produces a map of the entities, in which the
geographical distances correspond to the attribute-based similarities. In our
study, we perform content mapping of papers and authors.
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To generate the content maps, the text of each paper (a combination of
titles and abstracts, in our study) is analyzed using the Arizona Noun Phraser,
which identifies the key noun phrases based primarily on linguistic patterns
(Tolle and Chen, 2000). These noun phrases, representing key concepts, are
then used to represent the content of a paper by forming a binary vector,
each element of which represents the occurrence of a particular noun phrase.
The self-organizing map algorithm (SOM) typically produces a two-
dimensional map to represent the content distribution of a set of documents.
Each location in the map, that is, a node in a two-dimensional grid, is also
assigned a key phrase vector, like the papers. These map node vectors are
typically real-valued (for example, between 0 and 1) and initialized with
random values. For each input paper, the SOM algorithm identifies a
winning node that has the largest vector similarity measure to the input paper.
The vector values of this winning node and its close neighbors are then
updated to be more similar to the input paper vector. With all input papers
used to perform the node vector updating process, the final configuration of
the map, that is, the vector values of all map nodes, presents a content
distribution of the input papers. The papers then obtain their locations in the
map by finding the map nodes with the largest vector similarity measures. A
map of authors is similarly generated by forming a key phrase vector for
each author. The key phrase vector is created by combining the vectors for
an author’s papers, then used as input to the SOM algorithm in the same way
as paper vectors.

We applied the multilayer SOM algorithms developed by Chen et al.
(1995) to produce topic maps by adding a hierarchical topic region layer on
top of a map of papers. We also perform longitudinal mapping, that is, a
series of chronically sequential SOMs, to reveal the evolution of medical
informatics subdisciplines. From the maps, a researcher can observe what
disciplines exist at different points in time, when particular disciplines
emerge, and their rate of growth and decline. A domain expert can
potentially use such longitudinal maps to forecast emerging trends (Bérner et
al., 2003).

We also created an author map using the SOM algorithm. Based on the
positions of the authors in the map, we identify groups of authors that had
papers with similar contents.

3.3 Citation Analysis

Visualizing citation data as a network is a classic method for intuitively
displaying knowledge transfer patterns among analytical units. Citation
networks consist of nodes representing the analytical units, with directional
links representing citations between them. When the analytical unit is an
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author, such networks can be used to quickly identify strong communication
channels in the domain, and the structure of those channels. Since citation
between authors implies a human judgment that a work by the cited author is
relevant to one by the citing author, frequently-occurring citations can
indicate that two authors work in a similar field. Hence, citation networks
can be used to identify communities of researchers. For this study, we
gathered citation information from ISI's Science Citation Index for the years
1994-2003 for a core group of researchers identified by the basic analysis.
We then wuse the freely-available graphing program NetDraw
(http://www.analytictech.com/netdraw.htm) to visualize the result.

4. DATA DESCRIPTION

Andrews (2002) points out that an author co-citation analysis is only as
good as the analyst's choice of authors. The same can be said for domain
analysis in general. We used a number of measures to collect as
comprehensive a data set for our survey as possible. First, we used NLM's
expansive MEDLINE database of biomedical literature to provide source
documents for our analysis. We then used four criteria to locate documents
in MEDLINE relevant to medical informatics. For an article to be included
in our collection, at least one of the following had to be true:

1. The article was published in one of 22 prominent journals in the medical
informatics domain. These journals consist of the 18 identified by
Andrews (2002) and additionally two journals and two conference
proceedings that are frequently cited in (Shortliffe et al., 2000). The
complete list of journal titles is given in Table 2-1.

2. The article abstract or title contains one of the selected medical
informatics keywords listed in Table 2-2.

3. The article is indexed by MEDLINE under the MeSH term "Medical
Informatics." MeSH is widely acknowledged to be an authoritative
indexing system.

4. The article was authored by a fellow of the American College of Medical
Informatics (ACMI), a group of scholars who are determined by their
peers to have made “significant and sustained contributions to the field”
(http://www.amia.org/acmi/acmi.html).

The use of ACMI fellows as a test set on which to perform domain
analysis is supported by Andrews (2002), who also cites the use of ACMI by
Greenes and Siegel (1987).
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Using the above criteria, we identified 24,495 medical informatics
articles in MEDLINE, as of August 2004. Restricting our data set to articles
published during our ten-year test bed, 1994-2003, yielded 16, 964 articles.

Table 2-1. Prominent medical informatics journals included in our study.

Journal Name

Artificial Intelligence in Medicine

Biomedizinische Technik (Biomedical Engineering)

Computer Methods and Programs in Biomedicine

Computers, Informatics, Nursing: CIN

IEEE Engineering in Medicine and Biology Magazine

IEEE Transactions on Information Technology in Biomedicine

International Journal of Medical Informatics

International Journal of Technology Assessment in Health Care

Journal of Biomedical Informatics

Journal of Cancer Education: The Official Journal of the American Association for Cancer
Education

Journal of Evaluation in Clinical Practice

Journal of the American Medical Informatics Association (JAMIA)

M.D. Computing: Computers in Medical Practice

Medical and Biological Engineering and Computing

Medical Informatics and the Internet in Medicine

Medical Decision Making

Methods of Information in Medicine

Proceedings of the American Medical Informatics Association (AMIA) Annual Fall
Symposium

Proceedings of the Annual Symposium on Computer Applications in Medical Care

Statistical Methods in Medical Research

Statistics in Medicine

Table 2-2. Keywords used to identify MEDLINE
documents relevant to medical informatics.

Keyword

Medical informatics

Clinical informatics

Nursing informatics

Health informatics

Bioinformatics

Biomedical informatics

As White and McCain (1997) state, "we wished to let 'the field' dictate its
top authors rather than choosing them ourselves." This means that in
addition to using ACMI fellows for our analysis, we allowed our document
set to determine the remainder of our author set: anyone identified as an
author of an article in the medical informatics collection was included in our
collection of authors. A count of the most frequently-occurring names in the
collection determined the most prolific authors in the field, as listed in Table
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2-3. These authors comprise the “core” set used to gather citation data from
the Science Citation Index (SCI). As of this study, SCI is only searchable
through the online Web of Science. A "citation search" was manually
performed in the Web of Science for each author in our core set, to gather
information on who has cited them, and who they cite. This search yielded
some commonly-cited names that are not included in our core set, which can
be seen in Tables 2-4 and 2-5. Together the core set and frequently-cited
names list some of the most recognizable and influential researchers in the
field, and citation information for all of these authors was used for our
citation analysis.

S. RESULTS
=H | Basic Analysis

Our basic analysis focused on authors as the analytical unit, with the
results presented in Tables 2-3, 2-4, and 2-5. These tables offer different
perspectives - productivity and impact factor, respectively - on the most
highly contributing researchers in the domain. Table 2-3 lists the 96 most
prolific authors, that is, those with the most publications attributed to them in
our data set. James J. Cimino at Columbia University tops the list with 62
publications, followed closely by Arie Hasman at the University of
Maastricht in the Netherlands, Robert A. Greenes of Harvard Medical
School, and Perry L. Miller at Yale University. The citation search
described in Section 4 above yielded some frequently cited authors that do
not appear in the core set shown in Table 2-3. Citation counts were gathered
for these authors in addition to those in the core set, and the most frequently
cited of the combined list are shown in Table 2-4. Some authors of note in
the list that do not appear among the core authors in Table 2-3 are Lucian L.
Leape at the Harvard School of Public Health, Mor Peleg at Stanford
University, and Suzanne Bakken at Columbia University.

Table 2-5 ranks the authors in the combined list by their citation-based
Authority scores. James Cimino is again among the five highest scoring in
this table, along with Mark A. Musen at Stanford University, Edward H.
Shortliffe at Columbia University (formerly at Stanford), George Hripcsak at
Columbia, and Paul D. Clayton, who was at Columbia until 1998 and is
currently Chief Medical Informatics Officer at Intermountain Health Care in
Salt Lake City. The latter four authors are shown in Table 2-3 to have
approximately half the number of publications as the most prolific author,
yet their Authority scores indicate the significant impact of their
publications.
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Table 2-3. Publication counts for prolific authors.

Author name Number of Author name Number of
publications in publications in
collection collection

Cimino, James J. 62 Van der Lei, J. 22

Hasman, A. 52 Kahn, Michael G. 22

Greenes, Robert A. 45 Friedman, Carol 22

Miller, Perry L. 44 Rector, Alan L. 22

Haux, Reinhold 42 Whitehead, J. 21

Musen, Mark 39 Cerutti, S. 21

Patel, Vimla L. 38 Tierney, William M. 21

Safran, Charles 37 Warner, Homer R. 21

Barnett, Octo G. 35 Habbema, J. D. 20

Stefanelli, Mario 35 Friedman, Charles P. 20

Miller, Randolph A. 31 Beck, J. Robert 20

Shortliffe, Edward 31 Royston, P. 19

Van Bemmel, J. H. 30 Zhou, X. H. 19

Haug, Peter 29 McDonald, Clement 19

Hripesak, George 29 Wigton, Robert S. 19

Fagan, Larry 29 Shahar, Y. 18

Kohane, Issac 28 Fieschi, M. 18

Weinstein, M. C. 27 Lui, K. J. 18

Degoulet, Patrice 27 Haynes, R. Brian 18

Bates, David W. 27 Brinkley, James 18

Lenert, Leslie A. 27 Brennan, Patricia F. 18

Durand, L. G. 26 Kuperman, Gilad J. 18

Timpka, T. 26 Stead, William W. 18

Chute, Christopher 26 Tuttle, Mark S. 18

Clayton, Paul D. 26 Pinciroli, F. 17

Johnson, Stephen B. 26 Bolz, A. 17

Sittig, Dean F. 26 Spiegelhalter, D. J. 17

Greenland, S. 25 Simon, R. 17

Pfurtscheller, G. 25 Mitchell, Joyce A. 17

Hersh, William R. 25 Ohno-Machado, 17

Lucila

Donner, A. 24 Tang, Paul C. 17

Thompson, S. G. 24 Tu, Samson W, 17

Huff, Standley M. 24 Van Ginneken, AM. 16

Gardner, Reed M. 24 Déssel, O. 16

Dudeck, Joachim 24 Freedman, L. S. 16

Nadkarni, Prakash 24 Groth, T. 16

Teich, Jonathan M. 24 Meinzer, H. P. 16

Bellazzi, R. 23 Altman, Russ B. 16

Cooper, Greg 23 Reggia, James A. 16

Scherrer, Jean-Raoul 23 Slack, Warner V. 16

Wigertz, Ove 23
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Table 2-4. Citation counts for frequently cited authors.

Author name Times cited by Author name Times cited by
authors in medical authors in
informatics medical
collection informatics

collection

Bates, D. W, 989 Greenes, R. A. 142

Cimino, JI. J. 691 Lui, K. J. 137

McDonald, C. J. 359 Giuse, D. A. 135

Patel, V. L. 356 Neuper, C. 134

Hripesak, G. 331 McCray, A. T. 131

Pfurtscheller, G. 306 Hersh, W. R. 129

Friedman, C. 301 Rind, D. M. 128

Miller, R. A. 289 Riva, A. 127

Musen, M. A. 287 Montani, S. 123

Greenland, S. 280 Huff, S. M. 123

Bellazzi, R. 243 Kuhn, K. A. 123

Overhage, J. M. 225 Johannesson, M. 122

Leape, L. L. 219 Kaplan, B. 120

Peleg, M. 215 Baud, R. H. 119

Hasman, A. 206 Lenert, L. A. [19

Bakken, S. 196 Combi, C. 117

Campbell, K. E. 188 Fox, J. 117

Chute, C. G. 183 Zeng, Q. 114

Shahar, Y. 180 Das, A. K. 114

Haux, R. 175 Degoulet, P. 113

Kushniruk, A. W. 167 Perl, Y. 113

Elkin, P. L. 167 Spackman, K. A. 112

Zhou, X. H. 164 Johnston, M. E. 112

Kuperman, G. J. 162 Safran, C. 112

Boxwala, A. A. 157 Owens, D. K. 111

Simon, R. 155 Andreassen, S. 111

Evans, R. S. 152 Friedman, C. P. 111

Table 2-5. Authority score ranking for frequently cited authors.

Author name Authority score Author name Authority score

Clayton, P. D. 4.06 Tierney, W. M. 1.93

Cimino, J. J. 4.00 Tuttle, M. S. 1.89

Hripesak, G. 3.86 Johnston, M. E. 1.84

Musen, M. A. 3.66 Hasman, A. 1.80

Shortliffe, E. H. 3.58 Brennan, P. F. 1.77

Safran, C. 3.54 McDonald, C. J. 1.63

Barnett, G. O. 3.33 Miller, P. L. 1.58

Greenes, R. A. 3.31 Shea, S. 1.57

Campbell, K. E. 3.01 Stefanelli, M. 1.56

Hersh, W. R. 2.95 Overhage, J. M. 1.49

Stead, W. W. 2.90 Ohnomachado, L. 1.42

Gardner, R. M. 2.90 Haynes, R. B. 1.37

Bates, D. W, 2.87 Friedman, C. 1.36

continued



Mapping Medical Informatics Research 47

Author name Authority score Author name Authority score
Chute, C. G. 2.82 Lobach, D. F. 1.38
Kuperman, G. J. 2.76 Humphreys, B. L. 1.34
Friedman, C. P. 2.73 Haux, R. 1.33
Rector, A. L. 2.68 Rind, D. M. 1.29
Teich, J. M. 2.67 Evans, R. S. 1.25
Sittig, D. F. 2.64 Zielstorff, R. D. 1.21
Shahar, Y. 2.47 Peleg, M. 1.20
Warner, H. R. 2.45 McCray, A. T. 1.18
Slack, W. V. 2.41 Kohane, I. S. 1.16
Haug, P. J. 2.23 Dolin, R. H. 1.11
Tang, P. C. 2.19 Leape, L. L. 1.10
Patel, V. L. 2.12 Tu, S. W. 1.09
Miller, R. A. 2.09 Owens, D. K. 1.02
Shiffman, R. N. 2.00 Spackman, K. A. 1.02
Huft, S. M. 1.98 Van Bemmel, J. H. 1.01

5.2 Content Map Analysis
5.2.1 Topic Map Analysis

The content map analysis uses time-series topic maps to present
development trends in medical informatics over the ten years. For this
temporal analysis we created topic maps of three periods, 1994-1997, 1998-
2000, and 2001-2003. By breaking the medical informatics papers published
over the past decade into three periods, we hope to glean the recent evolution
and topic changes of the field. To generate the maps, the abstracts and titles
of 5,837 papers in our collection were processed for 1994-1997, 5,755 for
1998-2000, and 5,375 for 2001-2003.

In these topic maps clusters of papers are represented by shaded regions
and labeled by representative noun phrases appearing in those papers. The
medical noun phrases were extracted using the Arizona Noun Phraser as
described previously. These noun phrases were extracted from the original
text and the capitalization varies. However, phrases with capitalization
variations were treated as the same phrases for the phrase vector
representation. Numbers of papers within each cluster are presented in
parentheses after the topic labels. As described previously in Section 3.2,
neighboring topic regions have high content similarities. Users can click on
the map regions to browse the papers.

The first topic map (Figure 2-1) displays an assortment of dominating
themes for the first time period. There are many prominent but general
medical information topics that occupy large regions, including: “Electronic
Medical Records,” “Computer-Based Patient Record,” “Health Care,”
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“Information Technologies,” “Computer Programs,” “Medical Students,”
etc. A few specific medical informatics applications also occupy large
regions, including: “Hospital Information Systems” and “Clinical
Information Systems.” In addition, we also notice several small but distinct
topic regions that are related to data analysis and mining, e.g., “Decision
Support Systems,” “Statistical Analysis,” “Regression Models,” “Artificial
Neural Networks,” and “Neural Networks.” It appears that data mining and
knowledge discovery research had already begun to emerge in 1994-1997,
the first era of our analysis.

Medical Informatics (144)

murassinnmuﬂa =
; (65) j

g

Hospital Informalio ; A
Systerns (67) |2 e - B compuler programs
3 neural networks (100} st

Cllnll: al Information Syslem (71)

Figure 2-1. Top level content map for 1994-1997.

The topic regions in the second and third time periods were colored to
reflect the growth rate of the topic compared with the previous time period
(not shown here due to production reasons), which is computed as the ratio
between the number of papers in the region for the current time period, and
the number of papers in the region of the same topic label in the previous
time period. The color legend of the growth rate is presented as well below
these two content maps. In Figure 2-2, regions such as “Human Genome”
and “Medical Imaging” correspond to the right end of the color legend,
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which represents newly emerged topic regions, while regions with lighter
colors such as “Hospital Information System” corresponds to color legends
close to the left end, which represent topic regions that had a slow or average
growth rate.

 clinical,
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Figure 2-2, Top level content map for 1998-2000.

In the second map (Figure 2-2), we see the continued presence of several
important, but general medical informatics topic regions, including: “Health
Care,” “Information Technologies,” “Electronic Medical Records,”
“Hospital Information Systems,” etc. Several data analysis and mining topics
began to occupy larger regions than in 1994-1997, e.g., “Decision Support
Systems” and ‘“Neural Networks.” In addition, “Protein Sequence” and
“Human Genome” topics emerged the first time, increasing the scope of
biomedical data. There is also an increased diversity of applications and
methodologies such as: “Nursing Informatics,” Medical Imaging,”
“Economic Evaluation,” and “Health Technology Assessment.”
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Figure 2-3. Top level content map for 2001-2003.

In addition to some of the general medical informatics topics (“Health
Care,” “Medical Informatics,” etc.), the third map (Figure 2-3) shows a
strong presence of data mining and knowledge discovery topics in 2001-
2003 including: “Neural Networks,” “Artificial Neural Networks,”
“Bayesian Approach,” “Data Mining,” “Markov Models,” etc. Most
interestingly, we see an explosion of biological and genomic data types and
applications, including: “DNA Microarrays,” “DNA Sequences,” “Gene
Expression,” “Mass Spectrometry,” “Protein-Protein  Interactions,”
“Functional Genomics,” etc.

The pattern of mixed topics observed between maps is consistent with
the observation that medical informatics is a fast-growing, multidisciplinary
field (Andrews, 2002). Sittig (1996) and Greenes and Siegel (1987) recount
the difficulty of defining the boundaries of the medical informatics domain,
and the resulting diversity of subfields attributed to it. Despite such
challenges, we observed a consistent focus on health care, electronic medical
records, and information technologies topics in general in the three eras of
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analysis. In addition, we also see overwhelming evidence of the presence of
many emerging and exciting data mining and knowledge discovery research
applications, especially those which leverage the opportunities presented by
a wide spectrum of new, diverse, and large-scale biological and genomic
data and problems.

5.2.2 Author Map Analysis

The author map in Figure 2-4 attempts to group individual researchers in
the domain space, based on their common research interests. For this
analysis we used the core author set from Table 2-3 as the input data. The
result presents five major clusters of authors who had papers with similar
contents. Each resulting cluster has been assigned a label indicating the
common concept(s) that the cluster represents. The labels were manually
selected from the keywords extracted by the SOM algorithm, a process
which requires human judgment, but as Andrews (2002) points out,
consistent with other cluster analysis methods. The keywords used to
determine each label are listed in Table 2-6, and the individual groups are
shown in detail in Figures 2-5 through 2-8 (with the exception of Group 3,
which was decided not to be dense enough to require a zoomed in view).

Table 2-6. Top keywords generated from authors’ texts and used to label author map groups.

Group 1 Group 2 Group 3
Decision support system Clinical trials Clinical applications
Decision support Breast cancer Clinical information
Expert system Risk factors system
Knowledge-based system Cardiovascular disease
Coronary heart disease
Group 4 Group 5
Patient care Clinical trials
Medical record Cohort study
Electronic medical record Confidence intervals
Unified medical language system Multivariate analysis

The largest group in the center of the author map, Group 1, is labeled
"Decision support and knowledge-based systems." This group contains 37
of the 96 authors, including W.R. Hersh, C.G. Chute, and M.A. Musen.
Author proximity on the map indicates a degree of similarity between the
rescarch interests. Group 2, "Clinical trials for diseases,” contains 15
authors, including R.A. Miller, Y. Shahar, and M. Stefanelli. Group 3,
"Clinical applications and information systems," contains 6 authors, among
them D.W. Bates and P.D. Clayton. Group 4, labeled "Patient care and
electronic medical records," is comprised of such prolific authors as J.J.
Cimino, D.F. Sittig, R.A. Greenes, C. Friedman, and E.H. Shortliffe.
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Finally, Group 5, "Clinical trials and analysis," contains 8 authors, among
them A. Donner and K.J. Lui. Authors in our original 96 that are not
included in a group can be seen in the overall map in Figure 2-4.
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Figure 2-4. Overall author similarity map.
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53 Citation Network Analysis

Using the data gathered from SCI, we created two citation networks of
the most prominent researchers in medical informatics, as identified by our
basic analysis. Both networks present views of the same data with different
levels of filtering. A link from author A to author B indicates that A
frequently cites B. In the visualization results, triangles indicate "core"
authors (presented in Table 2-3) and circles represent "non-core" authors. In
order to reveal only the strongest communication patterns, links associated
with a small number of citations are filtered from the networks. Figure 2-9
is filtered by a link threshold of 10, that is, only links associated with 10 or
more citations are shown. The result is a rather dense cluster, but hubs can
still be observed around the major players from our basic analysis results:
Edward H. Shortliffe, Paul D. Clayton, George Hripcsak, David W. Bates,
James J. Cimino, and William R. Hersh, to name a few. These authors are
not only frequently published and cited, they are cited repeatedly by
consistent sets of other authors. Figure 2-10 is a view of the same citation
data, filtered by a threshold of 20. In this view, clearer subgroups of
citations emerge. One distinct subgroup of eight authors is disconnected
from the larger graph. This group appears in the upper right-hand part and
consists of four "core" authors from Table 2-3, and four "non-core" authors
from Table 2-4. In the larger graph itself, hubs from Figure 2-9 begin to pull
apart into subgroups. The most distinct group clusters around David Bates
and William M. Tierney, and includes high-ranking authors from the basic
analysis, such as Dean F. Sitting and Jonathan M. Teich. Other subgroups of
the larger graph can be observed but are much less distinct. Obvious hubs
are James Cimino, George Hripcsak, and Edward Shortliffe. Tightly
connecting these are Carol Friedman, Vimla L. Patel, and Robert A.
Greenes.

It should be noted that as a result of filtering by link strength, the citation
networks do not reflect an overall qualitative performance measure of the
authors, but rather the nature of their communication channels. That is, the
graphs do not show who is the most cited, but who most frequently cites
whom. It can be observed, for example, that there are no links to William
Hersh in the 20-threshold network; however, our basic analysis indicates that
Hersh is highly influential in the field, and is cited by numerous other
authors. According to Figure 2-10, he is simply not cited more than 19 times
by the same author. In contrast, there are two incoming links to Christopher
G. Chute (from James Cimino and Peter L. Elkin). Chute is only slightly
below Hersh in Authority ranking, but frequently cites and is cited by two
specific authors, so is connected to the main graph.
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Figure 2-9. Author citation network (minimum cites per link: 10).
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Figure 2-10. Author citation network (minimum cites per link: 20).

6. CONCLUSION AND DISCUSSION

For a fast-growing, interdisciplinary knowledge domain such as medical
informatics, it is valuable to be able to create a picture of the state of the
research from a variety of perspectives. Such a picture helps organize the
vast amounts of information available in order to determine past and current
(and possibly future) directions of the field, as well as prominent
researchers, their relationships to each other, and the parts of the domain to
which they contribute. Automatic information visualization techniques can
perform these knowledge tasks efficiently and systematically. In this study
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we augment classic domain analysis techniques with visualization tools to
create a variety of views of medical informatics over the past ten years. The
results of our study present development trends of subtopics of the field, a
performance evaluation of the prominent researchers, and graphs of
knowledge transfer among researchers.

This study was designed in the context of the analysis framework
developed by Huang et al. (2003), and implements the three types of analysis
presented in that work: basic analysis, content maps, and citation networks.
Based on the data set extracted from widely-used data sources such as the
MEDLINE database and SCI, we believe our analysis helps reveal the
coverage and evolution of the field. It would be interesting to compare the
particular findings from our analysis with the pictures of the field in the
minds of the domain experts. Such evaluation would help determine how
accurate our analysis results are and reveal interesting discrepancies between
automatic analysis results and expert knowledge that might enhance our
understanding of the state of the field.
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between the fifty most-cited ACMI fellows for the years 1994 to 1998,

Cronin, B. (Ed). (2003). Annual Review of Information Science and Technology, Vol 37.
Medford, NJ: Information Today, Inc./American Society for Information Science and
Technology.

Number 37 in a series that offers a comprehensive overview of information science and
technology. This volume contains chapters on indexing and retrieval for the web, and
visualizing knowledge domains in general.

Chen, C. (2003). Mapping Scientific Frontiers: The Quest for Knowledge
Visualization. Secaucus, NJ: Springer-Verlag.
A thorough investigation of the effectiveness of using visualization tools to reveal shifts in
scientific paradigms, and of the need for interdisciplinary research in information
visualization and information science.

Chen, C., Paul, R. J. (2001). Visualizing a knowledge domain's intellectual structure. JEEE
Computer. 34(3), 65-71.
Introduces Pathfinder network scaling to produce a 3D knowledge landscape from science
citation patterns. The authors propose a four-step approach to “extends and transform”
traditional author citation and co-citation analysis.

Garfield, E. (1979). Citation Indexing: Its theory and application in science, technology and
humanities. John Wiley, New York.
Garfield’s influential review of the creation and usefulness of citation indexes for
understanding knowledge domains, especially since his seminal 1955 paper on the subject
(Science, 122, 108-111).

Honkela, T., Kaski, S., Lagus, K., Kohonen, T. (1997). WebSom - Self-Organizing Maps of
Document Collections. Proceedings of the Workshop on Self-Organizing Maps. 310-315,
Introduces WEBSOM, a well-known application of the SOM algorithm to organize high
dimensional text documents according to similarity, and to present the results in an
intuitive user interface.
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Kohonen, T. (1990) The Self-Organizing Map, Proceedings of the IEEE. 78(9), 1464-1480.
Influential review and demonstration of various applications of the SOM algorithm.

. Small, H. (1999). Visualizing science by citation mapping. Journal of the American Society
Jor Information Science. 50(9), 799-812.

Demonstrates the use of associative trails and virtual reality software to create and
navigate spatial representations of a sample of multidisciplinary science citation data. The
author also provides a nice overview discussion and justification for applying information
visualization techniques to science.

White, H. D., McCain, K. (1998). Visualizing a discipline: An author co-citation analysis of
information science, 1972 - 1995. Journal of the American Society for Information
Science. 49(4), 327 - 355.

The authors use author co-citation data to map the field of information science.

ONLINE RESOURCES

ISI Science Citation Index, through the Web of Science
ISI Journal Citation Reports
http://isi6.isiknowledge.com/portal.cgi

ResearchIndex (also known as CiteSeer)
http://citeseer.ist.psu.edu/
http://www.neci.nec.com/~lawrence/researchindex.html

Entrez PubMed, from NLM
Access to NCBI’s MeSH, MEDLINE, and journal databases:
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi

American College of Medical Informatics
http://www.amia.org/acmi/facmi.html

NetDraw, network visualization tool
http://www.analytictech.com/netdraw.htm

Information analysis and visualization demos
SOM and GIS: http://ai.bpa.arizona.edu/go/viz/index.html
SOM: http://www.cis.hut.fi/research/som_pak/
CiteSpace: http://www.pages.drexel.edu/~cc345/citespace/
SPIRE and Themescape: http://nd.loopback.org/hyperd/zb/spire/spire.html

QUESTIONS FOR DISCUSSION

1. What analytical units in addition to authors and documents can be used to
examine the state of medical informatics research? What kind of
perspectives on the field would these analytical units provide?



62 MEDICAL INFORMATICS

2. What is the relationship between citation data and the topology of a
knowledge domain? What is the motivation for using such data for
domain analysis?

3. What are the advantages of using content analysis over citation analysis
for identifying domain subtopics? What are the advantages of using
citation analysis over content analysis?

4. How effective are the results of visualization technologies (such as
citation networks and self-organizing maps) at presenting domain
knowledge in an intuitive way? Are the results informative, easy to
understand?
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Chapter Overview

As biomedical research and healthcare continue to progress in the
genomic/post genomic era a number of important challenges and
opportunities exist in the broad area of biomedical informatics. In the
context of this chapter we define bioinformatics as the field that focuses on
information, data, and knowledge in the context of biological and biomedical
research. The key challenges to bioinformatics essentially all relate to the
current flood of raw data, aggregate information, and evolving knowledge
arising from the study of the genome and its manifestation. In this chapter
we first briefly review the source of this data. We then provide some
informatics frameworks for organizing and thinking about challenges and
opportunities in bioinformatics. We use then use one informatics framework
to illustrate specific challenges from the informatics perspective. As a
contrast we provide also an alternate perspective of the challenges and
opportunities from the biological point of view. Both perspectives are then
illustrated with case studies related to identifying and addressing challenges
for bioinformatics in the real world.
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1. INTRODUCTION

As biomedical research and healthcare continue to progress in the
genomic/post genomic era, a number of important challenges and
opportunities exist in the broad area of biomedical informatics. Biomedical
informatics can be defined “as the scientific field that deals with biomedical
information, data, and knowledge — their storage, retrieval, and optimal use
for problem-solving and decision making” (Shortliffe et al.., 2001). To
understand the challenges and opportunities for informatics within the field
of bioinformatics (defined most broadly as informatics in the domains of
biology and biomedical research) it helps to understand the broader context
in which they exist.

In the broader context, the key challenges to bioinformatics essentially all
relate to the current flood of raw data, aggregate information, and evolving
knowledge arising from the study of the genome and its manifestation. The
genome can be thought of as the machine code or raw instructions for
creation and operation of biological organisms (its manifestation). The
information encoded in DNA results in the creation of proteins which serve
as the key building blocks for biological function (a protein on the surface of
one cell (neuron) in the brain can recognize a chemical signal sent by a
neighboring neuron). Proteins physically aggregate to create more complex
units of biological function termed protein complexes (the protein that
recognizes the signal from a neuron might be part of a protein complex that
translates that signal into an action such as turning on another protein that
was in “standby mode”). Proteins and protein complexes interact with one
another in networks or pathways to carry out higher level biological
processes (such as the neuronal signaling pathway). These pathways include
regulatory mechanisms whereby the function of the pathway overall is
controlled by relevant input parameters (such as frequency and intensity of
input from the part of the nervous system related to sensing pain). This
regulation is complex and can include feedback and interaction among the
proteins and protein complexes of the pathway, as well as regulation and
interaction of other pathways. Interestingly, mechanisms include also the
regulation of the conversion (translation) of the raw information encoded in
the DNA into the intermediate messages (mRNA) and regulation of the
conversion of the mRNA into proteins, as well as modification of the
proteins themselves. The pathways in turn are assembled into more complex
systems of multiple interacting pathways (pathways involved in evasive
response to painful stimuli). In multi-cellular animals these complex systems
in turn interact to control the function of their basic building blocks, namely
the cells (for example, a brain cell or neuron). The cells in turn interact with
one another and form higher order structures termed organs (the brain, for
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example). These organs interact with one another to form systems (such as
the nervous system, which includes the brain as well as the input from
sensory organs and the output to muscles and other organs). These systems
interact to carry out higher order functions such as seeking out food sources
(thus for example the nervous system guides the organism to seek food, the
digestive system breaks down food, the metabolic system helps control the
conversion of food to sugars, and the circulatory system helps deliver this
energy to cells). Expanding beyond this level one can think of organisms
interacting to form ecosystems in turn resulting in the Earth’s biosphere.
This hierarchical progression is illustrated in Figure 3-1. This cursory
overview of the modern view of biological systems begins to shed light on
the challenges faced by the fields of modern biology and biomedical
research and the roles that bioinformatics might play.

Ecosystems Earth

Populations Ecosystem

Population Humans

Organism Human
Organ Brain
Cell . Neuron

Vg 4
Molecule i,“ DNA

Figure 3-1. Hierarchy of biological systems.

In the broader context, to understand the opportunities for both
biomedical research and bioinformatics, it helps to understand the genesis of
this flood of information and more importantly the vision of how this
information might be used. The roots of both the large quantity of
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information and the guiding vision can be traced to the start of the modern
era of biomedical research, which is felt to be the discovery by Watson and
Crick in 1953 of DNA as the information storage mechanism for cells.
Research into the genome continued at a relatively linear pace until the
establishment in 1989 of the National Center for Human Genome Research
(NCHGR) to carry out the role of the National Institutes of Health (NIH) in
the International Human Genome Project (HGP: see Online Resources). The
HGP served to accelerate the pace of data generation from a linear to an
exponential growth pattern as shown in Figure 3-2.
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Figure 3-2. Growth in genes sequenced.

The seed of the vision for the HGP and the investment that has been
made can be found in the mission of the National Institutes of Health (NIH)
which is “science in pursuit of fundamental knowledge about the nature and
behavior of living systems and the application of that knowledge to extend
healthy life and reduce the burdens of illness and disability.” The
relationship of this mission to the grand vision of the HGP was published in
1990 as part of the first five year plan for the HGP: “The information
generated by the human genome project is expected to be the source book
for biomedical science in the 21st century and will be of immense benefit to
the field of medicine. It will help us to understand and eventually treat many
of the more than 4000 genetic diseases that afflict mankind, as well as the
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many multifactorial diseases in which genetic predisposition plays an
important role.” (See Online Resources). The flood of data, information, and
knowledge we face today in biology and biomedical research can be traced
directly to the coordinated international investment of large amounts of
funding to sequence the human genome as a first step in arriving at a deeper
understanding of the basis of human health and disease (Collins and
McKusick, 2001). Research into the genomics and basic biology of diverse
other organisms was galvanized by this effort as well and has been
proceeding in parallel over the last decade and a half. With the completion of
the sequencing of the DNA of humans and other organisms we have
however only begun to explore the hierarchy discussed above and shown in
Figure 3-1.

A guiding vision for the next phases of the HGP was articulated in a
paper published in Nature on the 50" anniversary of Watson and Crick’s
discovery (Collins et al., 2003). This paper outlines fifteen grand challenges
clustered into three broad areas: Genomics to Biology (improving our
understanding of complex biological systems), Genomics to Health
(developing and applying our understanding of the genomic basis for health
and disease), and the sometimes underappreciated Genomics to Society
(broadly, the ethical, legal, and social implications of our understanding).

These challenges, of course, present opportunities as well. As an example
of a grand challenge presenting opportunities for biologists and informatics
researchers in the Genomics to Biology area, consider, “Grand Challenge I-
2: FElucidate the organization of genetic networks and protein pathways and
establish how they contribute to cellular and organismal phenotypes.” An
example from the Genomics to Health arca is, “Grand Challenge II-3:
Develop genome-based approaches to prediction of disease susceptibility
and drug response, early detection of illness, and molecular taxonomy of
disease states.” In response to the challenges posed by a post-genome
sequencing era of biomedical research the NIH has identified the intersection
of the computing and biological and biomedical fields as a key opportunity
for future research based on the challenges and potentials outlined above. A
critical articulation of this was provided by the report that led to the creation
of the National Institutes of Health Biomedical Information Science and
Technology Initiative (BISTI). (See Online Resources for the URL.) This
introduction provides a high level overview of the opportunities and
challenges for the field of bioinformatics. In the following sections we
outline from an informatics perspective some more specific challenges and
illustrate this with case studies/examples.
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2. OVERVIEW OF THE FIELD
2.1 Definition of Bioinformatics

The definition of bioinformatics used in this chapter is the broadest
possible definition of the field, namely all informatics research and
application in support of the biological research endeavor. In the context of
the definition of biomedical informatics given in the introduction “as the
scientific field that deals with biomedical information, data, and knowledge
— their storage, retrieval, and optimal use for problem-solving and decision
making” (Shortliffe et al., 2001), we define bioinformatics as the subset of
the field that focuses on information, data, and knowledge in the context of
biological and biomedical research. By our definition the culture and
environment (context) in which bioinformatics is studied and applied are that
of the researcher in the laboratory seeking new knowledge. This includes a
broad range of research ranging from a) basic molecular and cellular level
research seeking to understand the way cancer results in unregulated growth
of cells to, b) whole animal applied research looking at ways to block the
spread of cancers, to c) clinical research involving patients looking at genetic
factors influencing susceptibility to cancer. It is distinct from clinical
informatics which focuses on the culture and environment of clinical care
involving patients and healthcare providers in settings ranging from one's
own home, to outpatient (clinic) and inpatient (hospital) care. This definition
is similar to the one used by the BISTI website: “Research, development, or
application of computational tools and approaches for expanding the use of
biological, medical, behavioral or health data, including those to acquire,
store, organize, archive, analyze, or visualize such data” (see Online
Resources).

There are a number of other definitions of the term “bioinformatics” and
in reading the literature it is important to be sure one is clear on the meaning
being used. For some, the term is fairly narrow and refers primarily to
developing and validating and applying algorithms for processing and
analyzing sequences of DNA (the phrase “computational biology” is also
being used for this area). Others expand the definition of bioinformatics to
include any algorithmic or statistical approach to the analysis of biological
data. Some make a distinction between mathematical modeling in biology
and bioinformatics, whereas others view the former a subset of the later. For
some, bioinformatics refers to the basic research in the area, whereas the
applied side of deploying systems is termed biocomputational infrastructure.
For others, bioinformatics refers to the set of computational tools used by
biologists to carry out their research. A very interesting alternate broad
definition is, “The study of how information is represented and transmitted
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in biological systems, starting at the molecular level" (Bergeron, 2002). For
the remainder of this chapter, we will use this last broader, more inclusive
definition of the term.

2.2 Opportunities and Challenges — Informatics
Perspective

221 Frameworks for Describing Informatics Research

The field of biomedical informatics is relatively young and there are a
number of ways to organize important research questions and areas (and in
turn to discuss challenges and opportunities).

The American Medical Informatics Association developed the following
framework, shown in Tables 3-1 and 3-2, categorizing research papers in the
discipline submitted for review at the 2003 annual meeting (Scientific
Program Committee Chair: Mark A. Musen, Foundations Track Chair:
Charles P. Friedman, Applications Track Chair: Jonathan M. Teich, see
http://www.amia.org/meetings/archive/f03/call.html#categorizing).

The Foundations Track, shown in Table 3-1, focuses on theories, models,
and methods relevant to biomedical informatics broadly (applicable to
clinical informatics, bioinformatics, and public health informatics). Bold
faced categories are foundational approaches often referred to in
publications in the bioinformatics arena. Each of these represents ongoing
arecas of inquiry and thus potential challenges and opportunitiecs for
bioinformatics, both in terms of research and in terms of application. As will
be discussed later in this chapter, some foundational areas are not currently
active areas of research in bioinformatics and may represent important
opportunities for future research (in particular many of the areas in C).

Table 3-1. Categories of Informatics Research*
I. Foundations of Informatics Building Models and Methods for Biomedical Information
Systems
A. Modeling Data, Ontologies, and Knowledge
1. Controlled terminologies and vocabularies, ontologies, and knowledge bases
2. Data models and knowledge representations
3. Knowledge acquisition and knowledge management
B. Methods for Information and Knowledge Processing
1. Information retrieval
2. Natural-language processing, information extraction, and text generation
3. Methods of simulation of complex systems
4. Computational organization theory and computational economics
5. Uncertain reasoning and decision theory
6. Statistical data analysis
7. Automated learning, discovery, and data mining methods

continued
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1. Foundations of Informatics Building Models and Methods for Biomedical Information
Systems
B. Methods for Information and Knowledge Processing (continued)
8. Software agents, distributed systems
9. Cryptography, database security, and anonymization
10. Image representation, processing, and analysis
11. Advanced algorithms, languages, and computational methods
C. Human Information Processing and Organizational Behavior
1. Cognitive models of reasoning and problem solving
2. Visualization of data and knowledge
3. Models for social and organizational behavior and change
4. Legal issues, policy issues, history, ethics
*Used with permission from the American Medical Informatics Association

The Applications Track, shown in Table 3-2, focuses on real world
systems: their design, implementation, deployment, and evaluation. Bold
faced categories are applications often referred to in publications in the
bioinformatics arena. Each category represents ongoing areas of inquiry and
thus potential challenges and opportunities for bioinformatics, both in terms
of research and in terms of application. As will be discussed later in this
chapter, some application areas, similar to the theoretical track, are not
currently active and may represent important opportunities for future
research: for example, B, or the intersection of bioinformatics with C1.

Table 3-2. Categories of Informatics Research*
11. Applied Informatics - Real World Solutions for Real World Problems
A. Advanced Technology and Application Infrastructure
1. Data standards and enterprise data exchange
2. System security and assurance of privacy
3. Human factors, usability, and human-computer interaction
4. Wireless applications and handheld devices
5. High-performance and large-scale computing
6. Applications of new devices and emerging hardware technologies
B. Evaluation, Outcomes, and Management Issues
1. Organizational issues and enterprise integration
2. System implementation and management issues
3. Health services research: health care outcomes and quality
C. Information, Systems and Knowledge Resources for Defined Application Areas
1. Care of the patient
a. Electronic medical records
b. Computer-based order entry
c. Clinical decision support, reference information, decision rules, and
guidelines
d. Workflow and process improvement systems
e. Nursing care systems

continued
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I1. Applied Informatics - Real World Solutions for Real World Problems

C. Information, Systems and Knowledge Resources for Defined Application Areas

1. Care of the patient (continued)
f. Ambulatory care and emergency medicine
g. Telemedicine and clinical communication
h. Patient self-care, and patient-provider interaction
i. Disease management

2. Care of populations
a. Disease surveillance
b. Regional databases and registries
c. Bioterrorism surveillance and emergency response
d. Data warehouses and enterprise databases

3. Enhancements for education and science
a. Consumer health information
b. Education, research, and administrative support systems
c. Library applications

4. Bioinformatics and Computational Biology
a. Genomics
b. Proteomics
c. Studies linking the genotype and phenotype
d. Determination of biomolecular structure
e. Biological structure and morphology
f. Neuroinformatics
g. Simulation of biological systems

*Used with permission from the American Medical Informatics Association

The University of Washington Biomedical and Health Informatics
Graduate Program has taken a less granular approach to categorizing the
broad field of biomedical informatics with three application domains and
four foundational areas. The three application domains are: a) Biomedical
Research, b) Clinical Care, and c) Public Health. The four foundational areas
are: a) Biomedical Data and Knowledge, b) Biomedical Information Access
and Retrieval, ¢) Biomedical Decision Making, and d) Socio-Technical
Dimensions of Biomedical Systems. In addition to the application domains
and the foundational areas the University of Washington requires grounding
in methodologies including programming, statistics, research design and
evaluation. The need for evaluation methodologies is especially important as
is discussed below. The next sections will use these foundational areas to
illustrate challenges and opportunities in the bioinformatics domain.

222 Opportunities and Challenges — Biomedical Data and
Knowledge
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The volume and diversity of biomedical data is growing rapidly,
presenting a number of challenges and opportunities ranging from data
capture, data management, data analysis, and data mining. The analysis of
this data is generating new knowledge that needs to be captured. As the
volume of this knowledge grows, so does the need to develop formal ways
of representing this knowledge. Knowledge bases and formal approaches
including ontologies arc potential solutions. This particular area of
biomedical data and knowledge will be explored in more depth than the
other areas given the emphasis of this book.

Analysis of gene expression (microarray) experiments illustrates diverse
aspects of the problem with modern biological data. In a gene expression
experiment the biologist measures the level of expression of all genes in a
particular tissue under a given condition, and then frequently compares
expression levels to those in the same tissue under a different condition (a
process known as differential gene expression). Thus, for example, one
might measure the level of gene expression (the degree to which certain
genes are turned on or off) by comparing cancer cells that have received a
cancer drug to ones that have not.

The first challenge is management of the experimental data since a single
gene expression measurement results in thousands of data points. In turn
typically one repeats each experimental condition and control condition
multiple times. Frequently, the measurements are repeated at multiple time
points (for example, before treatment with a drug, one hour after, four hours
after, eight hours after, twenty-four hours after). A number of open source
and commercial packages help researchers collect and manage gene
expression data.

The next challenge is data analysis and data mining. There are a number
of commercial expression array analysis packages but they often do not
implement the latest algorithms and methods for data analysis. Important
open source collaborations aim to develop tools to assist researchers in
developing and using new tools for array analysis. This collaboration is the
BioConductor project (http://www.bioconductor.org) and is built on top of
the R programming environment (Thaka and Gentleman, 1996).

Finally, there is the need to mine large data sets of gene expression data.
A number of studies have been published using a variety of data mining
techniques from computer science and this is still a rapidly evolving area.
An example of this class of problems is trying to predict the outcome of
cancer patients based on analyses of the gene expression in their cancerous
tissue (e.g. gene expression in a piece of breast cancer removed by the
surgeon). A classic study used DNA microanalysis and a supervised
classifier to predict outcome of breast cancer far better than any other
classifiers (van 't Veer et al., 2002).
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The data capture and data management problem is compounded by the
fact that modern biological experiments frequently involve diverse types of
data ranging from analysis of mutations (changes in the DNA sequence) to
gene expression to protein expression to biochemical measurements to
measurements of other properties of organisms (frequently termed
phenotype). In order to make sense out of these diverse experimental results
and to incorporate data, information, and knowledge from public domain
databases (such as databases of protein function) data integration is needed.
A number of data integration systems for biomedical data have been
developed. These data integration approaches are reviewed in a number of
articles (Sujansky, 2001). The BioMediator system (formerly GeneSeek)
(Donelson et al., 2004; Mork et al., 2001; Mork et al., 2002; Shaker et al.,
2002, and Shaker et al., 2004) is one such system for data integration. It is
designed to allow biologists to develop their own views of the way in which
diverse private (experimental data) and public databases and knowledge
bases relate to one another and to map this view (the mediated schema) onto
the specific sources they are interested in querying. The interfaces, or
wrappers, to these diverse sources are written in a general purpose fashion to
permit the same wrappers to be reused by diverse biologists. The custom
views (mediated schemata) are captured in a frames based knowledge base
(implemented in Protégé) (Stanford, 2002). The system architecture permits
in a single environment both the integration of data from diverse sources and
the analysis of this data (Mei et al., 2003). The system works well but an
important set of challenges surrounds the need to develop tools that permit
the biologists to manipulate the mediated schema in a more intuitive fashion.
Another challenge is to incorporate such systems into the workflow of the
typical biological lab.

Ultimately all this data generates new knowledge which needs to be
captured and shared. The volume of this knowledge is growing only linearly
as shown in Figure 3-3 in contrast to the growth of the data.

An important challenge to knowledge creation is developing ways to
increase the rate of knowledge generation to keep up with the rapid growth
of data. Even with the linear growth of knowledge the volume of it is such
that it is becoming difficult for one person to keep up with it all
systematically. In order to access and use this knowledge it is becoming
more and more important that the knowledge be captured in computable
form using formalisms from the computer science community such as
ontologies. These topics are discussed in more detail in other chapters.
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Figure 3-3. Growth rate of Genes with known function

The power and the challenges of these approaches can be illustrated by
three important bioinformatics related knowledge bases. The first is the
Foundational Model of Anatomy (FMA) (Rosse and Mejino, 2003) which is
a centrally curated knowledge base capturing anatomic knowledge about the
body from levels of granularity ranging from the whole body down to cells,
sub cellular compartments and molecules (proteins). The FMA is becoming
widely adopted as a reference standard for describing a variety of biologic
processes in terms of where they occur and what they impact (serving as the
anatomic component of the Unified Medical Language System (Tuttle, 1994,
Bodenreider et al., 2002, among others). Some important challenges remain,
though, in that: a) the FMA describes only human anatomy yet much work is
being done on other species; b) the centralized curation process ensures
internal consistency and quality control yet does not scale well to match the
expansion of the FMA; c) the FMA describes normal physical structures but
needs to be extended to describe abnormal (or disease related) structures;
and d) the FMA needs to be extended to describe processes and functions of
the physical structures.
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The Gene Ontology (GO) Consortium (Gene Ontology Consortium,
2000) takes a different approach to describing the current state of knowledge
about proteins and their functions. Given the evolving nature of the field a
centralized top down approach such as that taken by the FMA was not
possible. The GO is thus created and curated in a distributed fashion by a
consortium of experts in molecular biology. The strength of this approach is
that it scales well and adapts well to the rapidly changing state of our
knowledge. Challenges to the GO approach include a) difficulty in
maintaining internal consistency of the knowledge base; b) capturing in
computable form from biologists subtle aspects of function; and c)
maintaining referential integrity as the knowledge base evolves.

The third example of a bioinformatics knowledge base is the PharmGKB
project (Klein et al., 2001, and PharmGKB, n.d.) which is a sophisticated
pharmacogenomics knowledge base. The strength of this knowledge base is
that it was centrally designed with distributed input to capture in a
computable form a large amount of knowledge relevant to the field of
pharmacogenomics - the interaction between an individual’s genes, the
medicines taken and the variability in response to these medicines. The
challenges with this approach, however, are: a) it is dependent up on human
curation (this is a shared challenge with FMA and GO as well); and b)
extending the knowledge base to other areas of biology will be a challenge
since unlike GO and FMA, the scope of PharmGKB was designed to be deep
and narrow (pharmacogenomics) rather than broad and comprehensive
(anatomy or molecular function).

2.2.3 Opportunities and Challenges — Biomedical Information
Access and Retrieval

As the volume of data and knowledge grows it is becoming critical to
biologists that they be able to access and retrieve the relevant pieces when
they need it. The older paradigm of keeping up with the contents of the
handful of top journals relevant to one’s biological research area no longer
works.

There are three key factors contributing to this. The first factor is that the
sheer volume of new information is such that systematically keeping up is no
longer a viable option. The second and related factor is that with the growth
in new information has come a growth in the number of places in which
information is published. Related to the dispersion of information across
diverse sources is the fact that interdisciplinary and interprofessional
research is becoming the norm, thus important research findings are
published in a wider range of journals. The third factor is that information is
becoming more and more available in electronic form and no longer just in
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condensed form in journals, resulting in a proliferation of biological
databases, knowledge bases, and tools.

The University of Washington BioResearcher Toolkit (see Online
Resources) illustrates the opportunity and the challenge this presents for
biologists and for bioinformatics researchers and developers. Simply trying
to find the right resource for a particular task from among hundreds is a
challenge to say nothing of finding the right information within that
resource. Given the volume of data and the fact that it exists as a
combination of data in databases and free text, an important part of
information access and retrieval has been both data integration and data
mining, as discussed above. Intelligent parsing of queries, frequently
involving natural language processing of both queries and sources, is
becoming a key component of information access and retrieval. The
challenges, opportunities, and state of the art of information retrieval (and
data mining) in bioinformatics is covered in more depth in other chapters.

224 Opportunities and Challenges — Biomedical Decision Making

Thus far the field of bioinformatics has done little explicit research into
the area of decision making. Within clinical or medical informatics there is a
rich history of research into systems designed to help care providers and
patients (healthcare consumers) make optimal decisions surrounding
diagnosis (what disease or illness is it that a patient has) and management
(which of the options for treatment are best factoring in details of the
circumstances and the values of the patient). Approaches and methods used
have included Bayesian belief networks, decision analytic models, and rule-
based expert systems, among others. An important area on the clinical side
for decision support systems has been genetic testing which has obvious ties
(though one step removed) to bioinformatics research. Though this area of
decision making is outside the primary scope of this book, it is worth noting
that there appears to be a great potential opportunity to explore the
development of tools for biologists to explicitly assist them in their decision
making processes. The challenge is the paucity of literature and study in this
potential arena. The first steps likely would be needs assessments and
development and validation of models of decision making for biologists to
see if in fact there is a niche for decision making tools in biomedical
research.
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2.2.5 Opportunities and Challenges — Evaluation and Socio
Technical Dimensions of Biomedical Systems

The bioinformatics literature has a large number of papers published on
theoretical frameworks for bioinformatics systems and a large number of
papers on specific bioinformatics applications. There is, however, a relative
lack of formal evaluations of bioinformatics systems and models. There is
also a relatively sparse literature that formally and systematically examines
the needs of biologists for specific tools (for example, Yarfitz and Ketchell,
2000). In part this is due to the relatively young nature of the field. A related
factor is that to date much tool development has been driven by experienced
biologists solving recurring problems they face through computational tools
and sharing these tools with others. Though evaluation per se is outside the
scope of this book it is important to learn from the experience of the clinical
(medical) informatics community. Careful assessment and evaluation of the
needs of users of the system is an important factor in guiding future
development both on the theoretical (foundational) front as well as the
applied front. Equally importantly formal evaluations and comparisons of
alternate solutions (both applied and theoretical) are needed in order to guide
development as well. An excellent resource on evaluation of systems in the
clinical (medical) informatics arena is FEvaluation Methods in Medical
Informatics (Friedman and Wyatt, 1997); to date there is no similar book for
bioinformatics evaluation.

The socio-technical environment in which informatics research and
application development occur is becoming increasingly important on the
clinical (medical) informatics front. It appears likely this will be true on the
bioinformatics front as well. There are a number of ways of looking at this
contextualization of informatics. The AMIA community has coalesced
interests and activities in this area around the "People and Organizational
Issues" working group. Their mission as quoted from their website is “a) To
apply the knowledge of human behaviors toward the use of information
technology within a health care environment; b) To effectively describe the
benefits and impacts of information technology before paradigm shifts fully
occur; ¢) To incorporate organizational change management and human
concerns into information technology projects; and d) To distinguish
between the human and technology issues when system successes or failures
occur.” As the field of bioinformatics grows and matures many of these
challenges and opportunities will arise and need to be addressed. Already
there are anecdotal reports of the purchase and deployment of complex
expensive bioinformatics software packages that are unused despite apparent
demand - a finding not unlike what has been seen with the development and
deployment of unsuccessful clinical information systems.
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Another perspective is provided by the description of the core graduate
program courses at the University of Washington, "Sociotechnical Issues in
Biomedical Informatics"; quoting from the course description: "Essentially
all informatics work - whether purely theoretical or purely applied - is
conceived, designed, built, tested, and implemented in organizations.
Organizations are comprised of individuals and individuals are human
beings, complete with philosophies, ideas, biases, hopes and fears. To build
effective and valued informatics systems, the informaticist must understand
how and why people behave as individuals, in groups, in organizations, and
in society, and then build tools and systems that consider these human
factors. The premise of this course is that the thoughtful consideration and
application of the management sciences offers the opportunity to mitigate
these risks." As bioinformatics projects are smaller in scope, these issues
have not risen to the forefront, but as larger scale bioinformatics endeavors
are undertaken it is almost certain they will.

2.3 Opportunities and Challenges — Biological
Perspective

The exponential growth in basic biological data and the incorporation of
that raw information into highly integrated databases on the Internet, along
with the relatively linear but nonetheless rapid changes in our understanding
of biological systems present several opportunities and challenges. These
challenges faced by biologists and biomedical researchers present a
complementary view to the perspective of the bioinformatics researcher. As
noted in the section on Socio-technical Dimensions, understanding and
addressing the challenges of the biologists in the trenches are critical to
successful deployment of bioinformatics applications. We now discuss some
of the challenges and opportunities viewed from the biological perspective.

2.3.1 Data Storage, Standardization, Interoperability and Retrieval

The huge growth in biological information being acquired at every level
of the biological organization, from simple DNA sequences on up to the
global ecosystem, has created serious challenges in data storage, retrieval
and display. These challenges are being met by new developments in
nanotechnology, search algorithms, and virtual/augmented reality tools as
well as more conventional approaches.
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2.3.2 Data Publication and Knowledge Sharing

NIH now requires all data generated by research it funds to be published
in easily accessible and sharable electronic format, creating overwhelming
challenges for current approaches such as journals and websites. New
technologies such as wikis (see http://wiki.org/ and http://en.wikipedia.org/)
and bibliomics tools (such as Telemakus: http://www.telemakus.net/ and
PubGene: http://www.pubgene.org/) will need to be applied to these
challenges in publication. The very meaning of “publication” has already
started to evolve, and libraries in particular are becoming directly involved
in providing for the distribution and archiving of raw data from scientific
experiments (see DSpace: http://www.dspace.org/). Additionally, increased
use of “telepresence” tools such as the Access Grid
(http://www.accessgrid.org/) and online collaboration/knowledge sharing
tools such as AskMe (http://www.askmecorp.com/) provide new and novel
infrastructure in support of the basic biology research effort.

2.3.3 Analysis/annotation Tool Development and Distribution/access

The intense development of Open Source bioinformatics tools within
different departments/groups at Universities and other institutions has
created a need to develop the means of making these “home brew” tools
available to the general bioresearch community. At present there is no
integrated package analogous to Microsoft Office or an electronic medical
record for biomedical researchers. The BioResearcher Toolkit
(http://healthlinks. washington.edu/bioresearcher) provides a mechanism for
the dissemination and sharing of such tools via its “UW HSL Bioinformatics
Tools” section. There, tools developed by national biomedical researchers
as well as local biomedical researcher (such as the web based protein
structure prediction tool developed by Dr. Robert Baker of the UW
Biochemistry Department, Robetta (http://robetta.bakerlab.org/), are made
available to users. Other networked software tools, such as Vector NTI and
PubGene are also available through the BioResearcher Toolkit site.

234 Hardware Development and Availability

Many bioinformatics applications require tremendous computational
power. This challenge is being met by the availability of clusters
constructed from readily available desktop computers (http://www.bio-
itworld.com/news/083004_report5927.html) as well as specially constructed
supercomputing devices such as IBM’s BlueGene
(http://www.research.ibm.com/bluegene/). Furthermore, the evolution of a
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new class of “BiolT” specialists such as “The BioTeam”
(http://www.bioteam.net/) has increased the availability and utility of
hardware needed to meet developments in bioinformatics. Though this may
not per se be a challenge for bioinformatics researchers, it does present a
challenge to biomedical researchers seeking to use powerful tools; thus, it is
a challenge for the discipline of bioinformatics.

2.3.5 Training and Education

The constantly changing nature of bioinformatics tools and the rapid
growth in biological information has created a need for the development of
better and more effective training and education programs in bioinformation
data retrieval and analysis. The EDUCOLLAB Group at the National Center
for Biotechnology Information (NCBI) has developed a series of
introductory and advanced training programs for bioinformatics tool use, and
the University of Washington Health Sciences Library has developed a 3-
Day intensive training program to train students, faculty and staff in the use
of NCBI online resources, commercial software and new developments in
biology such as RNAi. These training sessions have been successfully given
using telepresence tools such as the Access Grid. Additionally, commercial
training companies such as OpenHelix (http://www.openhelix.com/) are now
developing to meet the challenge and opportunity presented by the need for
such training and education. There has also been a growing realization that a
new type of profession, that of “bioinformationist”, may be necessary to
contend with the vast amount of data and analysis requirements resulting
from what is essentially the digital imaging of Earth’s biosphere (Lyon et al.,
2004; and Florance et al., 2002 ].

2.3.6 Networking and Communications Tools

The highly dispersed nature of the modern biological research enterprise
has from its inception required a very high degree of networking and
communications among individual researchers and organizations—the
Human Genome Project itself would not have been possible without the use
of the Internet to promote and facilitate the distributed approach to
sequencing and annotating the human genome. This had led to more
extensive use of telecommunications tools such as WebEx and also to the
development  of  so-called  “virtual”  organizations such as
VirtualGenomics.org (http://www.virtualgenomics.org/). NIH Director Elias
A. Zerhouni has specifically described the need for the development of
research teams spread out over large distances and many disciplines as a
critical part of the NIH Roadmap, and the particular challenge provides the
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opportunity to develop new organizational structures and networking and
communications tools. The Cornell University Life Sciences Initiative
VIVO website (http://vivo.library.cornell.edu) provides a prototype for such
a tool in a University context, while the Community of Science (COS-
http://www.cos.com/) is a commercial enterprise tool for promoting
collaborative research.

2.3.7 Publication/comprehension of Biological Information

Novel means of publication of data—wikis with their potential for rapid
and constant peer review, data posting on websites such as the Gene
Expression Omnibus (GEO: http://www.ncbi.nlm.nih.gov/geo/), modeling
efforts such as the e-cell Project (http://www.e-cell.org/) and virtual disease
models such as the Entelos Diabetes  virtual  patients
(http://www .entelos.com/) and  computer  generated  animations
(http://www.wehi.edu.au/education/wehi-tv/dna/index.html) to help
understand biological systems—are becoming essential to making efficient
use of digital biological information for both clinicians and basic biology
researchers. Additionally, new paradigms such as Systems Biology are
providing new and important intellectual frameworks for comprehending
biological information.

2.3.8 Physical Infrastructure and Culture

Conferencing facilities at university libraries for virtual meetings,
computer laboratories for training, and architectural designs to promote
contact among researchers can further promote collaboration and sharing of
data, knowledge and expertise. Bio-X (http://biox.stanford.edu/) at Stanford
University is an example of one such effort.

2.3.9 Research Center Coordination

Many of the resources for biological research are extremely expensive
and mechanisms for sharing such resources must be developed. One
example of the use of high speed Internet systems to allow the sharing and
operation for advanced tools remotely is the Telescience Portal at the
University of California, San Diego (https:/telescience.ucsd.edu/), which
provides for a collaborative environment for telemicroscopy and remote
science. As high-speed connectivity and real-time videoconferencing tools
become the norm, “Portals” allowing the use of complex and expensive
scientific instruments such as high voltage electron microscopes remotely
will allow researchers all over the world to perform experiments remotely
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and to form collaborative research teams driven by research needs rather
than location.

2.3.10  Public Outreach

As the stem cell research issue and sometimes emotional debates
concerning biodefense, genetics, nanotechnology, and robotics (GNR)
developments show (Joy, 2000) it is critical to educate the public as to the
science behind such fields as bioinformatics. Public understanding of the
Human Genome Project, for example, will greatly enhance decision making
as to how the results of that project will be used in the delivery of genomics
based health care and technologies. High School Education projects such as
the Seattle Biomedical Research Institute’s BioQuest
(http://www.sbri.org/sci-ed/index.asp) as well as direct connection with
public media such as the Sci-Fi Channel (which has recently elected to
produce science fiction classics such as the “Andromeda Strain” and Greg
Bear’s “Darwin’s Radio and Darwin’s Children”) and other organizations
with influence in the public understanding of science and its roles and effects
on society are critically important.

3. CASE STUDY

3.1 Informatics Perspective — The BIOINFOMED Study
‘ and Genomic Medicine

The BIOINFOMED study funded by the European Commission (Martin-
Sanchez et al., 2004) is an excellent case study at multiple levels. First it is a
study focusing on formally developing a list of challenges and opportunities
within bioinformatics and thus provides yet another perspective on
opportunities and challenges. Secondly, it explicitly identifies these
challenges in a particular sociotechnical context providing a first hand
example of the issues identified under evaluation and sociotechnical
dimensions. Finally, it articulates the fact that in order to achieve the
promise of the Human Genome Project it is critical that work be done at the
intersection of bioinformatics and clinical (medical) informatics.

The broad context of the BIOINFOMED study is that of the promise of
the Human Genome Project as articulated in the beginning of this chapter.
The specific focus is captured by the title of the resulting paper, "Synergy
between medical informatics and bioinformatics: facilitating genomic
medicine for future health care." The methods used were a prospective
study of the relationships and potential synergies between bioinformatics
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and medical informatics. The starting point for the study was a written
survey developed by the lead institute (Institute of Health Carlos III in
Spain) that addresses a number of questions related to research directions
and the future of both bioinformatics and medical informatics with an
emphasis on opportunities to exchange knowledge across the two
subdisciplines. A group of thirty professionals with expertise in medical
informatics, bioinformatics, genomics, public health, clinical medicine and
bioengineering met twice to analyze and synthesize the results of the survey.

The sociotechnical perspective was the articulation of the various
stakeholders’ interests and the resultant opportunities and challenges. For the
focus of their paper (informatics in support of genomic medicine) they
identified the following stakeholders: a) scientists/researchers; b) those
executing clinical trials; c) health care professionals; d) health care
consumers; ¢) systems providing healthcare; f) policy decision makers; g)
industry; and h) society at large. For each stakeholder they identified
different challenges and opportunities for biomedical informatics overall.
From an evaluative point of view the study identified a number of gaps and
synergies between the fields of bioinformatics and medical informatics.

The result of the study was a list of research priorities proposed by the
BIOINFOMED study. Each item on the list included a description of the
barrier(s) (e.g. the challenges), a proposed solution (e.g. the opportunities), a
priority rating and a risk rating. The prioritization was High vs. Medium.
The risk was defined as the probability that focusing on the research priority
would fail to deliver results and given a rating of High, Medium, or Low
risk. The items were grouped into four areas. The first area was enabling
technologies. An example of one item is, “Barrier: Need to expand current
interoperability standards for new genetic data infrastructure, Proposed
Solution: Data Communication Standards, Priority: High, Risk: Medium.”
The second area was medical informatics in support of functional genomics.
An example of one item is, “Barrier: Patient care data have not been
systematically used in genomic research, Proposed Solution: phenotype
databases suitable for genomic research, Priority: High, Risk: Low.” The
third area was bioinformatics in support of individualized healthcare. An
example of one item is, “Barrier: Unavailability of models for including
genetic data into electronic health records, Proposed Solution - Genetics data
model for the EHR, Priority: Medium, Risk: Medium.” The fourth area was
the unified field of biomedical informatics in support of genomic medicine.
An example of one item is, “Barrier: Linking environmental and lifestyle
information to genetic and clinical data, Proposed Solution: Population
based repositories, Priority: High, Risk: Low.”
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3.2 Biological Perspective — The BioResearch Liaison
Program at the University of Washington

The University of Washington Health Sciences Library BioResearcher
Liaison  (http://healthlinks.washington.edu/hsl/liaisons/minie/)  provides
direct access to bioinformation consulting tools and training, and is a model
program for contending with the issues discussed in Section 2.3. The
BioResearcher Liaison program evolved out of an earlier effort called the
BioCommons, and has been fully integrated into the Library’s
“informationists” infrastructure. The most visible part of this program is the
BioResearcher Toolkit (http://healthlinks.washington.edu/bioresearcher) as
shown in Figure 3-4, which provides a “portal” to biological information
links, laboratory services, bioinformatics tools and consulting through the
Library’s Liaisons program (http://healthlinks.washington.edu/hsl/liaisons/).
The contrast between the BIOINFOMED study and the BioResearcher
toolkit is that the former lays out a research agenda for the future at the
intersection of bioinformatics and medical informatics whereas the later is
designed to address problems here and now. It is informative to compare and
contrast the two case studies looking at the difference between grand
challenges and on the ground realities.

The BioResearcher Toolkit is the second most visited part of the
HealthLink’s website (http://healthlinks.washington.edu/) after the more
clinically oriented Care Provider Toolkit (see website at:
http://healthlinks.washington.edu/care_provider/) with over 3,000 unique
hits per month.

Since the consolidation of the BioCommons into the Library in 2002, the
networked software and webware offerings have been the most used part of
the BioResearcher Toolkit part of the website, with over 800 registered users
of the various software packages available from the site and over 1,200
downloads over the past two years. These users are from that total pool of
faculty, staff and students at the University of Washington, and come from
large variety of departments as shown in Figure 3-5.

In addition to the BioResearcher Toolkit, the BioResearcher Liaison also
provides a 3-day course given every quarter, the BioResearcher Tune-Up.
The BioResearcher Tune-Up is a 3-Day intensive class with three modules—
Module I: NCBI Online, Module II: Bioinformatics Software Workshop and
Module III: Advanced Topics. Module I is a highly interactive tutorial
which is taught in a computer lab using a web based PowerPoint template
that allows students to directly follow the trainer through a tutorial on how to
use NCBI databases using a single biologically relevant example:
Huntington’s disease.
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The Huntington Disease theme allows exploration of every database on
Entrez, Blast and LocusLink (as well as Entrez Gene) and thus allows for a
simple way to follow a story that touches on all aspects of the disease from
the molecular level on up. Additionally, the module allows for the
demonstration of discovery through digital data mining—a heretofore little
known relationship between Huntington’s disease and Type I diabetes is
revealed while exploring the expression resources on GEO and SAGE
Genie. The course is highly popular, with more applicants than there is
room each quarter, and each attendee evaluates each module using an online
form identical to that used by NCBI to evaluate similar modules taught by
the EDUCOLLAB Group. Typically, this Module is rated as “Very Good”
to “Excellent.”

Module II is usually run by a guest vendor, who typically presents a
tutorial workshop on a bioinformatics tool available from the BioResearcher
Toolkit Computing and Laboratory section. For example, a
Workshop/Tutorial on GeneSifter (www.genesifter.net), a web-based
microarray analysis tool for analyzing gene expression data has been given
as part of the BioResearcher Tune-Up with students participating both in the
computer lab onsite and offsite via WebEx. The use of WebEx in particular
is highly interactive, and has allowed more students, faculty and staff to
attend than would be otherwise possible. Note also that one of the services
provided by GeneSifter is the archiving of raw data, and the means to release
that data in a highly interoperable format to the general scientific public in
compliance with NTH’s new rules on this issue.

Module III, the “Advanced Topics” part of the Tune-Up, covers a wide
variety of relevant research oriented topics, ranging from seminars on DNA
based nanotechnology to eukaryotic gene regulatory mechanisms as shown
in Figure 3-6.

The BioResearch Liaison program also provides for one-on-one
consulting with basic biology researchers at the University of Washington.
For example, a client recently requested assistance in identifying a simple
bioinformatics tool that would process molecular sequence data into
graphical maps of alternative splice products for the gene studied. This led
to a recommendation for the freely available NIH/NCBI tool “SPIDEY.” A
web-based open source program that was readily adapted to the clients
needs. All consult encounters are followed-up with online evaluation forms
to track the BioResearch Liaison’s effectiveness, and the results are usually
“Very Good” to “Excellent.”

Recently, the Health Sciences Library BioResearch Liaison provided a
version of the BioResearcher Tune-Up as an online training session to
Alaska, Hawaii, Montana, Nevada, Utah, and Wyoming using the Access
Grid videoconferencing technology shown in Figure 3-7. This provided a



88 MEDICAL INFORMATICS

training session focused on the use of the sequence alignment tool BLAST
(http://www.ncbi.nlm.nih.gov/BLAST/), and was a success from both the
technical and teaching perspectives—the conferencing technology worked
without glitches and online evaluations of the course by attending students
gave it a “Very Good” to “Excellent” rating.
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Figure 3-6. Advanced Topics section of the Tune-Up

Finally, the BioResearch Liaison program has had a number of notable
successes in Public Outreach, with an important one involving providing a
presentation to a large audience of science fiction writers and their
publishers on how to access genomics information online as part of the
“Science Friday” part of the recent 2004 Nebula Awards Conference in
Seattle. One end result: an offer to publish a scientifically factual review of
molecular biology and genomics in a prominent science fiction magazine
widely read by the general public.
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Project LARIAT: Online Training

Figure 3-7. An Online BioResearcher Tune-Up

4. CONCLUSIONS AND DISCUSSION

The field of bioinformatics (defined both as foundational research and
applied development of systems in support of biomedical research) presents
a number of exciting challenges and opportunities for biologists, computer
scientists, information scientists and bioinformaticists. These challenges sit
at the intersection of biology and information. Ideally, larger scale work in
this broad area involves a partnership between those with expertise in
relevant foundational domains (e.g. computer scientists) and application
domains (e.g. biologists) as well as bioinformaticists to serve as a bridge.
The potential benefits of addressing some of these challenges are great both
in terms of improving our understanding in general of how biological
systems work and in terms of applying a better understanding of how the
human biological system works in order to help improve health and treat
disease.

Though many definitions of bioinformatics exist we have chosen to focus
on the more inclusive definition to provide a richer picture of the
opportunities and challenges. Indeed, it is possible that from the new
perspectives of this more broadly defined bioinformatics the very
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informational nature of living systems may lead to a paradigm shift in
biology. Our illustrations using specific examples nevertheless represent
only a subset of the potential opportunities, and the inclusion of the broader
framework for categorizing research papers will perhaps stimulate a reader
of this book to look at the domain in a new way leading to unanticipated
benefits to the field more broadly.

An important and often neglected area in biomedical informatics broadly
(and bioinformatics by extension) is the human dimension captured in the
socio-technical aspects of biomedical systems. In this context it is important
to note two observations from the field of clinical (medical) informatics: a)
the majority of applications developed in the lab have failed to be
successfully deployed in the real world, and b) the majority of time, these
failures relate to human factors rather than technical factors. It is also
noteworthy that in addition to training scientists in the field in the use of
online Dbioinformatics resources such as NCBI's Entrez, the very
accessibility of these tools on the Internet allow for the possibility that the
general public may directly use and possibly even participate in the further
development of a “digital biology.” Unlike other major developments in
science in the 20" Century, the inherently “webified” nature of genomics
information makes it relatively accessible to all - amateur scientists really
can “try this at home.”

We have presented two closely related but contrasting perspectives (the
biological and the informatics perspectives) on the opportunities and
challenges for bioinformatics. We have done so to a) illustrate some subtle
but important distinctions, and b) demonstrate the value of having diverse
perspectives as one explores the field of bioinformatics.

Finally, we have illustrated again the potential benefits of further work in
this field through two case examples which also illustrate how researchers
are going about trying to realize this potential. Here again the differences in
the informatics and biological perspectives are worth noting. Particularly
intriguing are both the emerging realization from both perspectives that
biological systems are inherently digital, and the emerging parallel “Digital
Biosphere” deriving from bioinformatics research activities. A true
theoretical biology is at last emerging, where it may eventually be possible
to understand complex biological systems by modeling them in silico.
Significant progress in this direction has already taken place, with the
publication of a detailed computer model of the regulatory network
responsible for the control of flagellar biosynthesis in E.coli based on
quantitative gene expression data (Herrgard and Palsson, 2004). This model
is now being tested against the well defined genetic system of E. coli, and
has already provided a system for developing new insights into this
biological process. Particularly intriguing and revealing is the ready
exchange of information between the in vivo and in silico systems.
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Dan E. Krane. Michael L. Raymer. Fundamental Concepts of Bioinformatics. Publisher:
Benjamin Cummings, 2003.
Provides a good overview of Molecular Biology and Biological Chemistry for the non-
biologist then addresses important problems in bioinformatics for both the biologist and
informaticist (sequence alignment, substitution, phylogenetics, gene identification,
structure prediction, and proteomics).

Andreas D. Baxevanis. B.F. Ouellette, eds. Bioinformatics: A Practical Guide to the Analysis
of Genes and Proteins. 2™ Edition. Publisher: Wiley-Interscience. 2001.
Provides an overview of internet accessible tools for the biologist with an emphasis on
NCBI resources aimed at a mixed audience of biologists and developers. Each section is a
blend of the underlying biology, the computing principles involved, and some practical
hands on advice and tips.

Stanley 1. Leovsky, ed. Bioinformatics Databases and Systems. Publisher: Kluwer Academic
Publishers, 1999.
Provides an excellent overview of biological databases and computing systems aimed
more at the developer than the biologist but useful to both. A series of deployed
bioinformatics databases are described in some detail by the developers of the databases
(e.g. NCBI, KEGG, FlyBase). Then a series of deployed tools are described by their
developers in a 2" section (e.g. BioKleisli, SRS, ACDEB).

Z. Lacroix, and T. Critchlow, eds. Bioinformatics: Managing Scientific Data. Publisher:
Morgan Kaufmann, 2003.
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Provides an excellent overview from more of a computer science standpoint of data
management issues in biological research with an emphasis on data integration using
selected examples from both academics and industry.

ONLINE RESOURCES

NIH Biomedical Information Science and Technology Initiative (BISTI)
http://www bisti.nih.gov/

Report of the Working Group on Biomedical Computing, Advisory Committee to the
Director, National Institutes of Health, Co-Chairs: David Botstein and Larry Smarr “The
Biomedical Information Science and Technology Initiative”
http://www.nih.gov/about/director/060399.htm

NIH All About the Human Genome
http://www.genome.gov/10001772/

The University of Washington BioResearcher Toolkit
http://healthlinks.washington.edu/bioresearcher/

The NCBI website; the entry point for such search and analysis tools as Entrez and BLAST
etc. Also a source for online tutorials on the use of PubMed, CN3D (free structure
viewing tool), BLAST etc.
http://www.ncbi.nlm.nih.gov/

University of Pittsburg biolibrary website
http://www.hsls.pitt.edu/guides/genetics/

The Cornell University Life Sciences Library website, VIVO
http://vivo.library.cornell.edu/

QUESTIONS FOR DISCUSSION

1. Define interesting challenges in knowledge management and data mining
in biomedical informatics based on the primary bioinformatics literature.

2. Define interesting challenges in knowledge management and data mining
in biomedical informatics based on the primary biomedical research
literature or based on interviews with biomedical researchers.

3. Define key unmet needs related to bioinformatics tools based on the
primary bioinformatics literature and the primary biomedical research
literature. Compare and contrast the unmet needs from these two
perspectives.

4, What are the implications of the different perspectives from biology,
biomedical research, and bioinformatics research?
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5. What are the possibilities for theoretical biology based on knowledge
mining of biological databases?

6. Discuss the implications for medical systems of virtual patients and
disease modeling.

7. Given the informational nature of biological systems—what are the
implications for our definition and understanding of life?

8. Point-of-Care Diagnostics and biomedical informatics—what might be
the implications for future medical care and costs?
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1. INTRODUCTION

As the health care delivery system adopts information technology, vast
quantities of health care data become available to mine for valuable
knowledge. Health care organizations generally adopt information
technology to reduce costs as well as improve efficiency and quality.
Medical researchers hope to exploit clinical data to discover knowledge
lying implicitly in individual patient health records. These new uses of
clinical data potentially affect healthcare because the patient-physician
relationship depends on very high levels of trust. To operate effectively
physicians need complete and accurate information about the patient.
However, if patients do not trust the physician or the organization to protect
the confidentiality of their health care information, they will likely withhold
or ask the physician not to record sensitive information (California
HealthCare Foundation, 1999). This puts the patient at risk for receiving less
than optimum care, the organization at risk of having incomplete
information for clinical outcome and operational efficiency analysis, and
may deprive researchers of important data. Numerous examples exist of
inappropriate disclosure of individually identifiable data that has resulted in
harm to the individual (Health Privacy Project, 2003). Concerns about such
harm have resulted in laws and regulations such as the privacy rules of the
Health Insurance Portability and Accountability Act (HIPAA) of 1996
directly governing the use of such information by most health care providers,
health plans, payors, clearinghouses, and researchers. These laws and
regulations may also indirectly govern the use of this data by the business
partners of these entities. None of these laws forbid research or using
technologies such as data mining. All require medical investigators, whether
conducting biomedical research or quality assurance reviews, to take sound
precautions to respect and protect the privacy and security of information
about the subjects in their studies.

Data mining especially when it draws information from multiple sources
poses special problems. For example, hospitals and physicians are
commonly required to report certain information for a variety of purposes
from census to public health to finance. This often includes patient number,
ZIP code, race, date of birth, gender, service date, diagnoses codes (ICD9),
procedure codes (CPT), as well as physician identification number,
physician ZIP code, and total charges. Compilations of this data have been
released to industry and researchers. Because such compilations do not
contain the patient name, address, telephone number, or social security
number, they qualify as de-identified and, therefore, appear to pose little risk
to patient privacy. But by cross linking this data with other publicly
available databases, processes such as data mining may associate an
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individual with specific diagnoses. Sweeney (1997) demonstrates how to re-
identify such data by linking certain conditions with the voting list for
Cambridge, Massachusetts which contains demographic data on over 50
thousand voters. Birth date alone can uniquely identify the name and
address of up to 12% of people on such compilations with birth date and
gender up to 29%, birth date and 5-digit ZIP code up to 69%, and full postal
code and birth date up to 97%.

Recent work has demonstrated ways to determine the identity of
individuals from the trail of information they leave behind as they use the
World Wide Web (Malin and Sweeney, 2001) (Malin et al., 2003). IP
addresses from online consumers have been linked with publicly available
hospital data that correlates to DNA sequences for disease. Data collected as
individuals use the Internet to obtain health information, services and
products also pose hazards to privacy but much less law and regulation
governs the use and disclosure of this type of information (Goldman and
Hudson, 2000).

In this chapter we explore issues in managing privacy and security of
healthcare information used to mine data by reviewing their fundamentals,
components and principles as well as relevant laws and regulations. We also
present a literature review on technical issues in privacy assurance and a
case study illustrating some potential pitfalls in data mining of individually
identifiable information. We close the chapter with recommendations for
privacy and security good practices for medical data miners.

2. OVERVIEVW OF HEALTH INFORMATION
PRIVACY AND SECURITY

Often voluminous, heterogeneous, unstructured, lacking standardized or
canonical form, and incomplete, as well as surrounded by ethical
considerations and legal constraints, the characteristics of patient health care
records make them “messy.” Because they originate primarily as a
consequence of direct patient care with the presumption of benefit for the
patient, their use for research or administrative purposes must happen with
care to ensure no harm to the patient. Inappropriate disclosure, loss of data
integrity, or unavailability may each cause harm (Cios and Moore, 2002).
Recent laws and regulations such as HIPAA provide patients with legal
rights regarding their personally identifiable healthcare information and
establish obligations for healthcare organizations to protect and restrict its
use or disclosure. Data miners should have a basic understanding of
healthcare information privacy and security in order to reduce risk of harm
to individuals, their organization or themselves.
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2.1 Privacy and Healthcare Information

The term “privacy” bears many meanings depending on the context
of use. Common meanings include being able to control release of
information about one’s self to others and being free from intrusion or
disturbance in one’s personal life. To receive healthcare one must reveal
information that is very personal and often sensitive. We control the privacy
of our healthcare information by what we reveal to our physicians and others
in the healthcare delivery system. Once we share personal information with
our caregivers, we no longer have control over its privacy. In this sense, the
term “privacy” overlaps with “confidentiality” or the requirement to protect
information received from patients from unauthorized access and disclosure.
For example, the HIPAA Privacy Standard (Department of Health and
Human Services, 2002) requires healthcare providers, health plans and
health plan clearinghouses to establish appropriate administrative, technical,
and physical safeguards to protect the use and disclosure of individually
identifiable health information. HIPAA draws on ethical standards long
developed in the health care disciplines that identify protecting the
confidentiality of patient information as a core component of the doctor-
patient relationship and central to protecting patient autonomy. Thus, ethics,
laws and regulations provide patients with certain rights and impose
obligations on the healthcare industry that should keep patient health
information from being disclosed to those who are not authorized to see it.

2.2 Security and Healthcare Information

Use of the Internet has resulted in recognition that information
technology security is of major importance to our society. This concern
seems relatively new in healthcare, but information technology security is a
well established domain. A large body of knowledge exists that can be
applied to protect healthcare information. A general understanding of
security can be obtained by understanding:

1. Security Components
2. Security Principles
3. Threats, Vulnerabilities, Control Measures and Information Assurance

4, Achieving Information Security: Administrative, Physical, Technical
Safeguards
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2.2.1 Security Components

Security is achieved by addressing its components: confidentiality,
integrity, availability and accountability.
1. Confidentiality is the property that data or information is not made
available or disclosed to unauthorized persons or processes.

2. Integrity is the property that data or information have not been altered or
destroyed in an unauthorized manner.

3. Availability is the property that data or information is accessible and
uscable upon demand by an authorized person.

4. Accountability is the ability to audit the actions of all parties and
processes which interact with the information and to determine if the
actions are appropriate.

2.2.2 Security Principles

In 1997 the International Information Security Foundation published the
latest update to this set of generally-accepted system security principles
(International Security Foundation, 1997):

1. Accountability Principle

The responsibilities and accountability of owners, providers and users of
information systems and other parties concerned with the security of
information systems should be explicit.

2. Awareness Principle

In order to foster confidence in information systems, owners, providers
and users of information systems and other parties should readily be able,
consistent with maintaining security, to gain appropriate knowledge of and
be informed about the existence and general extent of measures, practices
and procedures for the security of information systems.

3. Ethics Principle

Information systems and the security of information systems should be
provided and used in such a manner that the rights and legitimate interests of
others are respected.

4. Multidisciplinary Principle

Measures, practices and procedures for the security of information
systems should take account of and address all relevant considerations and
viewpoints, including technical, administrative, organizational, operational,
commercial, educational and legal.
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5. Proportionality Principle

Security levels, costs, measures, practices and procedures should be
appropriate and proportionate to the value of and degree of reliance on the
information systems and to the severity, probability and extent of potential
harm, as the requirements for security vary depending upon the particular
information systems.

6. Integration Principle

Measures, practices and procedures for the security of information
systems should be coordinated and integrated with each other and with other
measures, practices and procedures of the organization so as to create a
coherent system of security.

7. Timeliness Principle

Public and private parties, at both national and international levels,
should act in a timely coordinated manner to prevent and to respond to
breaches of security of information systems.

8. Reassessment Principle
The security of information systems should be reassessed periodically, as
information systems and the requirements for their security vary over time.

9. Equity Principle
The security of information systems should be compatible with the
legitimate use and flow of data and information in a democratic society.

2.2.3 Threats, Vulnerabilities, Control Measures and Information
Assurance

Numerous threats exist to computer systems and the information they
contain originating from within and outside organizations. Some common
threats include malicious code such as viruses, Trojan horses, or worms.
Malicious code often takes advantage of vulnerabilities in operating system
software but depends, too, upon organizational weaknesses such as the
failure to deploy, update or train workers in the use of antivirus software.
Malicious code may enable denial of service attacks, impersonation,
information theft and other intrusions. Attacks by famous malicious code
such as the Melissa or Lovebug viruses highlight the threat of “hackers”,
outsiders with intent to harm specific organizations or network operations in
general. Insiders with privileged access to network operations and a grudge
against their employer actually wreak the most harm to say nothing of ill-
trained workers unintentionally making mistakes.
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For individuals with responsibility for protecting the security of
computerized information assets, the important point to remember is that
each computer system with its host organization has its own security
weaknesses or vulnerabilities. To minimize the likelihood of harm from
threats, organizations must perform an information security risk assessment
which serves as the foundation for an information assurance plan. Because
computer security is relative, i.e. absolute security does not exist, an
information assurance plan seeks to apply cost-effective control measures to
reduce to acceptable levels the likelihood of loss to an organization from
likely threats. In other words, the information assurance plan is designed to
manage risk.  Control measures include policies, procedures, and
technology. Risk assessments should be repeated periodically because both
threats and vulnerabilities change over time and used to update informiation
assurance plans.

The HIPAA Security Standard reflects good practice in the information
security industry and, thus, provides guidance to medical dataminers about
how to proceed. Thanks to HIPAA many resources have emerged in the last
several years to help, including The CPRI Toolkit: managing information
security in healthcare (see http://www.himss.org/resource) and Managing
Information Security Risks: The OCTAVE™ Approach (Alberts and Dorofee,
2003). The website of the National Institute of Standards and Technology
contains a wealth of guidance on computer information security in general as
well as specific topics (see http://crst.nist.gov, particularly the Special
Publications section).

224 Achieving Information Security: Administrative, Physical, and
Technical Safeguards

The measures to control threats and vulnerabilities can be organized into
three categorizes of safeguards: administrative, physical and technical. The
HIPAA Security Standard describes “Administrative Safeguards” as
administrative actions, policies and procedures “to manage the selection,
development, implementation, and maintenance of security measures to
protect electronic protected health information and to manage the conduct of
the covered entity's workforce in relation to the protection of that
information” (Department of Health and Human Services, 2003, pg. 261).
Administrative safeguards include policies and procedures such as risk
assessment and management, assigning responsibility for information
security, developing rules and procedures for assigning access to
information, sanctioning misbehavior, responding to security incidents and
implementing a security training and awareness program. Physical
safeguards include policies, procedures and measures to control physical
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access to information assets such as computer sites, servers, networks, and
buildings. HIPAA focuses special attention on workstations processing
patient information requiring hospitals to identify their uses as well as
controls on physical access. Technical controls include the various devices
typically associated with “information security” such as passwords,
firewalls, and encryption as well as technical measures for assuring health
information integrity.  Virtual private networks, tokens for user access,
audit logs and public/private key infrastructure (PKI) are examples of
technical safeguards.

2.2.5 Laws and Regulations

The following regulations found in the Code of Federal Regulations
(CFR) are likely to apply to the use of health care data in data mining in the
United States:

1. Standards for Privacy of Individually Identifiable Health Information;

Final Rule Title 45 CFR Parts160 and 164, known as the HIPAA

Privacy Standard (Department of Health and Human Services, 2002),

2. Security Standards Final Rule Title 45 CFR Parts 160, 162, and 164,
known as the HIPAA Security Rule, (Department of Health and Human
Services, 2003), and

3. Department of Health and Human Services (HHS) or the Food and Drug
Administration (FDA) Protection of Human Subjects Regulations, known
as the Common Rule Title 45 CFR part 46 (Department of Health and
Human Services, 2001) or Title 21 CFR parts 50 and 56, respectively
(Food and Drug Administration, 2002).

The European Union, Canada, and Australia have instituted their own
laws and regulations in this area (see list of websites cited in Section 9.
resources).

A full explanation of the HIPAA regulations is beyond the scope of this
chapter, however understanding some of its basic requirements are essential
for those engaging in healthcare data mining. These regulations set the
national floor for the use and disclosure of most personally identifiable
health information in the health care delivery system in the United States.
While they supersede contrary state laws, they do not supersede state laws
and regulations that are more stringent. Many states have more stringent
laws and regulations. A discussion of common questions follows (see also
http://www.hhs.gov/ocr/hipaa/ )

Who must comply with HIPAA?
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Most healthcare providers, health plans and healthcare clearinghouses
must comply with HIPAA. Excluded from HIPAA are healthcare providers
that do not transmit electronic information, records covered by the Family
Educational Rights and Privacy Act and employment health records held by
a covered entity in its role as employer. Healthcare information collected by
entities not covered by HIPAA is not subject to these regulations.

What information is protected by HIPAA?

The HIPAA Privacy Standard applies to individually identifiable health
information including oral, written and electronic information used by
covered entities to make decisions. For providers this includes medical
records and billing records. For health plans this includes enrollment,
payment, claims adjudication, and case or medical management record
systems records. This protected health information is known as PHI. The
HIPAA Security Standard only applies to electronic information and does
not cover oral or paper information.

What rights does HIPAA grant patients?

Patients have a right to:
1. a notice of information practices from providers and health plans that
states how PHI is used and protected,

2. obtain copies of their healthcare records,
3. amend their healthcare records, and

4. an accounting of disclosures made for purposes other than treatment,
payment and healthcare operations.

What must entities covered by HIPAA do?

Covered entities must:
1. provide a notice of information practices and abide by the notice,

2. designate an individual to be responsible for privacy,

3. provide appropriate administrative, physical and technical safeguards for
PHI.

4. only use and disclose PHI in accordance with the HIPAA Privacy
Standard, and

5. have written agreements with business associates with whom they share
PHI requiring the business associate to protect the PHI

What are the key rules for use and disclosure of PHI?
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1. Except for specific exclusions, an authorization from the patient is
required for covered entities to use or disclose PHI for purposes other
than treatment, payment and healthcare operations.

2. Only the minimum necessary amount of PHI may be used or disclosed to
satisfy the purpose of the use or disclosure, with the exception that
physicians may disclose the entire record to other providers for treatment
purposes.

What is meant by healthcare operations?

Healthcare operations are the usual business operations of healthcare
providers and health plans. Specifically included are: quality assessment and
improvement activities, outcomes evaluation, development of clinical
guidelines, population-based activities relating to improving health or
reducing health care costs, protocol development, case management and care
coordination, contacting of health care providers and patients with
information about treatment alternatives; and related functions that do not
include treatment, reviewing the competence or qualifications of health care
professionals, evaluating practitioner, provider performance and health plan
performance, conducting training programs in which students, trainees, or
practitioners in areas of health care learn under supervision to practice or
improve their skills as health care providers, training of non-health care
professionals, accreditation, certification, licensing, or credentialing
activities, underwriting, premium rating, and other activities relating to the
creation, renewal or replacement of contracts, conducting or arranging for
medical review, legal services, and auditing functions, including fraud and
abuse detection and compliance programs, business planning and
development, such as conducting cost-management and planning-related
analyses for managing and operating the entity, including formulary
development and administration, development or improvement of methods
of payment or coverage policies; customer service, resolution of internal
grievances, sale, transfer, merger, or consolidation.

What is the difference between health care operations and research?

For HIPAA, research means a systematic investigation, including
research development, testing, and evaluation, that is designed to develop or
contribute to generalizable knowledge. If the same query is used on the same
data in one case to improve efficiency, and in the second case to contribute
generalizable knowledge, it is not research in the first case but is in the
second case. Additional protections must be in place for research.
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What does HIPAA require for research?

HIPAA research requirements only apply to HIPAA covered entities
(providers, health plans and health plan clearinghouses).
PHI used or disclosed for research must be authorized by the patient
unless:
1. A waiver has been granted by a privacy review board or institutional
review board (IRB):

e The review board or IRB must document that they believe the PHI
used or disclosed involves no more than minimal risk to the privacy
of individuals based on:

o An adequate plan to protect PHI identifiers from improper use
and disclosure;

o An adequate plan to destroy those identifiers at the earliest legal
and practical opportunity consistent with the research, and

o Adequate written assurances that the PHI will not be reused or
disclosed to any other person or entity except as required by law,
for authorized oversight of the research study, or for other
research for which the use or disclosure of the PHI is permitted
by the Privacy Rule.

e The research could not practicably be conducted without the
requested waiver.

e The research could not practicably be conducted without access to
and use of the PHL

2. For reviews preparatory to research and with the researcher making

the following written assertions:

o The use or disclosure is sought solely to review PHI as necessary to
prepare the research protocol or other similar preparatory purposes;

e No PHI will be removed from the covered entity during the review;
and

e The PHI that the researcher secks to use or access is necessary for
the research purposes.

3. For research on decedent’s information, the covered entity is assured
by the researcher that the use or disclosure is solely for research on the
PHI, and is necessary for research purposes.

4. If the PHI has been de-identified in accordance with the standards of
the Privacy Rule and therefore is no longer PHI. HIPAA describes
two approaches for de-identification, including 1) a person with
appropriate knowledge and experience applies and documents
generally accepted statistical and scientific methods for de-identifying
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information, or 2) remove 18 specific identifiers listed in section
164.514 of the rule.

5. If the information is released as a limited data set as prescribed by the
Privacy Standard (with 18 specific identifiers removed) and a data
usage agreement with the researchers stating that they will not
attempt to re-identify the information.

What are the exceptions to the requirement for authorizations prior to
disclosure of PHI?

HIPAA permits disclosures without authorizations as required by law for
public health, health oversight activities, victims of abuse, neglect or
domestic violence, judicial and administrative proceeding, law enforcement,
for specialized government functions (military and veteran activities,
national security and intelligence, medical suitability, correctional
institutions, public benefit programs) and research. It should be noted that
for each of these exceptions there are additional provisions that govern the
details of the disclosures. It should also be noted that HIPAA permits but
does not require any disclosures.

In addition to the HIPAA Privacy Rule researchers must comply with the
HHS and FDA Protection of Human Subjects Regulations.

What is the relationship of these regulations?

“There are two main differences. First, the HHS and FDA Protection of
Human Subjects Regulations are concerned with the risks associated with
participation in research. These may include, but are not limited to, the risks
associated with investigational products and the risks of experimental
procedures or procedures performed for research purposes, and the
confidentiality risks associated with the research. The Privacy Rule is
concerned with the risk to the subject's privacy associated with the use and
disclosure of the subject's PHI.

Second, the scope of the HHS and FDA Protection of Human Subjects
Regulations differs from that of the Privacy Rule. The FDA regulations
apply only to research over which the FDA has jurisdiction, primarily
research involving investigational products. The HHS Protection of Human
Subjects Regulations apply only to research that is conducted or supported
by HHS, or conducted under an applicable Office for Human Research
Protections (OHRP)-approved assurance where a research institution,
through their Multiple Project Assurance (MPA) or Federal-Wide Assurance
(FWA), has agreed voluntarily to follow the HHS Protection of Human
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Subjects Regulations for all human subjects research conducted by that
institution regardless of the source of support. By contrast, the Privacy Rule
applies to a covered entity's use or disclosure of PHI, including for any
research purposes, regardless of funding or whether the research is regulated
by the FDA” (National Institutes of Health, pg. 5, February 5, 2004).

What are the differences between the HIPAA Privacy Rule's requirements
for authorization and the Common Rule's requirements for informed
consent?

“Under the Privacy Rule, a patient's authorization is for the use and
disclosure of protected health information for research purposes. In contrast,
an individual's informed consent, as required by the Common Rule and the
Food and Drug Administration's (FDA) human subjects regulations, is a
consent to participate in the research study as a whole, not simply a consent
for the research use or disclosure of protected health information. For this
reason, there are important differences between the Privacy Rule's
requirements for individual authorization, and the Common Rule's and
FDA's requirements for informed consent. However, the Privacy Rule's
authorization elements are compatible with the Common Rule's informed
consent elements. Thus, both sets of requirements can be met by use of a
single, combined form, which is permitted by the Privacy Rule. For
example, the Privacy Rule allows the research authorization to state that the
authorization will be valid until the conclusion of the research study, or to
state that the authorization will not have an expiration date or event. This is
compatible with the Common Rule's requirement for an explanation of the
expected duration of the research subject's participation in the study. It
should be noted that where the Privacy Rule, the Common Rule, and/or
FDA's human subjects regulations are applicable, each of the applicable
regulations will need to be followed (National Institutes of Health, pg. 10,
February §, 2004)

Under the Common Rule, when may individually identifiable information
be used for research without authorization or consent?

“Research involving the collection or study of existing data, documents,
records, pathological specimens, or diagnostic specimens, if these sources
are publicly available or if the information is recorded by the investigator in
such a manner that subjects cannot be identified, directly or through
identifiers linked to the subjects” (Department of Health and Human
Services, pg S, August 10, 2004).
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3. REVIEW OF THE LITERATURE: DATA MINING
AND PRIVACY AND SECURITY

In the previous sections managing health information privacy and
security has been described as required by organizations involved in the
industry of delivering healthcare; e.g. healthcare providers, health plans,
payors, and clearinghouses. In this section we will explore the additional
issues that large scale data mining presents for managing health information
privacy and security. Data mining offers many possible benefits to the
medical community, including administrators as well as researchers. One
example of the value that can be derived from large data collections is
demonstrated by Kaiser Permanente’s Northern California Region reduction
of the risk of their members dying from cardiovascular causes so that it is no
longer their number one cause of death. According to the 2002 Annual
Report of the National Committee for Quality Assurance (2002, pg. 23),
“Since 1996, appropriate cholesterol control (as defined by HEDIS, an LDL
level of less than 130) among the CAD population has improved from 22
percent to 81 percent. Among eligible patients discharged after a heart
attack, 97 percent were on beta-blockers. The mortality rate from heart
attacks at KPNC hospitals are up to 50 percent lower than at similar
hospitals across the state.” This was made possible by the development of a
clinical data repository to support real-time direct healthcare delivery to its
membership (over three million individuals), evidence-based medical
knowledge and use of this data to guide their healthcare delivery processes
(Levin et al., 2001) (Pheatt et al., (2003).

As information technology has become commonly used to support the
core processes of healthcare, enormous volumes of data have been produced.
Numerous organizations desire access to this data to apply techniques of
knowledge discovery. Privacy concerns exist for information disclosed
without illegal intrusion or theft. A person’s identity can be derived from
what appears to be innocent information by linking it to other available data.
Concerns also exist that such information may be used in ways other than
promised at the time of collection. Ways to share person specific data while
providing anonymity of the individual are needed. Stated another way,
controls are needed to manage the inferences about individual identity that
can be made from shared person specific data. The Federal Office of
Management and Budget (1994) has developed an approach to limit
disclosure from government data so that the risk that the information could
be used to identify an individual, either by itself or in combination with other
information, is very small. This Report on Statistical Disclosure Limitation
Methodology, Statistical Policy, discusses both tables and microdata. The
report includes a tutorial, guidelines, and recommendations for good
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practice; recommendations for further research; and an annotated
bibliography. Techniques, rules and procedures for tables (magnitude versus
frequency, counts, suppression, random versus controlled rounding,
confidentiality editing) and microdata (sampling, removing identifiers,
demographic detail, high visibility variables, adding random noise, rank
swapping, blank and imputation for randomly selected records and blurring)
are documented.

3.1 General Approaches to Assuring Appropriate Use

Past experience has shown three approaches to be common for using
personal data in research and secondary analysis: using personal data only
with the subject’s consent, using personal data without explicit consent with
a public interest mandate, and making the data anonymous before use
(Lowrance, 2002). The discussion above of HIPAA and the Common Rule
address the first two of these techniques, obtaining subject consent and
authorized public interest use such as public health. Developing methods for
assuring data anonymity offers promise for the future.

As Sweeney (2003, pg. 15) says: “The goal of pioneering work in data
anonymity is to construct technology such that person-specific
information can be shared for many useful purposes with scientific
assurances that the subjects of the data cannot be re-identified.”

A discussion of specific methods for making data anonymous follows
below. Each specific approach embodies one or more of four general
approaches to the problem of assuring against disclosure of confidential
information when querying statistical databases containing individually
identifiable information including: conceptual, query restriction, data
perturbation, and output perturbation approaches (Adam and Wortmann,
1989). Unfortunately none of these approaches offers a completely
satisfactory solution. The conceptual model has not been implemented in an
on-line environment and the others involve considerable complexity and cost
and may obscure medical knowledge.

3.1.1 Conceptual approach

In the conceptual model, a user can access only the properties of
population (i.e. a collection of entities that have common attributes and its
statistics such as patients of certain ages, genders and ZIP codes) and tables
that aggregate information. The user thus knows the attributes of the
population and its origin, but may not manipulate the data or launch queries
that merge and intersect subpopulations from the collection. The user may
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only see statistical tables that contain either zero or at least two individuals
never information on a single individual. With no access to the data and
tables with only data on more than one individual, disclosure of information
about a single individual is prevented. Tables 4-1 and 4-2 illustrate
acceptable and unacceptable data tables using the conceptual approach.

Table 4-1 displays attributes only about types of persons by age, sex and
ZIP and includes cells with numbers larger than one. Table 4-2 displays the
same types of data but includes one cell with information about only a single
individual (Female, Age 31-40), a presentation not permitted in the
conceptual approach. While this model is thought to provide anonymity, it
has never been implemented at a practical level with a production software
system.

Table 4-1. Population Attributes Acceptable Table

Attributes # Male # Female VALY

Age 10-20 2031 2301 94027
Age 21-30 231 243 94027
Age 31-40 24 27 94027

Table 4-2. Population Attributes Unacceptable Table

Attributes Male Female ZIP

Age 10-20 231 241 94027

Age 21-30 23 24 94027

Age 31-40 2 1 94027
3.1.2 Query restriction approach

Five methods have been developed to restrict queries:

1. query-set-size control - a method that returns a result only if its size is
sufficient to reduce the chances of identification,

2. query-set-overlap control - a method that limits the number of
overlapping entities among successive queries of a given user,

3. auditing — a method that creates up-to-date logs of all queries made
by each user and constantly checks for possible compromise when a
new query is issued,

4. cell suppression — a method that suppresses cells that might cause
confidential information to be disclosed from being released, and

5. partitioning — a method that clusters individual entities into a number
of mutually exclusive subsets thus preventing any subset from
containing precisely one individual.
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3.1.3 Data perturbation

This approach alters the data before permitting access to users. For
example the source data is replaced with data having the same probability
distribution (Islan and Brankovic, 2004). In other words, noise is inserted in
the data that secks to achieve anonymity and at the same time not change the
statistical significance of query results. Users do not have access to the
original data.

3.14 Output perturbation

This approach permits use of the original data, but modifies or renders
the output incomplete. Techniques of output perturbation include processing
only a random sample of the data in the query, adding or subtracting a
random value that will not alter the statistical difference from the result, and
rounding up or down to the nearest multiple of a certain base. Murphy and
Chueh have published a successful implementation of query output
perturbation to determine if a research database contains a set of patients
with specific characteristics of sufficient size for statistical significance
(Murphy and Chueh, 2002). In this example, the query result alters the
number of patients with the specific characteristics by adding or subtracting
a small random number. In addition, for values nearing zero, a result of less
than three is presented.

3.2 Specific Approaches to Achieving Data Anonymity

Rendering data anonymous assures freedom from identification,
surveillance or intrusion for the subjects of medical research or secondary
data analysis while allowing data to be shared freely among investigators
(Meany, 2001). Achieving complete data anonymity poses a considerable
challenge. For example, 87% of individuals in the United States can be
uniquely identified by their date of birth, gender and 5-digit ZIP code
(Sweeney, 2002). True anonymity also poses ethical problems of its own,
including loss of the possibility of benefit to the individual patient from
knowledge discovered from the data, greatly increased complexity of
maintaining an up-to-date database, and elimination of some checks against
scientific fraud (Behlen and Johnson, 1999).

A number of techniques exemplifying or combining the general
approaches described above have been advocated to help address this issue,
including:

1. Data aggregation
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2. Data de-identification
3. Binning

4. Pseudonymisation

5

. Mediated access
3.2.1 Data Aggregation (an example of the Conceptual Approach)

Providing access only to aggregate data while prohibiting access to
records containing data on an individual constitutes one approach commonly
advocated to reduce risks to privacy. Although this approach does protect
privacy, it critically limits medical research. Clinical research requires
prospectively capturing and analyzing data elements associated with
individual patients. Outliers are often a major focus of interest. Aggregate
data does not support such efforts.

3.2.2 Data de-identification (an example of the Data Perturbation
Approach)

The HIPAA Privacy Standard excludes de-identified health information
from protected health information. De-identified health information may be
used and disclosed without authorization. The HIPAA Privacy Standard
considers information to have been de-identified by the use of either a
statistical verification of de-identification or by removing 18 explicit
elements of data. Such data may be used or disclosed without restriction.
The details of these approaches are described in the pamphlet, Proftecting
Personal Health Information in Research: Understanding the HIPAA
Privacy Rule (Department of Health and Human Services, July 13, 2004).

While these approaches to de-identification provide compliance with the
HIPAA Privacy Standard, they do not guarantee anonymity. A number of
reports have appeared recently that criticize these approaches for being too
complicated and posing a threat to clinical research and care (Melton, 1997)
(Galanddiuk, 2004). A variety of approaches for this issue have been
published including successful implementation of policies, procedures,
techniques and toolkits that meet academic medical center needs and comply
with the Privacy Standard (UCLA) (Sweency 1996) (Moore et al, 2000)
(Ruch et al, 2000) (Moore et al 2001) (Thomas et al, 2002), (Lin et al, 2004)
(Oiliveira and Zaiane, 2003) (Saul, 2004).

Goodwin and Prather performed a study that de-identified the data in the
Duke TMR perinatal database in accordance with the HIPAA Privacy
Standard and assigned a coded identifier to each patient to permit re-
identification of patients under controlled circumstances. The database
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contained data on 19,970 patients with approximately 4,000 potential
variables per patient (Goodwin and Prather, 2002). They noted several
issues:
1. To meet the requirement for removing all elements of date except year
required the conversion of dates to days since conception to permit the
data to be useful for pregnancy studies.

2. Clinician users were still able to identify one patient by her extremely
young age.

3. The process was tedious, time-consuming and expensive.

They concluded that it is imperative to maintain the public’s trust by
doing everything possible to protect patient privacy in clinical research, and
privacy protection will require careful stewardship of patient data.

3.2.3 Binning (Another example of the Data Perturbation
Approach)

Binning deploys a technique for generalizing records in a database by
grouping like records into a category and eliminating their unique
characteristics (for example, grouping patients by age rather than date of
birth). Elegant work has been done using this approach. One approach
permits the level of anonymity to be controlled and matched to a user profile
indicating the likelihood that data external to the database would be used
permitting re-identification (Sweeny, 1997). Another report provides a
measure of the information loss due to binning (Lin et al, 2002).

3.24 Pseudonymisation (Another example of the Data Perturbation
Approach)

This technique involves replacing the true identities of the individuals
and organizations while retaining a linkage for the data acquired over time
that permits re-identification under controlled circumstances (Quatin et al.,
1998). A trusted third party and process is involved. The trusted third party
and process must be strictly independent, adhere to a code of conduct with
principles of openness and transparency, have project-specific privacy and
security policies and maintain documentation of operating, reporting and
auditing systems (Claerhout et al., 2003).
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3.2.5 Mediated access (A combination of Query Restriction and
Output Perturbation Approaches)

Mediated access puts policy, procedure and technology between the user
and the data and, thus, illustrates a general point that all medical
investigators should bear in mind: sound health information privacy and
security programs include a range of controls (Wiederhold and Bilello,
1998). “The system is best visualized as residing on a distinct workstation,
operated by the security officer. Within the workstation is a rule-based
system which investigates queries coming in and responses to be transmitted
out. Any query and any response which cannot be vetted by the rule system
is displayed to the security officer for manual handling. The security officer
decides to approve, edit, or reject the information. An associated logging
subsystem provides both an audit trail for all information that enters or
leaves the domain, and provides input to the security officer to aid in
evolving the rule set, and increasing the effectiveness of the system.”
(Wiederhold et al, 1996). The workstation, nonetheless, depends on and
functions as a component of a broader security architecture that provides
layered protection against unauthorized access by deploying sound practices
such as encryption of transmissions, intrusion prevention with firewalls and
a public/private key infrastructure. When functioning as a whole, the
workstation and technical infrastructure provide several security controls,
including:

1. authentication of users (optionally more extensive for external users),
2. authorization (determination of approved role),

3. processing of requests for data using policy-based rules,

4

. initiating interaction of security officer oversight for requests that
conflict with rules,

5. communication of requests that meet the rules to the internal
databases,

6. communication from the internal databases of unfiltered results,
7. processing the unfiltered results to ensure that policy rules are met,

8. initiating interaction with security officer oversight when results do
not meet the rules,

9. writing origin identification, query, action and results to a log file, and

10. transmission of data meeting rules to requestor (Wiederhold, 2002).

Ferris and colleagues report an approach that adds de-identification and
re-identification to other security controls and supports the HIPAA
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requirement for accounting for disclosures (Ferris et al, 2002). There are two
modules in this approach:
1. Key Escrow Module

This module consists of a privacy manager that uses key escrow to
support de-identification and re-identification, user authentication, logging
of user sessions, generation and storage of query-specific public/private keys
and manages role-based access.

2. Biomedical Database Module

This module associates the research database with the database manager
and audit database. It is used for accessing the research data, generating an
audit trail and de-identifying results when required.

33 Other Issues in Emerging “Privacy Technology”

Two kinds of privacy issues for computer science research have been
identified: those inherent in applications of developing technology and those
related to information practices needed in the development of technology.
New cfforts in “privacy technology” attempt to protect individual privacy
while permitting the collection, sharing and uses of person-specific
information. This research addresses two major concerns: disclosure of
individually identifiable sensitive information by the linkage of information
with other publicly available databases, and the use of information obtained
for one purpose for another purpose. Threats to Homeland Security have
made considerable funding available to investigate this topic in order to
support bio-terrorism surveillance and protect individual privacy.

For example, Sweeney and colleagues at Camegie-Mellon University
have built “CertBox” to provide privacy protection in biosurveillance.

“Emergency room visits and other healthcare encounters will be reported
daily to the state’s public health department under the authority of public
health law. Collected health information will be filtered in real-time by a
self-contained machine called a CertBox, which automatically edits
combinations of fields (often demographics) so that released information
relates to many people ambiguously. Settings are preset for a specific
population and set of data ficlds and then sealed to prohibit tampering.
CertBox technology de-identifies health information in accordance to the
scientific standard of de-identification allowed under HIPAA. The
resulting de-identified data is then shared with bio-terrorism surveillance
systems. CertBox technology (more generally termed a “privacy
appliance” by DARPA) allows us to certify that resulting data are
properly de-identified and to warranty that resulting data remain
practically useful for anomaly detection algorithms in bioterrorism
surveillance” (Sweeney, L., 2003, p.15).
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Other aspects of privacy technology include detecting and removing or
replacing identifying information from information in text (e.g. medical
reports, letters, notes, email) (Sweeney, L, 1996) (Ruch, et al., 2000) as well
as facial images (Newton, et al., 2003). Techniques have been reported for
embedding encrypted digital watermarking and patient identifiers in medical
images (Tzelepi, 2002) to protect privacy during use and transmission.

Data mining investigators have begun encouraging their colleagues to
take a research interest in issues related to protecting the privacy and
security of personal information. For example, Berman argues that:

“Human subjects issues are a legitimate area of research for the medical
data miners. Novel protocols for achieving confidentiality and security
while performing increasingly ambitious studies (distributed network
queries across disparate databases, extending the patient's record to
collect rich data from an expanding electronic medical record, linking
patient records to the records of relatives or probands, peer-to-peer
exchange of medical data) will be urgently needed by the data mining
community” (Berman, 2002).

The techniques of data mining have been used to address the issue of
auditing access and use of data as well as for testing devices for intrusion
detection and access control. Commercial products exist that automatically
correlate and compare suspicious information gathered from different points
in computer systems, draw conclusions, and act on potential attacks and
security violations (Dicker, 2003).

Berman’s suggestion illustrates a general point: research into privacy and
security technology necessarily entails the study of values and their
embodiment in technological artifacts. Instead of assuming that ensuring
privacy necessarily requires sacrificing research efficiency and efficacy,
Berman’s suggestion pushes researchers toward considering their
relationship in specific instances and developing new approaches to both
privacy and research design. In this respect, Berman echoes core concerns
of a major body of research in the field of Human-Computer Interaction,
known as “Value Sensitive Design” (Friedman, Kahn, and Borning, draft
June 2003; Taipale, 2003).

34 “Value Sensitive Design”: A Synthetic Approach to
Technological Development

“Value Sensitive Design” attempts to incorporate relevant important
considerations (values) into new technology throughout the entire lifecycle
of design, development, deployment and retirement. Deriving inspiration
from related ideas in computer ethics, social informatics, computer
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supported cooperative work and participatory design, value sensitive design
implements the basic proposition that all technology relates in design and
use to important values and, therefore, cannot fundamentally emerge as
“value-neutral” (Friedman, Kahn, and Borning, draft June 2003). Value
sensitive design enables incorporating any value into the design process but
places high priority on human values “with ethical import” including privacy
as well as related values in health care such as human welfare, trust,
autonomy, accountability, identity, and informed consent.

In practice, value sensitive design includes conceptual, empirical and
technical investigations. In conceptual investigations, designers consider
key questions about the context of technological implementation such as
“Who are the direct and indirect stakeholders and how are they affected?”
“What values are implicated and how do the designers evaluate their relative
importance and priority?” Empirical investigations entail study of the actual
human contexts of technological implementation. Technical investigations
evaluate the relative support particular technological designs provide for the
interests of specific stakeholders and realization of specific values. These
investigations often identify conflicts among stakeholders and values that
must be addressed in the design process. For example, in designing data
mining technologies for medical investigations, stakeholders include
investigators, study subjects and patients with the disease. Values include
assuring integrity of research data as well as enhancing the welfare of
patients and protecting subject privacy. The properties of specific technical
designs may provide greater support for the interests and values of one group
of stakeholders (for example, the subjects and their privacy) than for others.
All design methodologies inevitably make choices of these kinds. Value
sensitive design has developed means for making explicit the choices and
their rationale (Friedman, Kahn, and Borning, draft June 2003).

In a spirited defense of data mining in bioterrorism surveillance, Taipale
invokes the principles of value sensitive design in justifying privacy
protections slated for development under the Terrorist Information
Awareness (TIA) program (Tiapale, 2003) (see case study below for detailed
review of TIA). TIA included programs for developing privacy appliances
incorporating what Taipale calls rule-based processing, selective revelation,
and strong credentialing and auditing. Rule-based processing entails
research on intelligent query agents that negotiate access to specific data
bases depending on the inquirer’s authorization and meta-data labels about
specific data items. Selective revelation technologies employ

“an iterative, layered structure that reveals personal data partially
and incrementally in order to maintain subject anonymity. Initial
revelation would be based on statistical or categorical analysis ....
This analysis would be applied to data that was sanitized or filtered
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in a way so that it did not reveal personally identifying information.
Based on initial results, subsequent revelations may or may not be
justified. At each step, legal and technical procedures can be built
in to support particular privacy policies (or other policies, such as
security clearances, etc.) (Taipale, 2003 pg. 79)”.

Strong, encrypted tamper-proof auditing mechanisms that log access to
distributed databases help protect against insider and outsider threats.
Sweeney’s “CertBox” constitutes an example of such a privacy appliance.

3.5 Responsibility of Medical Investigators

In addition to the usual security risks, medical research may add potential
loss of life or health and requires special emphasis on privacy,
confidentiality and data integrity (Berman, 2002). The Common Rule
provides for subject safety and, with the HIPAA Privacy Standard, specifies
accountability for the use and disclosure of protected health information.
The medical data miner must conduct only valid research and in a way that
protects human subjects. A privacy review board or institution review board
is required to provide oversight for each project. Careful attention must be
given to assure that there is proper justification and documentation of the
process especially for waivers for individual consent or use of research
conducted under the exemption of the common rule or the HIPAA Privacy
Standard (Berman, 2002).

The Utah Resource for Genetic and Epidemiologic Research (RGE)
(http://www.research.utah.edu/rge/) is an example of a well established
medical data mining implementation where responsibilities have been made
explicit (Wylie J.E., and Mineau, G.P., 2003). It has been functioning since
1982 when it was established on executive order of the Governor of Utah to
be a data resource for the collection, storage, study and dissemination of
medical and related information for the purpose of reducing morbidity or
mortality. It does not perform research but maintains and improves data for
research projects. The RGE contains over six million records. It includes
genealogies on the founders of Utah and their descendants, cancer records,
birth and death certificates, driver’s license records, census records and
follow-up information from the Health Care Financing Administration.

It has the following policies and procedures:

1. All data received by the RGE comes from contributors who have
contracts that specify the conditions for use of the data and requires
the data contributors to approve projects that use their data.
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A committee composed of contributors and others familiar with the
issues of medical data and research review all requests for access.

IRB approval is required for each project.
Access is project specific and may not be used for other purposes.
Data must be destroyed or returned at the end of the project.

Projects must justify reasons for access to information that identifies
individuals.

Identifying information is removed from records and stored in
separate tables in a relational database and requires the RGE staff to
recombine the data for record linking and data management.

If projects wish to contact individuals, they must arrange for data
contributors or their designees to contact the individual about interest
in the proposed project. Identifying information is provided to the
project only for those individuals wishing to participate. Other
information or biospecimens are only collected after informed consent
is obtained.

For-profit organizations may not have direct access to RGE data. They
may participate with wuniversity or other non-profit entities.
Commercial project sponsors may participate directly only in research
activities that involve no individually identifying information.

Sweeney (2003, pg. 13) makes a plea to fellow computer scientists whose
point applies as well to medical investigators:

“Most computer scientists can no longer afford to do their work
in an ivory tower and rely on the social scientists and lawyers to
make decisions about limits of its use. First, policy makers and
lawyers may not fully understand the technology. Second,
decisions will often be made as a reaction to biased or
sensationalized public opinion. Third, policy decisions are often
crude and sub-optimal, and tend to legislate over simple
technical remedies. Finally, there is a horrible temporal
mismatch -- policy can be a function of years but new
technology is a function of months, so policy enacted on today's
technology may be totally inappropriate for tomorrow's and
policy supporting technology today can prohibit it tomorrow.
Computer scientists can and must insulate their creations from
such risk.”
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In other words, medical investigators must proactively take responsibility
for assuring adequate privacy controls in their projects. To ignore this
responsibility risks potentially ceding control or completely losing their
projects. The case study of the Terrorist Information Awareness Program
illustrates just such a scenario.

4. CASE STUDY: THE TERRORIST INFORMATION
AWARENESS PROGRAM (TIA)

4.1 The Relevance of TIA to Data Mining in Medical
Research

This case study examines the controversy surrounding termination of the
Terrorist Information Awareness (TIA) Program, a very large
counterterrorism effort organized by the Defense Advanced Research
Projects Agency (DARPA). At first glance, the TIA program would appear
to have no relevance to data mining in medical data analysis and research
because of its focus on crime prevention and law enforcement. This
difference in mission, however, should not distract analysis from some core
commonalities with respect to privacy and security as well as functionality.
Data mining in counterterrorism and medical data analysis face the problem
of developing legal, ethically appropriate and secure methods of managing
individually identifiable information. Whether beginning with identified
possible subjects for investigation and medical research, or discovering
possible subjects in the course of analysis, organizations conducting terrorist
investigations and medical data analysis must obey relevant privacy laws,
establish appropriate policies and procedures, train their workforce, and
implement risk-based administrative, physical and technical privacy and
security safeguards.

As will be explained below, TIA lost funding and faced censure from
journalists, the Inspector General of the Department of Defense, and
Congress partially because DARPA paid insufficient attention to some of
these core controls. Medical investigators similarly ignore the guidance of
HIPAA at their peril and may take TIA’s experience as an object lesson in
what to avoid. As medical researchers study the TIA program, they will also
find some of its proposed data mining capabilities very attractive,
particularly the powerful data aggregation, analysis and linking tools as well
as the virtual collaboration tools described below. Quite rightfully wanting
to apply such capabilities to their research, medical investigators confront
another shared characteristic with TIA, having to balance the rights and
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welfare of individuals with possible benefits of their work for society as a
whole. Patients and terrorists potentially face entirely different sets of
consequences if identified by investigators as fit subjects for analysis.
Patients may benefit or contribute to knowledge that benefits others in their
situation. Terrorists potentially face punishment. But, in both cases, the
investigators using data mining techniques of various kinds potentially
gather data about unrelated persons risking invasion of privacy and
potentially broader harms. The American public basically accepts as
legitimate the aims of medical research and counterterrorism. As the fate of
TIA demonstrates, however, individual programs must carefully assess,
judiciously weigh and clearly explain the trade-offs between individual and
societal welfare in specific instances, particularly in these times of struggle.

4.2 Understanding TIA

DARPA’s “Report to Congress regarding the Terrorism Information
Awareness Program” (DARPA, 2003) outlined the intended goals,
responsible organizational structure, system components, expected efficacy,
and relevant federal laws and regulations as well as privacy concerns of the
program known as the Terrorism Information Awareness Program or TIA.
Under the original name of the “Total Information Awareness Program”,
DARPA planned to create a system of systems “to integrate technologies
into a prototype to provide tools to better detect, classify, and identify
potential foreign terrorists.” (DARPA, 2003 p. 3) The target technologies
existed in a range of states of development from desirable but not yet
acquired or developed to transitioning to operational use (DARPA, 2002 p
15.) Multiple universities, small and large defense contractors, and
Federally-funded Research and Development Organizations worked on the
various component technologies, many of which were funded as part of
DARPA’s ongoing research in counterterrorist technologies. DARPA
created the Information Awareness Office (IAO) in January 2002 “to
integrate advanced technologies and accelerate their transition to operational
users.” (DARPA, 2003, p. 1) The TIA prototype network included a main
node in the Information Operations Center of the US Army Intelligence and
Security Command (INSCOM) with additional nodes at subordinate
INSCOM commands as well as other defense and intelligence agencies such
as the National Security Agency, the Central Intelligence Agency and the
Defense Intelligence Agency. In the post-September 11, 2001 world, TIA
was supposed to help accelerate development and deployment of core tools
in the fight against the “asymmetric threat” posed by terrorists “in full
compliance with relevant policies, laws, and regulations, including those
governing information about US persons.” (DARPA, 2003, pg. 4)
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TIA drew its component systems from three other categories of work
coordinated by DARPA’s IAO, including the Data Search, Pattern
Recognition and Privacy Protection Programs, the Advanced Collaborative
and Decision Support Programs, and the Language Translation Programs.
The Data Search, Pattern Recognition and Privacy Protection Program
coordinated development of technologies with the intention of seeking,
analyzing and making available to decision-makers information about
individually identifiable human beings potentially associated with terrorism.
To find this data, TIA-sponsored data mining technologies would search
disparate federal databases for transactions by persons — transactions such as
applications for passports, visas, and airline ticket purchases — and attempt to
link them with other events such as arrests or suspicious activities that, taken
together, might indicate a terrorist act in the making. The Genisys program
sponsored technologies to virtually aggregate data in support of effective
analysis across heterogenecous databases and public sources. The Evidence
Extraction and Link Discovery program enabled “connecting the dots” of
suspicious activities beginning with a particular object such as a person,
place or thing. Scalable Social Network Analysis sponsored technologies
for separating terrorist groups from other groups using techniques of
advanced social network analysis. (Taipale, 2003; DARPA, 2002; DARPA,
2003). In order to protect against abuses of the privacy of individually
identified persons as well as protect sensitive data sources, the Genisys
Privacy Protection Program intended to develop a “privacy appliance” for
“providing critical data to analysts while controlling access to unauthorized
information, enforcing laws and policies through software mechanisms, and
ensuring that any misuse of data can be quickly detected and addressed.”
(DARPA, 2003, p. 6) The proposed privacy technology would also have
sought to improve identity protection by limiting inference from aggregate
sources. (DARPA, 2003) In other words, while data mining enables rapid
identification of terrorist suspects and activities, the privacy technologies
help prevent abuse of American law and regulations about individual
citizen’s privacy thus achieving security with privacy. (Taipale, 2003)

TIA intended to integrate the advanced data mining technologies with
advanced collaboration tools sponsored under the Advanced Collaborative
and Decision Support Programs and with advanced language translation and
analysis tools sponsored under the Language Translation Programs. The
advanced collaboration tools included sophisticated war-gaming and
simulation capabilities as well as data sharing technology. The language
translation tools were planned to enable rapid translation and preliminary
analysis of foreign language materials from open and restricted source
materials (DARPA, 2003). According to DARPA (2003), the integration of
these powerful, computerized tools under TIA would support a series of
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steps among distributed, collaborating experts attempting to discover the
plans and intentions of potential terrorists, including:

1.
2.

Sk w

8.
9.

Develop terrorist attack scenarios;

Initiate automated searches of data bases using terrorist attack
scenarios and other intelligence information as starting points;

Identify individuals suspected of involvement in terrorist activities;
Identify associations among suspect individuals;

Link such associations with associations of other individuals;

Develop competing hypotheses about the plans of suspect associates in
conjunction with other types of intelligence data;

Introduce the behavior and activities of suspect associates into models
of known patterns of behavior and activity indicative of terrorist
attack;

Generate range of plausible outcomes with options for action;

Analyze risks associated with each option for action;

10. Present complete analysis to decision-maker; and,
11.Record all steps of process in a corporate knowledge base for future

review and use.

DARPA (2003, pg. 4) intended this entire process to yield four major
benefits to the fight against counterterrorism, including:

L.

2.

4.3

Increase by an order-of-magnitude the information available for
analysis by expanding access to and sharing of data;

Provide focused warnings within an hour after occurrence of a
triggering event or passing of an articulated threshold;

Automatically cue analysts based on partial matches with patterns in a
database containing at least 90 per cent of all known foreign terrorist
attacks;

Support collaboration, analytical reasoning, and information sharing
among analysts to hypothesize, test and propose theories and
mitigating strategies about possible futures; and, thus

Enabling decision-makers effectively to evaluate the impact of current
or future policies.

Controversy

Beginning in November 2002, columnists from major newspapers and
magazines including The Washington Post, The New York Times, and The
National Review as well as scholarly organizations publicly criticized the
TIA program on multiple grounds. Concerns about governmental abuse of
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personal information that sacrifices the privacy rights of individual
American citizens in the name of national security in the post-9/11 world
constituted the heart of their criticism. This specific controversy occurred in
the context of an ongoing Congressional review of the privacy implications
of multiple new security programs such as TIA and the Transportation
Security Agency’s Computer Assisted Passenger Prescreening System II
(CAPPS 1I), to say nothing of HIPAA. Although other columnists and
commentators attempted to defend TIA (Taipale, 2003; Taylor, 2002), the
controversy produced an audit and an unfavorable report about the TIA
program by the Inspector General of the Department of Defense. Congress
ultimately withdrew funds for the TIA program (Office of the Inspector
General, 2003). The controversy sheds important light on issues that any
data mining project manipulating individually identifiable information must
necessarily confront and manage well, especially projects that potentially
harm or do not directly benefit the persons under surveillance.

Commentators argued that TIA posed multiple threats to the privacy of
individual Americans, including:

1. Violates the Fourth Amendment of the Constitution by searching a
data base containing detailed transaction information about all aspects
of the lives of all Americans (Safire, 2002; Washington Post, 2002;
Crews, 2002; Stanley and Steinhardt, 2003)

2. Undermines existing privacy controls embodied in the Code of Fair
Information Practices, such as improper reuse of personal data
collected for a specific purpose (Simons and Spafford, 2003; Safire,
2002; Crews, 2002)

3. Overcomes “privacy by obscurity” including inappropriate
coordination of commercial and government surveillance (Safire,
2002; Washington Post, 2002; Stanley and Steinhardt, 2003)

4. Increases the risk of falsely identifying innocent people as terrorists
(Crews, 2002; Simons and Spafford, 2003; Stanley and Steinhardt,
2003)

5. Increases the risk and cost of identity theft by collecting
comprehensive archives of individually identifiable information in
large, hard-to-protect archives (Simons and Spafford, 2003)

6. Accelerates development of the total surveillance society (Safire,
2002; Washington, 2002; Crews, 2002; Stanley and Steinhardt, 2003)

Other undesirable consequences in addition to invasion of privacy
potentially flowed from TIA, including:
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1. Undermining the trust necessary for the successful development of the
information economy and electronic commerce (Crews, 2002; Simons
and Spafford, 2003)

2. Undesirably altering the ordinary behavior of the American population
including quelling healthy civil disobedience, “normalizing” terrorist
behavior, and inhibiting lawful behavior (Crews, 2002; Simons and
Spafford, 2003)

3. Creating new, rich targets for cyberterrorism and other forms of
individual malicious abuse of computerized personal information
(Crews, 2002; Simons and Spafford, 2003)

Some commentators also argued that TIA demonstrated important
organizational shortcomings, including:

1. Poor choice of leadership with Admiral John Poindexter of Iran-
Contra fame as program director (Safire, New York Times, November
14, 2002; Washington Post Editorial November 16, 2002)

2. Insufficient oversight (Safire, New York Times, November 14, 2002;
Washington Post Editorial November 16, 2002; Simons and Spafford,
January 2003)

3. Low likelihood of achieving its goal of “countering terrorism through
prevention” (Crews, National Review November 26, 2002; Simons
and Spafford, January 2003)

On December 12, 2003, the DOD Inspector General (DOD IG) issued a
report on its audit of the TIA program entitled, “Terrorism Information
Awareness Program (D-2004-033) (Office of the Inspector General,
December 12, 2003). The DOD IG conducted the audit in response to
questions from Senator Charles E. Grassley, Ranking Member of the Senate
Finance Committee with supporting letters and questions from Senator
Chuck Hagel and Senator Bill Nelson. The audit objectives included
assessing “whether DARPA included the proper controls in developmental
contracts for the TIA program that would ensure that the technology, when
placed in operational environment, is properly managed and controlled.”
(DOD, Office of the Inspector General, 2003, p. 3).  The audit focused
particularly on DARPA’s appreciation for the importance of protecting the
privacy of individuals potentially subject to TIA surveillance. The DOD IG
(2003, p. 4) summarized its conclusions as follows:

“Although the DARPA development of TIA-type technologies could
prove valuable in combating terrorism, DARPA could have better
addressed the sensitivity of the technology to minimize the possibility for
Governmental abuse of power and to help insure the successful transition
of the technology into the operational environment.”
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While acknowledging the application of TIA-type technologies in foreign
intelligence, the DOD IG expressed strong reservations about DARPA’s
inattention to the implications of TIA for potential governmental abuse in
domestic intelligence and law enforcement purposes. The DOD IG
particularly faulted DARPA program management for not having consulted
experts in policy, privacy and legal matters to ensure successful transition to
the operational environment. Four factors contributed to DARPA’s
inattention to these issues (DOD, Office of the Inspector General, 2003, pg.
4), including:

1. DARPA did not implement the best business practice of performing a
privacy impact assessment (PIA);

2. Under Secretary of Defense for Acquisition, Technology and Logistics
initially provided oversight of the TIA development and did not ensure
that DARPA included in the effort the appropriate DOD policy,
privacy and legal experts;

3. DARPA efforts historically focused on development of new
technology rather than on the policies, procedures and legal
implications associated with the operational use of technology; and,

4. The DARPA position was that planning for privacy in the operational
environment was not its responsibility because TIA research and
experiments used synthetic artificial data or information obtained
through normal intelligence channels.

To have exercised due care, safeguarded taxpayers’ money, and protected
its program, DARPA should have taken several precautions, including:

1. Employed governmental best privacy practice by executing a PIA. In
the words of the DOD IG (2003 p. 7), a PIA “consists of privacy
training, gathering data on privacy issues, identifying and resolving
the privacy risks, and approval by (the agency) privacy advocate”;

2. Ensured adequate oversight by a responsible agency with experts in
policy, privacy and legal matters;

3. Developed in advance policies and procedures as well as technology
for protecting privacy; and,

4. Considered the ultimate use of the information in the operational
environment not just the source of data used in research experiments.

Taking these precautions would have integrated privacy concerns into
TIA’s entire developmental and acquisition lifecycle instead of relegating
that responsibility to end-users. DARPA could thus have avoided causing
unnecessary alarm among the members of Congress and the American
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public and, had the program continued, avoided wasting taxpayer’s money
on expensive retrofits or redesign of the TIA applications.

By the time the DOD IG released its report, Congress had terminated all
funding for TIA and most of its component applications. Nonetheless, the
DOD IG made two additional recommendations to guide development of
future TIA-type programs. Before resuming TIA-type research, DARPA
should take specific steps to integrate privacy management into its research
and development management process, including:

1. Conduct Privacy Impact Assessments on potential research and
development projects using models such as the PIA of the Internal
Revenue Service, endorsed by the Federal Chief Information Officer’s
Council, as a best practice for evaluating privacy risks in information
systems; and

2. Appoint a Privacy Ombudsman to oversee PIAs and thoroughly
scrutinize TIA-type applications from a privacy perspective.

4.4 Lessons Learned from TIA’s Experience for Medical
Investigators Using “Datamining” Technologies

The TIA program imagined integrating many innovative technologies
into an effort to preempt terrorist attacks by identifying and sharing
information about suspicious activities among relevant Federal agencies.
“Data mining” technologies of various types with the purpose of examining
individually identifiable information in Federal and commercial databases
constituted the program’s core functionality. While not as comprehensive as
TIA, medical data analysis and research employing datamining of patient
records invites comparison as well as contrast with DARPA’s
counterterrorism research and development program. In particular, medical
investigators should not take for granted the good will of their patients, their
institutions or their funding agencies. Unlike the program management of
DARPA and TIA, principle investigators must take personal responsibility
for assuring proper identification and implementation of privacy controls,
thorough training of their staff in privacy responsibilities and
communication of their efforts to all relevant audiences. TIA teaches
medical researchers some specific lessons when translated into the
environment of healthcare research and data analysis:

1. Medical researchers should take full advantage of the privacy
functions of the Institutional Review Board (IRB). From the
perspective of the DOD 1G’s report on TIA, the IRB represents an
oversight board that is fully equipped to advise and monitor
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researchers on privacy policies, procedures and practices. In most
academic research institutions, HIPAA has strengthened the IRB’s
awareness and competence to manage privacy issues.

2. Medical researchers should devote great care in preparing the privacy
and seccurity portions of their IRB forms, particularly the informed
consent form. The IRB review forms can function for the individual
research project like the Privacy Impact Assessment in Federal
agencies in helping to identify and propose mitigation plans for project
privacy risks. The informed consent form provides an ideal vehicle
for explaining to patient-subjects a project’s privacy protections.

3. Medical investigators should cultivate an effective relationship with
the medical center’s HIPAA Privacy and Security Officers. Like the
privacy ombudsman in Federal agencies, the HIPAA Privacy and
Security Officers function as points of articulation and communication
when necessary between the researcher, the patient-subject, the
institution, and external agencies such as the Office of Civil Rights,
Department of Health and Human Services.

4. Medical investigators should consider the advisability of a project
external advisory board when conducting research or using datamining
methods that might provoke special privacy concerns. If properly
composed and chartered, an external advisory board can provide
useful expertise in policy, privacy and legal matters external to a
medical researcher’s own institution and lend extra credibility to a
project’s good faith efforts in the event of controversy.

5. Medical investigators should formally develop and document in
writing privacy and security policies and procedures for the research
project or its parent unit. As HIPAA and the DOD IG report
emphasize, these policies and procedures must include administrative
and physical as well as technical privacy and security controls. These
written policies and procedures should inform the information about
privacy protections included in the IRB and informed consent forms.

5. CONCLUSIONS AND DISCUSSION

A formal approach to managing the use and disclosure of personal health
information is in the best interests of patients, individual researchers,
organizations and society. The risks to those who do not adhere to good
security and privacy practices are considerable. Future laws and regulations
are likely to increase penalties for inappropriate use or disclosure. While
much attention has been given to research, organizations should implement
the same general processes to support analyses done for the purpose of
healthcare operations as for research.
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“Researchers have no automatic right to review patient data. Besides
developing strategies for minimizing patient risk, as described herein,
investigators should take simple steps to characterized their compliance
with human subjects requirements” (Berman, pg. 33, 2002).

A recent publication recommends:

“First, sensitive raw data like identifiers, names, addresses and the like,
should be modified or trimmed out from the original database, in order
for the recipient of the data not to be able to compromise another
person’s privacy. Second, sensitive knowledge which can be mined from
a database by using data mining algorithms, should also be excluded,
because such a knowledge can equally well compromise data privacy, as
we will indicate. The main objective in privacy preserving data mining is
to develop algorithms for modifying the original data in some way, so
that the private data and private knowledge remain private even after the
mining process. The problem that arises when confidential information
can be derived from released data by unauthorized users is also
commonly called the “database inference” problem.” (Verykios et al, pg.
1, 2004).

While these are good recommendations, they are insufficient for medical
data mining. As long as the original data is available, there is risk to
confidentiality, integrity and availability of the data. Thus, an effective
privacy program depends upon implementing robust security controls.
Medical dataminers should be sure to employ several important security
practices, including:

1. Mandatory oversight by a privacy board or institutional review board
with approval for each project should be established.

2. The methods sections of research proposals and publication
submissions should include a description of steps to minimize patient
risks and that IRB approval has been obtained.

3. Good access control and authorization should be used for each session
and query.

4. Where possible, the common identifiers (e.g. names, addresses) of the
data subjects should be removed or hidden from the data user.

5. Robust audit practices should be instituted.

6. Training for all principle investigators that reinforces their
responsibilities should be required.

7. Sanctions should be applied for violations of policy and/or procedures.

8. Trends in breaches and sanctions should be tracked and trended over
time and used in the process of security awareness and training.
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QUESTIONS FOR DISCUSSION

L.

How should medical investigators address the components of security
(confidentiality, integrity, availability and accountability) for a new
project?

What types of oversight should medical investigators establish when
planning data mining projects on patient data.

What are the trade-offs that should be considered in developing a risk
management plan for a medical data mining project?

Describe what a medical investigator must do to respect the rights
granted to patients by the HIPAA Privacy Standard and the requirements
of the Common Rule.

How is data mining used to enhance security and brainstorm potential
avenues of research in this area?
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Chapter Overview

The development of modern biocthics has been strongly influenced by
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1. INTRODUCTION

Modern bioethics and health informatics are intimately connected. It is
no coincidence that the two fields emerged at the same time. Modern
bioethics originated and had evolved in response to increasingly perplexing
questions about the goals of health care. These questions arise largely as a
result of the advent of modern technology. Prior to the development of the
mechanical ventilator and the dialysis machine, medicine was limited in its
ability to extend the life span of patients with incurable conditions. With the
introduction of these new devices, it suddenly became possible to imagine
machine-dependent patients and, more importantly, to imagine patients who
would prefer death to such dependency. Hence the beginnings of modern
bioethical thought.

Computers and other informatics technologies and techniques have only
made matters more complex. Difficult ethical questions surround the use of
electronic health records, clinical decision support and prognostic systems,
internet-based consumer health information, outcome measurement, and data
mining. Some of these questions are new, raised by new technologic
capabilities; some are old, but recast in new forms by the use of informatics.

A fundamental question is: what is the proper role of technology in
health care? What health care decisions should be entrusted to computers?
Are there decisions that computers should not make or roles they should not
play? In attempting to answer these questions, it is important to recognize
that computers are merely tools. Tools do not, in themselves, change the
underlying goals of health care. They are only properly used to advance the
goals of the underlying endeavor. Over 20 years ago, Moor (1979)
concluded that the one task that should never be assigned to computers is the
choice of the goals of medicine itself.

Although it is clear that the use of health informatics tools should be
judged in the same way as the use of any medical tool, i.e. by their ability to
advance the goals of medicine, that judgment can be very complex because
the tools themselves are complex. In addition, the extraordinary usefulness
of computer-based technology creates a digital imperative: a strong incentive
to adjust all of health care so as to be compatible with computers. It is much
less expensive, for example, to move digital information than to move actual
patients or laboratory samples. While the use of informatics can have
enormous benefits (e.g. telemedicine for geographically isolated patients) the
quality of care can also be degraded in the rush to digitization.

There have been attempts to use bioinformatics tools to work on some of
the most difficult bioethics problems that face health care, including cost-
effectiveness and futility of treatment, especially near the end-of-life. For
example, computer-based prognostic systems have been developed for some
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critical care settings (Knaus et al., 1991). Their output, however, has not
provided answers to questions such as “when should we stop treatment” or
“what treatments should be tried” because the answers to those questions are
not entirely quantitative and scientific. Families and caregivers often have
very personal values and views about what constitutes appropriate health
care. For some, extending life by a week through aggressive interventions
may be a great blessing; for others, the same treatment may be considered
torture. It is not possible to separate personal values from these decisions.

Rather than prescribe particular consequences for particular actions,
modern bioethical thought tends to focus on fundamental truths, laws, or
motive forces. The language of bioethics often invokes “principles,” which
are compact statements of fundamental import. The four key bioethical
principles developed by Beauchamp and Childress (1994), for example, are
autonomy (the right of an individual to determine his or her own health
care), beneficence (the duty of health care workers to improve the welfare of
their patients), nonmaleficence (the duty of health care workers to avoid
doing intentional harm), and justice (both to individuals and society at
large). Unfortunately, the term “principles” has become diluted and is often
used to describe simple lists of issues.

The development of modern bioethics has been strongly influenced by
technology. But technology itself does not determine the ethics of medicine.
Technological advances need to be seen in, and judged by, the light of health
care goals. The digital imperative must be resisted unless a clear benefit of
computerization can be demonstrated. Technology cannot give us answers to
questions that require personal and social value judgments.

2. OVERVIEW OF THE FIELD

2.1 Electronic Health Records

Electronic health records (EHRs), also known as electronic medical
records or computerized patient records, are found in an increasing number
of physician offices and hospitals. One estimate puts current penetration at
10%, increasing to 25% in 3 years (private communication, 2004). EHRs
represent more than a simple computerization of the traditional paper chart.
They provide the ability to manage health information using modern
information techniques that are impossible to apply to paper record keeping.
The use of these techniques has the potential to dramatically change how
both individuals and society view health care. Dramatic changes in health
care have always been accompanied by equally important ethical challenges,
and adoption of EHRs is no exception.
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Before enumerating the ethical issues raised by EHRs, it is reasonable to
ask why we need EHRs at all. Fundamentally, the answer is that we cannot
expect to provide quality medical care without optimal information
management. Proper medical treatment depends on timely access to accurate
patient medical histories, laboratory results, and many other picces of data.
Problems such as missing or misplaced charts, paper-based laboratory
reporting, and illegible handwriting are common roadblocks to care. We are
in an era where health care providers can generate enormous amounts of
information about a patient but have only antiquated and inadequate methods
of managing that information. This discrepancy will only get worse as health
care skills get better, especially with the advent of readily-available genomic
data. In addition, health care providers cannot begin to empower patients
with access to their own medical information if the providers can’t manage
that information themselves. EHRs provide the tools that can be used to
begin to solve these problems.

In addition to improving the quality of care, adoption of EHRs holds out
other promises, including improvements in the efficiency with which health
care is provided, increased patient satisfaction, opportunities for research,
quality improvement and, especially, reduction of errors. Although the EHR
has been touted as the key tool for reducing medical errors, the evidence of
success is still scant. While recognizing that EHRs are a key component of
error reduction in health care the Institute of Medicine (2000) cautions “ALL
technology introduces new errors, even when its sole purpose is to prevent
errors.”

Another promise for which there is as yet no empirical support is return
on investment (ROI). EHRs are expensive and complex to install. Savings
from reduced file room staffing and square footage, along with savings from
reduced dictation expenses, may not fully cover the cost of the EHR. As a
result, one can imagine a “have” and “have not” condition, where some
practices (perhaps specialty practices in affluent areas) can afford EHRs, but
other practices (perhaps inner-city primary care) cannot. That disparity could
jeopardize the quality of care for the patients of the “have not” practices. It
could also interfere with public health issues because data from the “have
not” patients would be much less readily available and therefore
underrepresented in public health databases.

The implementation of an EHR system is no easy task (Ash 2003). The
conversion from a paper chart to an EHR system puts a great deal of stress
on the complex social systems that exist within health care institutions. It
requires reconceptualizing the medical record and medical communication,
including organizational-level changes in workflow. Resistance to even
minor changes is a normal response, especially in complex environments,
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and a change of the magnitude represented by the EHR engenders resistance
of the same order.

Although EHRs are an information technology (IT) product, the decision
to implement an EHR and the selection of an appropriate vendor are not
solely within the IT realm. The end-users of these systems must be included
in the decision process. Clinicians, especially physicians, are the de facto
arbiters of EHR acceptance in any health care institution. EHR
implementation therefore requires a strong, committed physician champion
with the time to devote to the project. It is also critical to manage
expectations. Clinicians often wish to believe that an EHR will immediately
and completely eliminate all perceived barriers to access to clinical data, and
they become frustrated when they find that it does not.

Clinicians are also most concerned about clinical data entry, which is the
component least improved by the EHR. Most EHR benefits initially accrue
to back-office staff at the perceived cost of clinician’s time. In addition,
clinicians may perceive the EHR as a barrier to provider-patient
communication and family-centered care. Clinicians are also focused on the
content of an EHR, such as clinical documentation templates, alerting
capabilities, and patient lists. Unfortunately, EHRs are far from turn-key at
this time. They come with very limited content and require a great deal of
customization in order to function in a particular clinical environment,
customization that must largely be done by the end-user. This is a significant
barrier to EHR adoption. EHR vendors are beginning to understand that and
are devoting more resources to content development.

Another barrier to adoption is that current EHRs are largely stand-alone
systems. They typically interface with billing systems and, in a hospital
setting, may have connections to laboratory and other systems. But EHRs do
not typically communicate with each other. There are currently no well-
accepted standards for EHR interoperability. In order to apply the tools of
modern information management to health data, especially for population-
based studies, there must be a way to aggregate data from many EHRs. The
National Health Information Infrastructure project is beginning to address
some of these issues (Yasnoff 2004).

The need for EHR interoperability, along with the expense of EHR
systems, is likely to drive fundamental changes in how medical records are
stored. Centralized third-party medical record keeping, in the form of data
“banks,” may supplant the current model of record keeping by individual
practices. Centralized record keeping would enable health care workers, and
patients themselves, to access medical records where and when needed. It
would also, of course, require strong security measures.

No discussion of EHRs can ignore the concerns of privacy,
confidentiality, and security. Privacy is the ability of a patient to control the
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information about him or herself. Confidentiality is the commitment of
another person or organization to the patient to control information about the
patient. Security measures are safeguards against inadvertent or malicious
breaches of confidentiality. Security measures also include protections
against loss of information. It is generally accepted that privacy of medical
data is an important right of the individual. Privacy may be viewed either as
a utilitarian concept (i.e. patients will not honestly and completely discuss
their medical problems without assurances of confidentiality) or as a right in
and of itself. Privacy is also essential to the exercise of autonomy in medical
decision making, just as a secret ballot is fundamental to the exercise of
democracy.

Maintaining privacy and confidentiality through appropriate security is
one of the key challenges of EHRs. It has long been recognized for related
uses of electronic media, such as email (Kane 1998). Aside from technical
issues, there are a number of factors that contribute to the challenge.
Determining the proper security measures for medical records must be done
in the context of the goals for the records. For instance, an important goal of
EHRs is to improve access to medical records, for both providers and
patients (Delbanco 2004). A perfectly secure EHR would be one to which no
access was allowed, so a balance between security and access must be
struck. However, the answer to the question of what is the “correct” balance
is not a technical or scientific one but rather a social and political one. The
answer depends on the values of the participants. These values vary widely.
Some people see the benefits of access and are perfectly comfortable with
their medical data recorded on computers while others are concerned about
of breaches of confidentiality and resist such record-keeping.

EHRs are not the only systems where this balance must be struck.
Electronic toll badges, for example, allow for the convenient payment of
tolls without actually stopping at the tollbooth via electronic identification.
Many people use such devices without concern. Others refuse to use them,
fearing the use of the data to track their movements. One feature of the
electronic toll badge is that a driver can opt-out of its use at any time simply
by leaving it at home and paying the toll in cash. The ability to opt-out of
technology on an as-desired basis is important to the acceptance of the
technology. At the moment, it is difficult for patients to opt-out of having at
least medical billing information entered into a computer. As EHRs become
more ubiquitous, opting-out may become impossible.

The issues of privacy, confidentiality, and security have attracted the
attention of government regulators. In 2002, the Health Insurance Portability
and Accountability Act (HIPAA) privacy regulations went into effect (c.f.
http://www.hhs.gov/oct/hipaa/). The HIPAA regulations are designed to
restrict the inappropriate flow of medical information without disrupting
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medical care. In particular, the regulations target health data belonging to
specific, identifiable patients (PHI). They regulate data flow by dividing
medical information use into categories. PHI that is used for payment and
other health care operations is subject to the “minimum necessary”
restriction, which simply means that only the minimum amount of
information necessary (as determined by a reasonable person) to accomplish
the task should be used. PHI that is used for medical treatment of the patient
is not subject to the “minimum necessary” restriction. Use of PHI for any
other purpose requires explicit authorization from the patient.

The structure of the HIPAA regulations puts the burden of determining
the “minimum necessary” amount of information and of detecting
inappropriate disclosures on the health care provider. This structure is
consistent with the current model of record keeping, namely that medical
records are largely held by health care providers. With a shift to centralized
record-keeping, it becomes possible to give patients more control over and
responsibility for the confidentiality of their records. Patients could receive
periodic or on-demand reports of the audit trail of accesses to their records.
They would then be responsible for detecting and reporting inappropriate
uses of their records in the same way that consumers are responsible for
reviewing their credit card statements for fraudulent uses of their credit.

The HIPAA regulations require technological, policy, and educational
interventions. They affect all PHIs, whether electronic or paper. They also
affect how research is conducted, including data mining of medical records,
which is considered by the HIPAA regulations to be a form of human-
subjects research. The HIPAA regulations essentially extend the concept of
harm for research participants to include breaches of confidentiality. Specific
procedures for obtaining approval for such research are outlined in the
regulations.

Electronic health records are changing the way health information is
managed. Especially with interoperability, and possibly centralization, EHRs
will allow the application of modern information management tools to health
care data. Implementation of EHRs, however, is a difficult task. When
implementing an EHR, social and cultural issues must be addressed, and
expectation management is critical. Acceptance of an EHR is dependent on
acceptance of the underlying goals of the implementation.

2.2 Clinical Alerts and Decision Support

One of the promises of EHRSs is that the information they contain can be
used to provide automatic alerts such as drug-drug interactions and
suggestions for treatment or diagnosis. This naturally raises the question of
who is in charge of making medical decisions, the clinician or the computer?
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The “standard view” (Miller, 1990) is that human clinicians should retain the
ultimate authority to make decisions and that computers should provide
advice only. There are two reasons for this standard view. One is simply that
computer decision support systems have so far not been shown to be
clinically useful, especially in general diagnostic situations (Berner 1994).
This does not mean, however, that such systems will never be useful, only
that the construction of useful systems is complex. Whether computers will
ever provide powerful enough decision support to supplant human clinicians
in at least some situations is an empirical question (Moor 1979). The second
reason for the standard view is that medical decisions are more than the
simple “mapping from patient data to a nosology of disease states” (Mazoué
1990). In other words, many medical decisions cannot be made on entirely
scientific grounds. Rather, they require the careful consideration of the
underlying goals and values of health care in the context of the individual
patient and society at large. This sort of judgment can only be made by those
who understand these values and have the skills required to make decisions
based on them—namely, humans.

Even if computers remain in an advice-only mode, however, there may
still be powerful reasons for following that advice. For example, EHRs and
other prescription-writing and dosing programs (e.g.
http://www2.epocrates.com,  http:/www.pdr.net)  routinely  perform
medication interaction checking. If a clinician ignores a warning provided by
one of these programs, it is clear that he runs the risk of providing inferior
medical care, not to mention of being subject to legal action. Even though
the computer has provided “only” advice, the clinician ignores it at his peril.
It is easy to imagine that it would be even more difficult to ignore diagnosis
or treatment advice.

Because computer alerts and decision support systems can have such
power, it is essential to be sure that these systems are properly designed,
evaluated, and maintained (Anderson 1994). “Properly” in this context
means that clinical decision support systems must adhere to the underlying
goals of medicine, which may be different from the underlying goals of a
commercial systems designer. Commercial systems must adhere to such
health care goals as standard of care, primacy of the best interest of the
patient, and informed consent (Goodman 2001). They cannot operate under
the usual free-market ethic of caveat emptor.

Computer decision support systems that are designed to provide
prognosis information are particularly problematic. Obtaining an accurate
prognosis can be a difficult task for clinicians, but it is an important one
because many treatment decisions are based on prognosis. In addition, the
prognosis is a critical piece of information for patients, particularly in cases
of life-threatening illness. Prognostic scoring systems can potentially be used
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for several purposes (Sasse 1993): quality assessment, resource management
(including triage and rationing), and individual patient care decisions.

Quality assessment and improvement is an important goal for any health
care institution. Prognostic scoring systems could be used, for example, to
compare actual to expected outcomes. This is a reasonable use of scoring
systems, assuming they have been properly evaluated, in that it is aligned
with, and furthers, the goals of health care. Whether such use will actually
improve the quality of care has yet to be demonstrated.

Resource management is a much more difficult problem. We currently do
not have a societal consensus on how to manage our health care resources. It
is generally accepted that we are no longer able to do everything for
everyone but, nonetheless, the health care system continues to function on
that premise. Clinicians often find themselves in ethically problematic
positions where their traditional role of patient advocate is in conflict with
their duty to manage society’s health care resources. No computer system
can solve this problem. It is possible, however, that accurate information
provided by computer systems may assist in the process of making these
kinds of difficult decisions.

The most problematic use of prognostic scoring systems is in making
individual care decisions. As noted above, decisions based on prognosis are
not entirely scientific but are also value-driven (Knaus 1993), thus putting
them outside the realm of computers. In addition, prognostic systems are by
their very nature based on, and provide, a statistical score. Applying
population statistics to individuals is fraught with problems (Thomasma
1988). At the same time prognostic scores can have an aura of certainty and
objectivity that they do not warrant. They can also be self-fulfilling: if care is
withdrawn due to a poor prognostic score, the patient will certainly die, thus
apparently confirming the score. On the other hand, good prognostic
statistics are a key to good medical decision making. What is critical is that
the data provided by a prognostic scoring system be properly interpreted and
applied, which means, in turn, that the users of these systems must be
properly trained and qualified (Goodman 2001).

The development of computer-based diagnostic programs has received a
great deal of attention in the field of medical informatics. Diagnosis
programs are designed to process information about a patient and produce a
differential diagnosis list, usually rank-ordered by probability. Most of these
programs (c.f. http://www.lcs.mgh.harvard.edu/dxplain.htm) use the Bayes
theorem (c.f. Fletcher 1996) to calculate the probability of a diagnosis based
on the probabilities that the input signs and symptoms are associated with
the diagnosis (there are some notable exceptions to this approach, for
example, http://www.isabel.org.uk/). However, these programs have not so
far shown a great deal of promise, especially for general diagnosis (Berner
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1994). One problem is that Bayesian calculations are strongly dependent on
the underlying population statistics. For example, there is a high likelihood
that a child with a fever has a viral syndrome, but that is not a useful piece of
information for a computer to communicate to a physician. Computer-based
diagnostic programs are needed most to remind clinicians about rare or
unusual diagnoses, not to determine common diseases. The nature of a
Bayesian calculation does not lend itself to detection of rare events. There
may be other knowledge discovery tools that are more sensitive to unusual
events and that clearly warrant further development in this area.

A similar problem occurs with some processes designed to help with
medical decision making. Decision trees (Detsky 1997) can be constructed
for some clinical situations, with branches representing outcomes and
intermediate states with their associated likelihoods. By simple Bayesian
calculation, the likelihood of an outcome can be determined from these trees.
By giving each outcome a value (“utility,” typically on a scale of 0 to 1,
where 0 represents death and 1 represents healthy life), a patient or clinician
can get some indication of the most desirable course of action (i.e. the
optimal combination of probability and value). Unfortunately, this process
has at least three major pitfalls. First, if any of the branch points depend on
population statistics (i.e. likelihood of a disease), then the Bayesian
calculation is generally overwhelmed by that point, making the rest of the
tree irrelevant. Second, a utility scale of 0 to 1 does not capture the full range
of possible values. In particular, it is certainly possible to imagine states
worse than death (i.e. with negative utilities) (Patrick 1994). Lastly, utilities
may be very individual (for example, palliative chemotherapy may be
intolerable to some, worthwhile to others). Individual utilities are at least
burdensome, and perhaps impossible, to determine accurately. Substituting
population-based utilities (averages of utilities chosen by many people given
the same situation) (Bell 2001) erases any ability of a patient or clinician to
adjust the decisions produced by the tree to reflect personal values.

Clinical alerting and decision making systems can, without question,
improve the quality of health care, but they must be implemented properly.
Users need training and education about the abilities and limitations of the
systems. Systems must be evaluated and maintained. System designers and
vendors must understand that their systems will be held to the high standards
of medical care. Most importantly, the advice produced by these systems
must be understood and acted upon in the context of the overall goals and
values of health care.
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2.3 Internet-based Consumer Health Information

The dramatic increase in accessibility of information provided by the
internet, and especially the World Wide Web protocols, has of course
extended to the field of health care. This development is fundamentally good
for health care because information is the lifeblood of evidence-based
medicine (see Section 2.4 below). Medical information designed for patients
can also strengthen patients’ ability to make informed judgments about their
own care. But the open nature of the web also brings with it the danger of
inaccurate or misleading information, both by omission and by comission.

The fundamental basis of the doctor-patient relationship (or the
relationship between any reputable health care provider and their client) is
the primacy of the patient’s best interests. When a provider suggests a course
of treatment, the patient can reasonably expect that the provider is
suggesting what in the provider’s judgment is best for the patient.
Sometimes there are several reasonable courses of action that may be
appropriate in a given situation and the provider will assist the patient in
making choices through the process of informed consent. The concepts of
best interest and informed consent derive directly from the principles of
autonomy, beneficence, and nonmaleficence.

The relationship between a salesman and a customer is quite different.
There, the suggestions by the salesman of choices that might be made by the
customer are largely based on the self-interest of the salesman, not the best
interest of the customer. A good salesman has the ability to make the
customer believe, however, that he has the customer’s interests in mind.
Experienced consumers are well aware of this and understand the nature of
the relationship, namely caveat emptor.

The concepts of informed consent and caveat emptor may come into
direct conflict on the World Wide Web. Because authorship and, more
importantly, the author’s intent can be difficult to determine on web sites, it
is difficult for patients to know what ethical construct to apply to a particular
site. Some sites provide authoritative medical information that is designed to
enhance the ability of patients to understand their conditions and make
appropriate health care choices. Other sites are designed to sell something to
those same patients while masquerading as sources of information. Patients
may be unable to distinguish between the two types of sites, either because
the latter sites have purposely been made to appear like the former or simply
because patients may not be aware of the purposes of commercial medical
web sites. To confuse matters further, there may be a mix of commercial
information and authoritative information on the same site, either well or
poorly distinguished.
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Several certification programs purport to assist consumers in determining
the quality of a medical web site (e.g. http://www.hiethics.org,
http://www.truste.org, http://www.hon.ch). Such programs are only as good
as the awareness they generate among consumers and the quality of their
underlying requirements for certification. The effectiveness of certification
programs has yet to be demonstrated. Requirements for certification vary
widely, but there are several themes that appear consistently. These include:
Clear mission and appropriate use statements
Clear attribution and dating of medical material and claims
Clear indication of advertising material
Commitment to use of scientifically supported medical information
Clear contact and complaint resolution information
Appropriate security for PHI
Ability to opt-out or opt-in to sharing of PHI
Ability to amend PHI
Agreement to bind business partners to policies of site
Clear and timely notifications of any changes to policies
Extensive disclosures, including
e privacy practices

edata sharing with third parties

eaggregation and re-identification

euse of tracking technology
e financial

sownership

esponsors

ethird party revenues from data sharing
Many of the requirements are disclosure-dependent, meaning that the
commitment is to inform the consumer about the site practices, rather than to
eschew certain practices, such as preferentially including information from a
financial sponsor, altogether. As a result, the burden of determining the
quality of a site’s information rests squarely on the shoulders of the
consumer, even though the site bears a logo of certification.

Empowering health care consumers through readily-available health
information is a valuable use of the internet. The nature of the internet
environment, however, raises the spectre of abuse of vulnerable patients.
Reputable web sites with health information must be careful to inform users
about the nature of the site’s information, both through extensive disclosures
and avoidance of deceptive marketing practices. Patients must be educated
to approach commercial web sites with caveat emptor firmly in mind.
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2.4 Evidence-based Medicine, Outcome Measures, and
Practice Guidelines

Modern medicine is defined in part by its use of therapies demonstrated
to work by scientific evidence. OQutcome studies and practice guidelines
purport to provide such evidence. Outcome studies data must therefore be
accepted unless convincing reasons to discard them exist. Outcomes
research, however, faces a number of practical and philosophical problems
which raise important ethical questions about the proper use of their results.

For this discussion, I define outcomes research as the statistical
examination of outcomes as a function of diagnostic or treatment strategies
using large numbers of subjects. Outcomes research often utilizes multiple
studies combined via meta-analysis. Results from outcome studies are
usually descriptive and use the language of statistics and probability.
Practice guidelines typically combine outcomes research results with
“expert” or “consensus” panels to produce prescriptive recommendations for
clinical practice, often in the form of algorithms.

Outcomes research would not be possible without computational power.
It is through data mining, knowledge discovery, and meta-analysis that
results are obtained and all of these endeavors are impractical without
computers. The internet is also critical in that it serves as the primary
medium through which the results of outcomes studies and practice
guidelines are distributed (c.f. http://www.cochrane.org,
http://www.guideline.gov).

Outcomes studies have significant practical problems. Potential
methodological flaws include the inherent difficulties of meta-analysis,
inaccurate description of variables, and potentially inadequate sample sizes
to detect small effects. Results may generalize poorly due to limited study
populations (for example, males only or outdated therapeutic regimens)
(Lagasse 1996, Gifford 1996). Most significantly, the design of outcomes
research contains inherent value judgments which may not be apparent in the
reporting of the results.

These value judgments are evident in various aspects of study design. For
example, the outcome measure of “cost effectiveness” is value-driven
because the answer to the question of what constitutes a reasonable
expenditure of health care dollars is not scientific, but rather social and
political. Also, complex systems do not lend themselves to simple measures,
so a choice of measure must be made. This choice often involves the values
of the researcher or the funding agency. Some important outcomes (for
example pain, quality of life, reassurance, or justice) may be difficult, or
even impossible, to measure and may therefore be inappropriately ignored
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(Kerridge 1998). Fundamentally, the choice of outcome measure and its use
is value-driven.

If the results of outcome studies are linked to resource allocation, then
several additional problems occur. First, it is often impossible to compare
studies of the outcomes of treatments for different conditions, but such
comparisons must be made if treatments for different conditions are to
compete for health care resources. Second, even if we use outcome studies
only to compare treatments for a single condition, we must know which
treatment is better and also by how much in order to understand how to
manage expenditures (Shiell 1997). Third, the agenda of treatments studied
may itself be driven by considerations of cost rather than health (Tanenbaum
1994). 1t is all too tempting for those who manage health care resources to
assume that a lack of evidence for the efficacy of a treatment implies that the
treatment has no efficacy and should therefore receive little support.

The purported ability of outcomes research to improve health care rests
on the single assumption that data about probabilities of outcomes is
valuable in making optimal decisions about health care delivery. That
assumption is open to criticism on several fronts. First, as in the case of
prognostic scoring systems, it can be very difficult to apply probabilistic,
population-based data to individual patients, especially if the study
population poorly matches the individual’s background. Second, as was
demonstrated by the poor performance of general diagnostic systems (Berner
1994), the technique of probability-based decision making itself is of limited
value, due in part to the sensitivity of the Bayes theorem to population
statistics. Finally, the use of probability-based rather than causal-based
reasoning as the primary method of health care decision making is a
significant departure from historical precedent. Probability-based reasoning
implies an acceptance of a utilitarian philosophy which is not consistent with
much of the moral philosophy of medicine. In addition, the use of
probability-based reasoning implies an acceptance of induction (the
expectation that one event will follow another from past experience of such
sequences) as a reasoning model, as opposed to the more familiar use of
causal models such as pathophysiology (Goodman 1996). Given that
computer diagnostic systems do not demonstrate the efficacy of such
reasoning, and given the inherently value-driven nature of outcome studies,
it is clear that the results of outcome studies must be used with great caution.

2.5 Data Mining

The use of computers in health care has engendered an explosion of the
quantity of electronically encoded data. A central theme of medical
informatics is the use of this data for knowledge discovery, a process
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commonly termed “data mining.” The purpose of data mining is to identify
significant data patterns that would otherwise go undetected. Data mining is
used in outcomes research, epidemiology, drug and genome discovery,
biomedical literature searching, and many other areas. Data mining can also
be used to detect unusual data patterns which might be indicative of disease
outbreaks or fraudulent activities.

One of the great promises of the EHR is that clinical data will become
available for data mining. As increasing amounts of health data become
computerized, it is easy to imagine that data mining of EHRs will become
the primary form of clinical research. Electronic records containing PHI
need proper protections. The HIPAA regulations incorporate procedures for
such research, recognizing that a breach of privacy is a form of harm.

In addition to regulating research on databases containing PHI, HIPAA
also provides a mechanism to de-identify data. Once de-identified, data is
free from regulation under HIPAA. Two methods of de-identification are
allowed. One requires a statistical determination of the level of de-
identification necessary to make re-identification unlikely. The other
prescribes the removal of a specific set of identifiers (the “safe harbor”
method)  (http://privacyruleandresearch.nih.gov/research_repositories.asp).
The safe harbor method is much simpler and is likely to be the method of
choice for most situations. However, the safe harbor method removes a great
deal of information that might be critical for answering relevant questions.
For example, date elements must be removed except for the year, making
determination of age to the accuracy necessary in the pediatric population
essentially impossible. There is very little known about how useful or
useless data de-identified by the safe harbor method will be.

The goal of de-identification is to make it statistically unlikely that the
PHI of an individual patient can be reconstructed from a de-identified data
set. Whether the safe harbor method accomplishes that goal has not been
verified. There is evidence that some information that can be included in de-
identified data may in fact be unique to a particular patient. For example, the
ICD-9 diagnosis code, especially when combined with other data such as
medications, may map closely to patient identifiers (Clause 2004). It is the
clear duty of a researcher using de-identified data to avoid re-identification,
but once such data sets become public it will be impossible to limit re-
identification activities. Worse, because so much personal information is
publicly available, it may be possible to use external sources of data in
combination with de-identified medical data to construct fairly complete PHI
information that could be used in ethically inappropriate ways (denial of
health care, insurance, employment, etc.).

When selecting methods for rule-creation from data mining results, it is
important to know what the rules will be used for. For example, we have
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alrcady seen that using Bayesian rules are not particularly effective for
general diagnosis. A system for general diagnosis would be much more
valuable if it accurately detected rare events. This is not because of anything
in the nature of medical diagnosis itself, but because in a practical sense
computers are not needed to diagnose common illnesses. It is important that
the strengths of a particular data mining technique match the intended use of
the results.

Similarly, it is important that database design take into account the range
of possible queries that might be made of it. At the most basic level, one
cannot examine data that is not included in the database at all. On a more
complex level, it may well be possible to detect patterns in data that cannot
then be adequately explained using that data. For example, some outcome
measures such as lung function of patients with cystic fibrosis could be
constructed and calculated for a number of different institutions. Given the
results, one would then naturally ask what the best institution was doing
right and what the worst institution was doing wrong. The answers to those
questions could well be impossible to obtain from the original data set.
Without those answers, the information about institutional outcomes may be
useless, and perhaps damaging (Donaldson 1994). The problem of
identifying the information to be measured and recorded is as old as
epidemiology itself and has been made more acute by the computational
power available today.

A particular concern regarding data mining arises when those results
identify new patterns in population subgroups. This can happen when doing
population-based or genomic research. It can even occur in research on de-
identified data sets. Invidious discrimination requires differentiation between
groups. We have experienced the ongoing evil of discrimination along the
familiar lines of race, sex, age, and others. It is therefore of concern if data
mining creates new subgroups that could then be the target of discrimination.
It is easy to imagine discrimination along genetic lines (slow vs. fast drug
metabolizers, for example). But any subgroup could be affected. Research
where there is the possibility of new subgroup identification should be
carried out with great caution, carefully weighing the potential medical
benefits against the risks of harm from discrimination.

Data mining will undoubtedly provide important information for
epidemiology, clinical decision support, and the practice of evidence-based
medicine. It is important to realize, however, that there are ethical and social
concerns about the use of the results. As with any health informatics
technique, data mining must be used with a clear understanding of, and to
further, the underlying goals of health care.
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QUESTIONS FOR DISCUSSION

1. The mission statement for an effort by a medical organization to collect
data from multiple local sources reads: “The mission is to transform what
is now a disconnected set of data into a form that is complete for any
given patient, no matter where they are seen. It should be available to
different groups or health care professionals for different reasons. This
will involve an assessment of the current data in terms of its location,
accuracy, and accessibility to different parties, identification of these
parties with an understanding of the kinds of data they may need, and
then a matching of these needs to the restructuring of the database itself.”
Discuss the technical and political challenges of this mission. How does
HIPAA impact this mission? Where is the primary focus of this project,
on the patients or providers?

2. You are the CIO of a large hospital system. An eight-year old girl who is
a patient at one of your hospitals is in need of a liver transplant. A
suitable donor has not yet been found. Many people die while awaiting
liver transplants because of a shortage of organs. The girl’s parents wish
to set up a web site describing their daughter’s illness and prognosis,
particularly the critical need for a liver, in the hope that this will help
them find a donor. They ask you to make this part of your hospital
system’s public web site because they think that that location will give it
more legitimacy and attract more internet traffic. Do you allow this?
Why or why not? Discuss in terms of the HIPAA regulations and the
principles of Beauchamp and Childress. Include any other factors or
reasoning you consider important.

3. Describe three barriers to EHR adoption. What is meant by “minimum
necessary” in the HIPAA regulations? Describe what technical and
policy measures would be necessary in order to have third-party
centralized EHRs. Discuss the advantages and disadvantages of
centralized EHRs.

4. You wish to code into an EHR a clinical algorithm for the treatment of
hyperbilirubinemia in the newborn
(http://aappolicy.aappublications.org/cgi/content/full/pediatrics;114/1/297).
“This algorithm depends on the age of the newborn in hours and the level
of total serum bilirubin (a blood test). “Turn-around time for this result
ranges from 30 minutes to two hours. Describe technical barriers to this
project. How would you test the code? What mechanisms do you need to
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maintain the code if the algorithm changes? How would you detect and
handle missing or inaccurate data?

What are the characteristics necessary for a useful general diagnostic
support system? What data mining techniques are available besides

Bayesian algorithms? Are any of them suitable for a general diagnostic
support system?

How would you measure the loss of data due to safe harbor de-
identification? How would you determine ease of re-identification?
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Chapter Overview

The description of concepts in the biomedical domain spans levels of
precision, complexity, implicit knowledge, and breadth of application that
makes the knowledge representation problem more challenging than that in
virtually any other domain. This chapter reviews some of this breadth in the
form of use-cases, and highlights some of the challenges confronted,
including variability among the properties of terminologies, classifications,
and ontologies. Special challenges arise at the semantic boundary between
information and terminology models, which are not resolvable on one side of
either boundary. The problems of aggregation are considered, together with
the requirement for rule-based logic when mapping information described
using detailed terminologies to high-level classifications. Finally, the
challenge of semantic interoperability, arguably the goal of all standards
efforts, is explored with respect to medical concept representation.

Keywords

vocabulary; ontology; classification; biomedical concepts; terminology

“When 1 use a word,” Humpty Dumpty said in rather a scornful tone, ‘it
means just what I choose it to mean — neither more nor less.’
‘The question is,” said Alice, ‘whether you CAN make words mean so
many different things.’
“The question is,” said Humpty Dumpty, ‘which is to be master —
that's all.’

Lewis Carroll, Through the Looking Glass. 1862
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1. INTRODUCTION

Medical concepts, by their nature, are complex notions. Patient
descriptions about diagnoses or procedures often invoke levels of detail and
chained attributes that pose complex computer-science problems for data
representation. Confounding this mechanical complexity is the sheer scale
and scope of concepts that can figure into medical thought, ranging from
molecular variance to sociologic environments, aptly illustrated by Blois
(1988) two decades past. This breadth can be aggravated by invoking
concepts and terms that can probe the depths of present knowledge,
bordering unto arcane realms of science and clinical practice with limited
understanding and less experience. Furthermore, a serious tension remains
between making such expressions readable and understandable by humans
while attempting to address the increasing need for machine-interpretable
expressions that leverage computerized knowledge and decision support.
Finally, had we perfect knowledge of medicine, our patients, or the spectrum
of sciences medicine invokes, the task of consistently representing patient
information would be hard enough. Sadly, oftentimes we struggle with
incomplete information, partial understanding, and flawed models.
Managing this morass to address efficiently and effectively the multiple uses
of medical concepts is hard (Rector, 1999).

1.1 Use-cases

A purely abstract discussion of medical concept representation is
unbounded. Enumeration of neurotransmitter molecules on a motor endplate
receptor bears comparison to angels on pin-heads for clinical purposes. On
the other hand, excessive reductionism may suggest a need for little more
than rudimentary collections of medical terms served up as pick-lists, though
this perspective typically has more to do with hiding complexity than
eliminating it.

Use-case definitions serve as a practical means for defining beginning
assumptions and scope as well as bounding problem spaces. Thus to frame
the context of this chapter with respect to medical concept representation,
some broad-based use-cases are outlined.

1.1.1 Information Capture

The most clinically familiar circumstance of representing medical
concepts is documenting patient findings, conditions, interventions, and
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outcomes. This documentation ranges from the unstructured dictations of
progress notes and summaries to the thoughtful management of fully
encoded problem lists, flow sheets, and encounter codes. Care providers thus
assimilate information about patients, make inferences from patterns of
observation, and re-express observations and conclusions. These
expressions comprise a kind of concept representation, though not always
formalized.

Medical concept representation typically implies a formal or at least
machinable manifestation of clinical information. However, for practical
purposes the field covers the full spectrum of information capture, including
natural language. The problem of mapping natural language expressions to
controlled terminologies is a topic unto itself. However, many of the
challenges outlined in this chapter pertain equally to natural language
expressions and more formal manifestations.

1.1.2 Communication

Information about patients, specimens, and experiments often needs to be
transferred among providers or within a health care enterprise. Transmission
media range from the non-machinable “fax” of text images to a highly
structured clinical message conforming to the HL7" Version 3 information
model. Typically, medical concepts inherit the characteristics associated
with their capture, with respect to detail, formalization, and structure.
However, standard message protocols such as those developed by HL7 may
impose degrees of formalization that require transformation of medical
concepts into highly structured representations.

Communication of medical concepts occurs for a purpose and requires
that the recipient can use the information. When the recipient is a human
being, seeking to read an historical medical record, these concepts may
require minimal information. However, for the machine-processable transfer
of electronic medical records between a referring physician and a tertiary
medical center, as envisioned by the National Health Information
Infrastructure (Yasnoff et al., 2004), a higher degree of interoperability is
needed. Similarly, for the systematic processing of drug orders to avoid
medical errors within an enterprise, a machine-interpretable representation
of concurrent medications and medical problems must be achieved. This
latter communication begins to overlap the formalization requirements for
decision support, as described here.

" hitp://www.hi7.org



Medical Concept Representation 167

1.1.3 Knowledge Organization

The organization of medical knowledge is among the oldest applications
of classification, dating to Aristotle’s efforts in biology and formal
descriptions (Pellegrin, 1986). The subsequent history (Chute, 1998; Chute,
2000) of medical concepts tells the story of increasingly detailed
classifications from the haphazard collection of causes of death in the 16"
century London Bills of Mortality (Graunt, 1939) to the emergence of large
description logic-based terminologies (Baader et al., 2002) such as
SNOMED CTH.

The explosion of modern biomedical ontologies (Smith and Rosse, 2004)
provides what Alan Rector has described as a “conceptual coat-rack” for
medical knowledge that knowledge authors and users find irresistible.
Furthermore, the boundaries between representing concepts in an ontology
using acyclic graphs and complex relations begin to blur the distinction
between knowledge representation and concept organization.  This
realization was articulated nearly 40 years ago (Lindberg et al., 1968; Bloise,
Tuttle, and Sherertz, 1981).

1.1.4 Information Retrieval

Most information sources have an indexing infrastructure that facilitates
rapid and accurate retrieval. The oldest biomedical database that supports
indexed retrieval is Medline/PubMed, for which the MeSH (Medical Subject
Heading) vocabulary (Nelson et al., 2004) was created and is maintained.
Virtually every user of the medical literature has encountered MeSH
concepts, if only indirectly. Most user interfaces to literature retrieval tools
translate natural text entries into MeSH concepts and then retrieve medical
journal articles that have these MeSH codes or their hierarchical children
(concept explosion or recursive subsumption).

For clinical data, classifications such as ICD-9-CM* serve an indexing
role roughly corresponding to MeSH. However, ICD codes in most
countries are applied for billing purposes and may not accurately reflect the
underlying clinical content (Chute et al., 1996).

Whether to use natural language or coded data is an old question (Cote,
1983), though most modern practitioners recognize that any subsequent
inferencing on retrieved information, using statistical regressions or machine
learning techniques, must ultimately categorize or “bin” the data. Taken to
the limit, such categorization defines concept classification systems. The

¥ http://www.snomed.org
! http://www.cde.gov/nchs/about/otheract/icd9/abticd9.htm



168 MEDICAL INFORMATICS

topic of medical information retrieval is addressed more completely by
Hersh in this volume and elsewhere (Hersh, 2003).

1.1.5 Decision Support

Helping clinicians make better decisions all the time is arguably the
ultimate goal of computer-assisted decision support systems. However, in
order for such systems to work, the knowledge resources that drive decision
rules must share the terms and concepts used by clinicians to describe the
patient. For example, decision rules made to operate on sulfa drugs may not
“fire” if they do not recognize drug trade names (e.g., Bactrim®) as
equivalent.  Failure to recognize semantic equivalence is a more serious
challenge when confronting the myriad expressions and terms that can
describe a disease. This equivalence can be daunting when a concept is fully
represented using terminology composition in one setting but constitutes a
combination of terms in specific fields where the information model or field
semantics modify meanings in another setting. The classic example of this
circumstance is “family history of heart disease™ vs. “heart disease” in a
field labeled “family history.”

The Arden Syntax®, a popular standard for expressing medical logic
modules and decision support rules, suffers from an incomplete specification
of rule triggers and vocabulary semantics. Often called the “curly braces
problem” (Choi, Lussier, and Mendoca, 2003) after the typographical
brackets used to contain trigger concepts and rule-logic terms, implementers
of a decision rule published in the Arden Syntax were left to their own
devices to interpret exactly what events and codes in their own organization
best correspond to the concepts within the curly braces. This semantic
challenge highlights the importance of shared concept representation among
logic-rule authors, implementers, and users.

2. CONTEXT

The settings of use often define as much about concepts as any surface
form or text string might convey. The famous linguistic example of
contextual syntax is “Time flies like an arrow, but fruit flies like a banana.”
This example illustrates the profound changes of meaning that context can
have on words, terms, and expressions. The biomedical domain, while often
more structured than general language, does not escape the influence of
context on the representation or interpretation of concepts.

¥ http://www.h!7.org/Special/committecs/Arden/arden.htm
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The definitively cited work on context, language, and concepts remains
Ogden and Richards’ 1923 opus, The Meaning of Meaning (Ogden et al.,
1923). They describe the classic “semantic triangle” which distinguishes a
purely abstract thought or human concept, a referent object in the real world,
and language symbols we might culturally share to refer to this concept.
Invoking the Shakespearian metaphor of a “’rose’ by any other name...,”
Ogden outlines that the shared cultural context of a rose — merely a pretty
flower or a symbol of love — dictates its interpretation. These shared cultural
assumptions are little different in health care, though comprehensive medical
concept representations in the guise of a fully-specified HL7 message leaves
less context to assumption and more to explicit assertion.

21 Concept Characteristics

Disease descriptions exist along many axes of characteristics, defining
continua of expression. These axes have implications for managing concept
representation and interpreting concept instances.

¢ Certainty — Clinicians document medical concepts throughout a care
episode, including periods when they are unsure of their own
speculations.  Clinical assertions range from differential diagnoses,
which include broad possibilities, probable but uncertain observations, to
final diagnoses (though these too are often revised). Hence, many
concepts in patient records may comprise more noise than fact.

¢ Etiologic Precision — Diagnostic statements are fraught with vagueness,
syndromic generalization, and final common pathway manifestations
attributable to multiple causes. Consider the label “congestive heart
failure,” which exhibits myriad etiologies though shared clinical
outcomes. Many medical concepts exhibit substantial -clinical
heterogeneity. Contrasting such vagueness is the emergence of an
increasing number of clinical characterizations that correspond to precise
molecular  variations  (Scriver, 2001; McKusick), such as
hemoglobinopathies or specific tumors. Indeed, the entire genomic
revolution will inevitably transform our understanding of disease and
etiology in a manner analogous to the effect of the germ theory of
disease.

e Granularity (specificity) — Disease hierarchies are not just the province of
classifications, but find expression in clinical descriptions. There is a
profound difference between a problem list entry of “cancer” and one
that specifies “Stage ITb squamous cell carcinoma of the right upper lobe
with metastatic extension to the liver...” Reference to a “granular”
description implies a detailed expression, often as a composition. More



170 MEDICAL INFORMATICS

specific terms can be distinguished without composition (e.g., the
granular “aortic insufficiency” contrasting with “heart disease”).

o Completeness — specific use-cases often determine how completely
clinical descriptions are expressed. Routine outpatient office visits may
exhibit a limited amount of disease detail when compared with the detail
provided through an elaborate clinical trial protocol. The boundary
between completeness and granularity is often determined by how the
information is represented between vocabulary expressions vs.
information model structures.

2.2 Domains

The professional language or jargon of medicine differs markedly from
general English (or any other natural human language). While health
professionals doubtless share substantial biomedical sub-language elements,
there is important sub-specialization by medical specialty. Neonatologists
do not fully share the language of psychiatrists; similar contrasts could be
drawn between the language of cardiologists and pathologists, radiologists
and clinical pharmacologists, rehabilitation specialists and oncologists, and
so on. These distinctions define concept domains, although domains are by
no means limited to differences in clinical sub-specialties.

A palpable way to illustrate these distinctions is to examine how certain
specialties might disambiguate simple and common abbreviations. The
following table expands differently the abbreviation MS by some domain
specialties.  What is remarkable is that these expansions occur consistently
within domains, but almost always inconsistently among domains. The
exercise is equally repeatable with MI, MR, and countless other
abbreviations.

Table 6-1. Domain-specific expansion of "MS"

Domain specialty “MS” abbreviation expansion
Cardiology mitral stenosis

Neurology multiple sclerosis

Anesthesia morphine sulfate

Obstetrics magnesium sulfate

Research science manuscript

Physics millisecond

Education Master of Science

U.S. Postal Service Mississippi

Computer science Microsoft

Correspondence

female name prefix
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Domain-specific term disambiguation is not restricted to abbreviations.
The NLM’s UMLS"™ contains six meanings for “cold” One is an
abbreviation expansion (chronic obstructive lung disease). However, each
of these meanings carries a unique concept identifier (CUI) within the
UMLS that can be invoked to represent a context-independent statement.
Furthermore, concepts can be fully expressed in language to avoid
ambiguity, although most human interfaces find fully disambiguated text
expansions tedious at best and sometimes insufferable. Using widely
understood shorthand expressions within a domain for human consumption
is a practice not likely to languish anytime soon.

2.3 Structure

The meaning of a term is as much influenced by the company it keeps
(structural context) as by who uses it (domain). However, the expression of
structural context has a dual nature in medical concept representation, as
illustrated in the figure below. Specifically, highly detailed, granular
vocabulary expressions can be composed which express a complex notion
illustrated by the vocabulary composition view. Semantically identical
assertions can be expressed using shorter vocabulary elements within a
specific information model that conveys the additional semantics — in this
case, the qualification of “family history.”

When one begins to deal with more complex information models and
more expressive vocabulary spaces, the problem worsens. The following
table is adapted from material suggested by David Markwell of the UK at
the inaugural TermInfo meeting held at National Aeronautics and Space
Administration (NASA) in Houston, TX during August 2004. This series of
meetings was convened to examine the spectrum of concept modeling that
can exist between terminology models (such as SNOMED or GO) and
information models (such as HL7 reference information model (RIM) or
caBIO), and in particular where these models generate a semantic overlap.
The table highlights alternative ways of modeling the same information by
using HL7 RIM and the SNOMED CT context model.

Table 6-2. HL7 RIM and SNOMED CT Context Model

HL7 RIM SNOMED CT Attribute
targetSiteCode(Observation) “finding site”
targetSiteCode(Procedure) “procedure site”
methodCode(Observation & Procedure) “method”
approachSiteCode(Procedure) “approach,” “access”
__priorityCode(Act) “priority”

" http://www.nlm.nih.gov/research/umls/
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The conclusion, almost inescapably, is that there is no one correct way to
represent complex medical concepts. Invoking higher-level information
models such as the HL7 RIM or even just a “family history” box has
equivalent validity and semantics to composition expressions built using
vocabulary models and syntax. If both are valid, then what is the problem?

The resolution of complex, semantically equivalent expressions that
differ in their allocation of meaning to an information model or
compositional vocabulary expressions is difficult. Establishing semantic
equivalence between such hybrid representations — or even their purely
modeled archetypes of complete information model or vocabulary
expression — is an under-developed research problem. Few solutions exist,
and none scale to the scope of problems encountered in real-world clinical
expressions. The practical implication is that virtually all use-cases that
require communication or consistent recognition of content by a recipient (as
in decision support) will fail, should care not be taken to negotiate the
allocation of semantics between information and vocabulary models.

Family History

Heart Disease Infor. mat.zon
Breast Cancer model view

Family history of heart disease
Family history of breast cancer
Vocabulary composition view

Figure 6-1. Information model view and vocabulary composition view.

3. BIOMEDICAL CONCEPT COLLECTIONS

3.1 Ontologies

Philosophers recoil at the pluralization of ontology. Originally, the term
ontology referred to the consideration of what kinds of entities comprise
reality. Computer scientists, in the era of artificial intelligence and
knowledge representation, co-opted the term to mean an organization of
concepts in domains, which might encompass medical concepts or
enumerations and relations among Boeing 777 aircraft parts. Gradually,
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criteria discriminating formal ontologies from ordinary hierarchies of
concepts included the requirement that ontologies exhibit internal
consistency, acyclic polyhierarchies, and computable semantics. Within
medicine, the pioneering work of Rector and the Galen project (Rector,
Nowland, and the Galen Consortium, 1993) illustrated how medical
concepts could be represented as a formal ontology and demonstrated
applications where this formalized representation mattered (Rector, Rossi
Mori, and Consorti, 1993).

Modern biomedical ontologies are becoming synonymous with concept
collections assembled using description logics (Baader and Nutt, 2002). The
venerable SNOMED has evolved to incorporate description logics which
include role restrictions (Spackman et al., 2002). Concept collections
pertaining to basic biology, such as the Gene Ontology, while criticized for
lacking many formalizations now expected of terminology bearing the
ontology banner (Smith, Williams, and Schulze-Kremer, 2003), are also
evolving to become a semantically computable resource (Wroe et al., 2003).

The novel promise of ontologies is their ultimate connection as a
distributed system of interlocking conceptual schema. For example, when a
LOINC term invokes a drug within a drug-sensitivity evaluation, semantic
interoperability is enhanced if there emerges agreement that the NDF-RT
(Chute et al., 2003) (National Drug Formulary — Reference Terminology; a
UMLS source vocabulary) would form the basis for drug references.
Similarly, the designation of a common anatomy terminology that could
span the spectrum of use-cases across biology and medicine would greatly
enhance our ability to consistently create and interpret biomedical concepts;
a leading candidate for a common anatomical ontology appears to be the
Foundational Model of Anatomy developed by Smith and Rosse (2004).

The development and deployment of ontologies is being greatly
accelerated by the emergence and adoption of the Protégé ontology editor
developed by Musen and colleagues (Noy et al., 2003). Closely coupled
with this tooling is agreement upon an expression syntax for description
logics, published by the WC3. Called OWL (the Ontology Web Language),
this standard (McGuinness and Harmelen, 2004) was approved only recently
but has already penetrated the ontology authoring community almost
completely. As of this writing, the OWL extensions to Protégé (Knublauch,
2004) provide the best authoring and editing environment for ontology
development available anywhere; that this NIH-funded effort is now
available' with an open-source license should further accelerate the quality
and number of well-formed ontologies in biomedicine.

T http://protege.stanford.edu; funded in part by NIH grant P41-LM07885 to Mark Musen,
MD PhD
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3.2 Vocabularies and Terminologies

Cimino provides a detailed description of vocabularies and terminologies
in this volume. For the purposes of this discussion, it is useful to distinguish
vocabularies and terminologies from ontologies. Simplistically,
vocabularies and terminologies are less formal than ontologies, uniformly
lacking logical descriptions that serve to computationally define terms. As a
practical matter, most large ontologies contain a sizable fraction, if not a
majority, of “primitive” terms undefined by description logic formalisms —
terminologies remain the major mode for biomedical terminologies, if not at
some levels the exclusive mode for the present.

There is no commonly accepted distinction between a vocabulary and
terminology, though many adherents in the field might suggest that
terminologies have associated codes and hierarchies while a simple
vocabulary may comprise little more than a bag of words. However,
invocation of the moniker “controlled vocabulary,” which may imply more
formality than exists in a terminology, renders this tenuous differential
inconsistent.

Vocabularies and terminologies are often described by intended role,
though few adhere to these role expectations. The most common
distinctions among terminology uses are:

e Entry Terminologies: specifically constructed to provide familiar and
common terms and phrases readily recognized by humans. These term
collections often sacrifice precision and rigor in favor of familiarity and
jargon,

e Reference Terminologies: semi-formal representations of terms and
concepts intended for machine interpretation.

® Administrative Terminologies:  higher-level classifications which
aggregate clinical findings for particular administrative purposes.

Common vocabularies and terminologies include LOINC, CPT (Current
Procedural Terminology), HL7 Vocabulary Tables (over 100 of them), and
NDC drug codes. People familiar with these systems can recognize wide
variations in structure, quality, and consistency of these concept libraries.
What makes a terminology good is beyond the scope of this work, though
systematic evaluations of common terminologies exist (Chute et al., 1996;
Campbell et al., 1997), as do generalized discussions of what makes a good
terminology (Chute, Cohn, and Campbell, 1998; Cimino, 1998). The reality
remains that most terminologies fail to adhere to good design principles,
suffering from the recycling of abstract codes to inconsistent hierarchies to
ambiguous groupings of concepts.
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33 Aggregation and Classification

Historically, significant tension existed between the terminology and
classification communities (Cote, 1983; Ingenerf and Giere, 1998), with
each maintaining the advantages of their use-case. However, recent thinking
has established their mutual advantages along a continuum of granularity or
specificity (Chute, Cohn, and Campbell, 1998). Medical information, by its
nature, is highly detailed. Hence a need for concept systems or
terminologies that can reasonably capture highly detailed information will
always exist. On the other hand, many use-cases work best with highly
grouped data. Examples include public-health statistics, reimbursement
categories, or administrative groupings of patients.

High-level aggregation systems, such as ICD-9-CM, have been unjustly
criticized for not having enough granularity to function in decision support
or clinical retrieval use-cases. The complaint is accurate but the criticism
unjustified because high-level classifications such as ICD-9-CM were never
intended to function as detailed terminologies. If criticism is to be made, it
should be of Electronic Health Record (EHR) vendors and most
implementing providers who insist on using ICD-9-CM for use-cases such as
patient problem lists and clinical decision support triggers that more properly
demand detailed terminologies, such as SNOMED-CT.

However, the specter of double-coding clinical findings, diagnoses,
procedures, or adverse events, once in a detailed terminology and again in a
required or mandated classification, reasonably discourages best-coding
practice. Few providers have the resources to appropriately code cases for
reimbursement and quality oversight, never mind code them again for
clinical applications. Early drafts of the PITAC (President’s Information
Technology Advisory Committee) Report on Health Information
Technology went so far as to suggest that providers code just once, in a
detailed terminology, and that secondary re-use of clinical data be facilitated
by appropriate mapping to requisite classifications, such as the newly drafted
ICD-10-CM. The final version (U.S. President’s Information Technology
Advisory Committee, 2004) of this report, however, provided a much more
balanced perspective on the important roles that high-level classifications
can play, coupled with the many practical difficulties of accurately mapping
detailed clinical terms to complex classifications.

Kent Spackman, editor of SNOMED-CT, proposed (personal
communication) that mapping from detailed terminologies to complex
classification would provide more reliable and consistent coding. However,
he points out that to be done correctly, the coding rules of a classification,
such as ICD-9-CM, must be made explicit and machineable. Most
classifications rely on indentations, typographic conventions, index entries,
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and established professional coding lore as a basis for conveying the rules of
coding. These rules can be quite elaborate, specifying complex inclusion
and exclusion criteria for assignment to a specific code. As a simple
example, pre-eclampsia is distinguished from ordinary hypertension in ICD-
9-CM by obviously requiring female gender, pregnancy, and renal
involvement.

These coding rules could define “Aggregation Logics,” and should be
published as machine-readable logic rules by developers of classifications.
The analogy is often made to “Grouper” rules, by which collections of ICD
codes are grouped into higher-level DRGs (Diagnostic Related Groups) by
computer algorithms. Aggregation Logics would fill the gap between
detailed clinical expressions and the intermediate classifications, such as
ICD-9-CM or ICD-10-CM, when it becomes adopted. The point is to avoid
duplicate coding by providers, and consistent with Spackman’s assertion,
likely provide more reliable and consistent coding into ICD-level
classifications.

34 Thesauri and Mappings
34.1 The UMLS

No discussion of biomedical terminology and concept representation
would be complete without mention of the Unified Medical Language
System (op. cit.). Originally intended to serve as a Rosetta Stone to suggest
translations among terminologies (Humphreys and Lindberg, 1989), it has
taken a more practical role as the major semantic thesaurus of biomedical
terms. The UMLS is comprised of over 100 separate terminology sources,
including SNOMED CT, MeSH, and ICD-9-CM. However, it does not
contain formal description logic assertions across terms from different
vocabularies, though hierarchical assertions, broader/narrower relations, and
“other” relationships are meticulously mapped and curated by human editors
for the entire corpus.

The 2004 release of the UMLS Metathesaurus saw the most dramatic
change in the file structures and formats of the UMLS since its original
release in 1988. To accommodate the complex description logic assertions
of SNOMED CT, the NLM introduced a Rich Release Format (RRF)
(National Library of Medicine, 2003), which for the first time promised
“source transparency.” The intention was to permit users of the UMLS to
extract terminologies from the Metathesaurus in a format that would
transparently reflect the original content of a particular terminology.
Previously, the UMLS formatting process resulted in a “lossy” information
transfer. The modern vision of the UMLS, to become the definitive source
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and publication format for major biomedical terminologies, is thereby
greatly advanced.

3.4.2 Word-Level Synonymy

An emerging requirement for natural language thesauri is not presently
served by the UMLS, though it is approximated for general English by
resources such as WordNet (Fellbaum, 1998). Consider the retrieval use-
case for Renal Cancer when data may have been recorded as Kidney Cancer.
The UMLS happens to include explicit English synonyms that map these
two phrases, but this is not the case for all word-level synonyms and
permutations that one might imagine in biomedical concepts.

The public sharing of word-level concept clusters has been widely
proposed (Solbrig et al., 2000), and indeed some generalized methods for
creating and evolving them have been explored (Pakhomov, Buntrock, and
Chute, 2004). The broad creation, shared maintenance, and coordinated use
of consensus-driven thesauri of common synonyms will be a great advance
toward linking phrases entered by providers with elements of controlled
terminologies. These resources, in a second generation of curation, could
also include degrees of pleisionymy. Ultimately, these thesauri can be
married with ontologies and terminologies to provide a horizontal
(synonym) and vertical (terminologies) component to medical concept
representation and retrieval (Chute, 2002).

4. STANDARDS AND SEMANTIC
INTEROPERABILITY

Medical concepts, once expressed, must be understood by people or
machines. The context of concept assertion can overlay additional semantics
that must be understood. Fully specified messaging environments, such as
HL7 or caBIO¥, can carry sufficient information to explain context, but
there is no replacement for agreed-upon content standards, to wit common
vocabularies.

In the United States, the Federal eGov initiatives have spawned the
Consolidated Health Informatics (CHI) set of standards®. Working in
concert with the NCVHS, the CHI working groups have proposed
terminology and interchange standards that would be required for use among
US Federal agencies. Intended to define a critical-mass tipping point for the

4 http://ncicb.nci.nih.gov/core/caBIO
¥ http://www.whitehouse.gov/omb/egov/gtob/health_informatics.htm
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general US health care economy, the explicit intention is that such Federal
leadership would define de facto a common basis for content standards.
While the CHI proposals are still new as of this writing, the intended effect
appears to be taking place. Evidence for this can be seen in the NLM
contract to HL7 (HHS N276 2004 43505C) to ensure that all HL7
vocabulary tables are CHI-compliant.

One may conclude that substantial progress and tangible resources have
emerged in the past few years to support the consistent and comparable
representation of medical concepts for a broad spectrum of use-cases. The
rapid adoption of ontology languages such as OWL, their subsequent
availability in high fidelity within the UMLS, and the active negotiation and
specification of what contextual information belongs in an information
model vs. a terminology model bring increasing problems of robust
solutions. The common use of highly detailed and semantically coherent
medical messages and retrievals is not yet realized, but progress has been
dramatic in the past five years. The clichéd refrain that more work needs to
be done certainly pertains, but that work is now more palpably satisfying and
1s vectoring toward consensus solutions and practical standards
specifications.
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The definitive textbook which outlines the history and current state-of-the-art for
Description Logics. Since Description Logics form the basis of modern ontologies,
familiarity with this technology is increasingly required for mastery of concept
representation.

Rector, A. L. (1999). “Clinical Terminology: Why is it so Hard?” Methods of Information in
Medicine, 38(4-5), 239-252.
An outstandingly concise and complete exposition on the terminology problem in health
care, effectively refuting commonly held expectations that health terminology should be
trivial.

Chute, C. G. (2000). “Clinical Classification and Terminology: Some History and Current
Observations,” Journal of the American Medical Informatics Association, 7(3), 298-303.
A brief history of medical classification and description, providing background and
context for the evolution of thinking and practice in health classifications through the last
century.

ONLINE RESOURCES

http://umlsks.nlm.nih.gov/
The home side of the NLM’s Unified Medical Language Systems

http://informatics.mayo.edu
The specification and open-source for the LexGrid project, terminology editor, and
Common Terminology Services (from HL7).

http://protege.stanford.edu
The most widely used ontology editor, Protégé, and related resources.

http://www.co-ode.org/
The Collaborative Open Ontology Development Environment home page, including
tutorials and resources

QUESTIONS FOR DISCUSSION

1. What are the relative roles of terminology models and information
models in representing complex medical expressions?

2. What is the distinction between representing information and aggregating
information? Specifically, what are the relative roles and relationships
among terminologies and classifications?

3. How might a spectrum of secondary data uses, such as decision support,
quality improvement, biomedical research, or administrative aggregation,
impact information representation and display?
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4. How might the retrieval of information be affected by differing ways of
representing it? Specifically include discussion of granularity, detail,
aggregations (lumping), or context?
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Chapter Overview

The importance of biomedical concept relationships and document concept
interrelationships are discussed and some of the ways in which concept
relationships have been used in information search and retrieval are
reviewed. We look at examples of innovative approaches utilizing
biomedical concept identification and relationships for improved document
and information retrieval and analysis that support knowledge creation and
management.
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The process of tying two items together is the important thing.

Vannevar Bush, As We May Think, 1945
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1. INTRODUCTION

Advances in the biomedical sciences have been accompanied by an
overwhelming increase in the biomedical literature. It has become critically
important to not only understand developments in one's own area of
specialization, but to also be able to learn quickly about developments in
related and occasionally unrelated subject areas. The ability to rapidly
survey the literature and integrate information gathered by researchers from
multiple fields of expertise constitutes the necessary first step toward
enabling biomedical scientists and researchers to keep current in their field.

Interest in developing techniques and methods for processing documents
and document collections, with the goal of providing the information most
relevant to a user's need, pre-dates widespread use of computers. However,
these efforts have accelerated as the wealth of scientific literature expands
alongside the need to uncover information that is already present in large and
unstructured bodies of text, commonly referred to as "non-interactive
literatures" (Swanson and Smalheiser, 1997); i.e., literatures that do not cite
each other but which, nevertheless, together present useful new information.
In addition, the sequencing of the human genome has provided intensive
impetus for developing effective tools to identify interrelated concepts and
roles such as gene-discase connections and gene-drug interactions from the
published literature, as well as from a variety of other types of databases.

This chapter will first explore the importance of biomedical concept
relationships and document concept interrelationships, and some of the ways
in which concept relationships have been used in information search and
retrieval. We will then review a variety of approaches that have been used to
represent biomedical concept relationships, beginning with the early concept
identification systems developed in the 1950's. Finally, we will look at
examples of innovative approaches utilizing biomedical concept
identification and relationships for improved document and information
retrieval and analysis that support knowledge creation and management.

Before continuing further, a few definitions are in order. A concept can
be considered the atom or smallest unit of any knowledge domain or
discipline. However, concepts do not exist in isolation; they occur in
complex, multidimensional networks that represent ‘“"real world"
relationships. For the purposes of this chapter, we are using the term
"relationship” to denote a semantic association between two or more
identified concepts. For example, some typical relationships include:
concept A "is caused by" concept B; concept A "is associated with" concept
B; and concept A "is a part of" concept B. We will explore the utility of
biomedical concept relationships for improving document and information
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retrieval and analysis, both within individual documents and among
document sets.

Although most of us have a common understanding of the term
relationship, it is often difficult to explain what appears to be implicit in
meaning, even though concept relationships are "...an integral part of the
very foundation on which we build and organize our knowledge and
understanding of the world in which we live. If concepts are seen as the
basic building blocks of conceptual structure, then relationships are the
mortar that holds it together" (Green et al., 2001).

The idea that concepts are related to one other is quite useless without
knowing the meaning of the relationship. And before a relationship can be
identified, "we must be able, first, to designate all the parties bound by the
relationship and, second, to specify the nature of the relationship" by
identifying the entities that participate in the relationship and the semantics
and properties of the relationship (Green, 2001).

Yet, there is a need to be specific and precise when exploring what
relationships are, how they are defined and how they can be represented. For
example, in the field of mathematics, relational operators such as equals (=),
less than (<) or greater than (>) express specific and precise meanings that
are well understood by those who are familiar with numbers and
mathematics. It would be ideal if our knowledge of relationships in other
fields could be interpreted at the same level of precision.

Consider the following scenario: An Alzheimer Disease (AD) researcher
is investigating the beneficial effects of caffeine ingestion to slow memory
impairment. She knows that caffeine, like adenosine A(2A) receptor
antagonists, blocks -amyloid—induced neurotoxicity in some rat models for
AD. She also knows that caffeine has been shown to improve memory
deficits in rat models for Parkinson's Disease (PD). The researcher wants to
know if there is a relationship between the protective effects of caffeine
consumption and adenosine A2A receptor antagonists for AD patients. She
needs to know the level of caffeine dosage ingested over what time period,
possible negative and positive associations of caffeine with other
neurodegenerative diseases and association of caffeine with other conditions
found in an elderly population, such as stroke, high blood pressure, etc. She
also wants to know if treatment combining caffeine and adenosine A2A
receptor blockers might further slow memory impairment. Using the
PubMed®' search interface, she searches the MEDLINE® database.
Maintained by the National Library of Medicine® (NLM®), MEDLINE

Y http:fwww.ncbi.nilm.nih.govientrez/query. fegi
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contains over 14 million citations to biomedical articles with over 2000
citations added weekly.?

The researcher conducts numerous searches using the following terms:
Alzheimer's disease, memory, caffeine, neurodegenerative diseases and
adenosine A24 receptor antagonists (hereafter referred to as A2A blockers).
Her first PubMed searches on '"neurodegenerative diseases" and
"Alzheimer's disease" respectively yield 119,829 and 40,785 potential
documents. Searching on "A2A blockers" and "caffeine" each retrieve 1209
and 18,965 citations. The researcher then conducts searches combining
terms. Combining the terms "memory" and "caffeine" retrieves 173
citations; combining "caffeine" and "A2A blockers" yields 94 citations. Next
she tries "neurodegenerative disease" and "caffeine" (93 citations),
"neurodegenerative disease” and " A2A blockers " (56 citations) and
"Alzheimer's disease" and "caffeine" (21 citations). The researcher then
combines "Alzheimer's disease,” " A2A blockers " and "caffeine" which
yields 9 citations—of which, after careful examination, only 3 appear to
present actual answers to her questions.

This scenario includes all of the classic information science problems:
precision (a measure of the number of relevant documents as a fraction of all
the documents retrieved by the system); recall (a measure of the number of
documents useful to the user as a fraction of all the relevant documents
retrieved); "aboutness" (subject of the document); and vocabulary control.
Traditional search engines and bibliographic database search-and-retrieval
systems operate on retrieving a set of documents that reflect only one
relationship: a similarity of content matching the keyword or subject terms
in the user's query using a basic Boolean keyword retrieval (a query using
the Boolean operators "and," "or" and "not"). The implicit interpretation is
that there is an equivalent relationship between the user's concept and the
document citations retrieved that represent the concept; i.e., the list of
citations serves as a surrogate for the requested concept. While this
relationship can be presumed and considered useful some of the time, it
usually delivers a retrieval set that falls far short of the user's information
need and often overwhelms the user with many irrelevant documents.

So the researcher's questions remain unanswered: How much and over
what period of time must caffeine be consumed to slow memory loss? Will a
combination of caffeine and adenosine A2A receptor antagonists shorten
that period of time? Do the neurotoxicity-blocking effects of caffeine and
adenosine A2A receptor blockers also come into play with other
neurodegenerative diseases? What about possible negative associations with
other conditions?

? For more information see http://www.nlm.nih.govipubs/factsheets/pubmed.html
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When the researcher entered her terms or term pairs in PubMed, the
searching algorithm used the standard keyword approach that counted the
words in a query, looked for the presence of terms that matched the query in
the database's bibliographic information (i.e., the abstract, title, keywords).
While both terms may have been present in the same document, their
inclusion in the retrieval set did not necessarily indicate that the two
concepts had been studied in relation to one another. The term "caffeine”
may be present in the abstract as part of an explanation of previous research.
The indexer may have included "Alzheimer's disease" in the keywords
because it was mentioned in the article introduction. Although the terms
"caffeine" and "A2A receptor" are listed as keywords for a document, this
does not guarantee that they were studied in relation to one another.

Most approaches to indexing and retrieval of documents to date have not
exploited the structure of the document itself as a way of more precisely
characterizing biomedical relationships. In addition, most biomedical
literature mining has been performed on title and/or abstract words rather
than all the words (full-text) in the documents. The researcher's primary
information need is to know what was studied and the results of that study.
This is data normally located in the Methods and Results sections of a
biomedical research report—not necessarily evident in the citation, abstract,
subject headings or keywords assigned to the document. Identifying the
concept relationships that were studied and reported in the research
document is a critical means of matching the biomedical literature user's
questions with relevant literature, providing a way to rapidly review,
integrate and inter-relate concepts of interest.

2. BACKGROUND AND OVERVIEW: THE USE OF
CONCEPT RELATIONSHIPS FOR KNOWLEDGE
CREATION

The thesaurus is a key tool developed by information science researchers
for displaying the logical, semantic relationships among terms and rules for
establishing compilations of terms to denote concepts and concept
relationships. Comprised of the specialized vocabulary of a discipline or
field of study, the thesaurus is a list of preferred terms to indicate two types
of relationships between pairs of terms:

e synonyms, i.c., which of two or more equivalent terms can represent a
concept, commonly denoted by Use or UseFor relationships; and

* hierarchical relationships, i.e., broader and narrower terms (parent/child
relationships) and association (related terms, such as close siblings).
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A more sophisticated type of thesaurus is the ontology, defined as an
explicit, formal, systematic specification of all the categories of objects,
concepts and other entities in a field or domain; the relations between these
categories; and the properties and functions needed to define the objects and
specify their actions (see Chapter 8, "Biomedical Ontologies," for a detailed
description). Ontologies use rich semantic relationships among terms and
strict rules about how to specify terms and relationships.

A key biomedical language resource is the Unified Medical Language
System® (UMLS)®, developed by the NLM to overcome information
retrieval (IR) problems caused by differences in biomedical terminology.’
The UMLS consists of three multipurpose knowledge sources that together
provide structured representation of concepts and relationships in the
biomedical domain:

1. The UMLS Metathesaurus®, a large, multi-purpose, multi-lingual
specialized vocabulary database that contains information about
biomedical and health-related concepts, their various names and the
semantic relationships between concepts.

2. The Semantic Network, a consistent categorization of all concepts
represented in the UMLS Metathesaurus and to provide a set of useful
relationships between these concepts.

3. The SPECIALIST Lexicon, a general English lexicon that includes
biomedical vocabulary and a lexical entry that records each term's
syntactic, morphological, and orthographic information. The lexical entry
is of critical importance to natural language processing (NLP) systems.
One of the more thorough reviews of concept and document relationships

occurred at the 1997 ACMY/SIGIR workshop "Beyond Word Relations."

Participants examined a number of relationship types as possibly significant

for IR systems, beyond the traditional topic-matching relationship. The

workshop proposed seven relationship types that could prove useful in IR
systems:

1. Word-based relationships: documents that share the same vocabulary or
word;

2. Attribute-based relationships: relationships  based on shared
characteristics (e.g., documents 4 and B share same author);

3. Document-document hierarchical relationships: situations in which one
document is a sub-set or super-type of the other (e.g., document 4 is an
appendix or sub-piece of document B);

4. Document-document topological relationships: a conceptual extension to
the hierarchical relationship, this includes relationships that denote

3 http:/fwww.nim.nih.gov/pubs/factsheets/umls. html
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conceptual equivalence (e.g., document A is a translation of document B),

commentary (e.g., document 4 updates document B), etc.

5. Document-to-document influence relationships: situations in which one
document has affected the writing of another (e.g., document 4 builds on
the work of document B);

6. Topic-based (or meta-topic based) relationships: this type includes the
traditional topic-matching relationship, as well as situations in which
documents are related but through less obvious topical resemblances
(e.g., "non-interactive literatures" as mentioned earlier);

7. Usage-based relationships: documents that are related through the use of
the documents, as in a user profile (Hetzler, 1997).

In addition to issues related to capturing a variety of types of concept
relationships, the importance of document structure to indexing strategy, the
difficulty of translating a user's information need into a query that can
retrieve relevant and useful document representations (whether bibliographic
citations or full-text documents) and the problem of how to represent
biomedical concept relationships have been under investigation for many
years. Our overview will cover various approaches to biomedical literature
data mining that focus on utilizing concept relationships, including indexing
and vocabulary strategies, information extraction (IE), NLP, text mining and
literature-based discovery IR—however, much of the work has narrowly
focused in the genome sciences domain. While we provide examples of
methods and systems that represent each approach, much more work has
been published in this area than can be referenced here.

2.1 Indexing Strategies and Vocabulary Systems

Traditionally, subject access to information has been provided in two
ways: (1) classification, the process of describing the subject of an
information object (its "aboutness") so it can be uniquely distinguished from
all other items and (2) indexing, the process of assigning terms from a
controlled vocabulary list (a collection of preferred terms that are used to
assist in more precise retrieval of content).

There are two kinds of relationships between terms: semantic and
syntactic. Semantic relationships are by definition permanent relationships;
they exist independently of document content. For example, the concepts
animal and mammal are related regardless of content. Syntactic
relationships, however, consist of otherwise unrelated concepts that are
brought together because of the document "space" they share. These
relationships are not permanent.

An early innovation in information science research was the coordinate
index—a list of terms that can be combined when indexing or searching a
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body of literature—which developed into subject-based terminology lists
and, more recently, into thesauri and ontologies. In 1952, Taube pioneered
the development of IR systems with his invention of the post-coordinate
indexing system for subject retrieval. Post-coordinate indexing is the
assigning of single concept terms from a controlled vocabulary to a record so
that the user is able to "coordinate" or combine the terms using any
combination of those concepts in any order when searching (Taube, 1953-
57). Post-coordinate index can minimize the number of entries necessary to
index all the concepts in a work.

An example of post-coordinate indexing is the MEDLINE database.
Documents in the MEDLINE database are indexed using the Medical
Subject Headings (MeSH) vocabulary, a post-coordinate indexing strategy.
The user can select individual, indexer-assigned concepts from the MeSH
controlled vocabulary and combine them with Boolean operators.

A more sophisticated indexing approach to capture biomedical
relationships is pre-coordinate indexing, in which terms from the coordinate
index are combined at the time of indexing into subject strings that capture
concept relationships. Users do not have to coordinate these concepts
themselves but can search on the pre-coordinated concepts, resulting in more
precise retrieval. For example, MeSH terms can be assigned to a document
with one or more of the possible 82 subheadings attached, such as
"diagnosis" or "drug therapy." A search on the term "hypertension" with the
attached subheading "drug therapy" will retrieve articles on the treatment of
hypertension using drugs in a more precise manner than simply connecting
the two concepts by an "and" operator, as in post-coordinate systems. The
latter could result in retrieval of articles that are about hypertension with the
drug therapy directed at another discase.

In coordinate indexing, syntactic relationships are displayed according to
the syntax of a normal sentence, either through the syntax of the subject
string (precoordinate indexing) or through devices such as facet indicators
(postcoordinate indexing). Because of the absence of syntactic relationship
indicators in postcoordinate systems, users are unable to distinguish between
different contexts for the same term. This can result in retrieval of a set of
documents that, while topically related, also contain "false drops" because
there is not a mechanism for linking the terms to their respective composite
subject or context (Foskett, 1982).

Farradane (1980) proposed Relational Indexing, a framework of nine
relationship types, as a scheme for representing structures of syntactic
relationships between terms in document descriptions with the goal of
providing better retrieval of technical documents. In relational indexing, the
meaning in information objects is denoted in the relationships between
terms. This approach was not widely utilized, perhaps because the limited
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number of relationship types required manual indexing. However, Relational
Indexing served as a precursor to some of the features of the UMLS and
other thesaurus systems.

Similar to relational indexing, Craven (1978) proposed LIPHIS (Linked
Phrase Indexing System), a system of computer-assisted subject indexing
that used a network of terms in which arcs correspond to relationships
denoted by prepositions. Like Farradane's scheme, the emphasis on concept
relationships captured more of the content of an information object than
individual term indexing alone.

In many vocabulary systems, conceptual relationships are characterized
by generic relationships such as "broader than" and "related to." Other
systems, including ontologies, utilize terminologic logic to describe a richer,
more informative set of semantic relationships, such as '"is_a,"
"connected_to" and "part_of." In biomedical literature, thesauri concept
relationships conform to three general semantic classes of relationships that
are used to express various dependencies and connections (Chowdury,
1999):

e Equivalence: which denotes the relationship between a preferred and
non-preferred term and is shown through cross-references;

¢ Hierarchical: which represents pairs of terms in their superordinate (the
whole) or subordinate (the part) status and is denoted by "Broader Than"
and "Narrower Than" codes; and

e Associative: which describes the relationships between terms that are not
in either the hierarchical or equivalence class and is shown by "Related"
term codes.

In any natural language text, sequences of characters are combined into
words, sequences of words are combined into sentences, sequences of
sentences are combined into paragraphs and the sequences of paragraphs
into texts. There is, thus, a hierarchy of levels of organization in text and
there are corresponding levels of indexing to represent these textual levels.
In the case of biomedical research reports, the structure is highly predictable
(e.g., introduction, methods and design, research findings and conclusions
sections). Approaches to relationship representation described so far have
largely ignored the structure of the document in favor of representing
isolated concepts. More recent work has focused on systems to extract
biomedical relationships in the context of the document structure.

2.2 Integrating Document Structure in Systems
Much of the progress over the last several years in improving text

understanding and retrieval has been due to systematic evaluations using
complete, naturally-occurring texts as test data conducted at the Message
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Understanding Conferences (MUC)* and Text REtrieval Conferences
(TREC)’. MUC and TREC are currently sponsored by the U.S. Advanced
Research Projects Agency (ARPA) and have enjoyed the participation of
non-U.S. as well as U.S. organizations. MUC focuses on NLP while TREC
is IR-focused. Both conferences provide the necessary infrastructure and
large test corpora for large-scale, statistically valid performance figures and
objective evaluation metrics of NLP and text retrieval methodologies.

Identification and classification of names of person, organization,
location, etc., at accuracies exceeding 90% and successful extraction of
binary relations among these entities at over 75% accuracy have been
reported from these conferences (Aone et al., 1998). Also, as information
extraction and retrieval systems have improved, attention has recently been
turning to the potential contribution of document structure for text
understanding and retrieval.

For example, Yeh et al. (2003) report the results of a Challenge
Evaluation task created for the Knowledge Discovery and Data Mining
(KDD) Challenge Cup to identify the set of genes discussed in a training
corpus of 862 journal articles curated in FlyBase, a comprehensive database
for information on the genetics and molecular biology of Drosophila. The
common feature among the "winning" systems was use of document
structure (i.e., concentrating on only certain sections of the document, for
example, the "Results" or "Methods" sections and avoiding sections such as
"References" in which citations will include names of genes not discussed in
the paper) and/or linguistic structure (e.g., sections, paragraphs, sentences,
and phrases), as well as table and figure captions, as a means of limiting
where to look for features or patterns. The authors note that:

This is in contrast to the information retrieval approach of treating a
paper as just an unstructured set of words. We expect that systems will
need to make more extensive use of linguistic and document structure to
achieve better results and to accommodate more realistic tasks. (Yeh et
al., 2003, pp. i338-9)

A similar approach is used by the PASTA (Protein Active Site Template
Acquisition) Project system, which focuses on extracting information
concerning the roles of particular amino acid residues in known three-
dimensional protein structures. Text preprocessing includes a module that
analyzes the text structure to determine which sections will proceed to
continued processing. Since certain term classes may occur in only one
particular section of text, by leveraging the standard structure of a scientific

* http://www-nlpir.nist.govivelated_projects/muc/
3 http:/ftrec.nist.gov
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article, PASTA can exclude those portions of text that are not of interest. In
addition, the PASTA system uses the document section to alter processing
(Gaizauskas et al., 2000).

Another system that processes only specific parts of documents is
FigSearch (Liu et al., 2004), a classification system that focuses specifically
on a document's table and figure legends. The system ranks figures as likely
to represent a certain type (e.g., protein interactions, signaling events) and
allows users to search for these specialized subsets of figures from full-text.

Although incorporating the document's structure can help reduce the
scope of material needing processing and potentially reduce inevitable
"noise" in the results, this approach is not without its limitations. A major
criticism of these systems is their specialization and consequent difficulty in
porting to new domains or use in new applications. Also, the advantages of
specialization (e.g., faster processing time) are achieved at the cost of limited
terminology handling. For example, terminological issues of synonyms and
term variants, expanding abbreviations, and lack of a mechanism for
handling relations between terms continue to be problems encountered in
systems that incorporate document structure.

23 Text Mining Approaches

Text mining refers to the process of extracting interesting and non-trivial
patterns or knowledge from unstructured text documents. Text mining
systems generically involve preprocessing document collections using text
categorization and term extraction, storing the intermediate representations
for analysis (e.g., distribution analysis, clustering, etc.) and visualizing the
results. Association rules, which link pairs or larger groups of concepts and
are usually assigned support and confidence values, are a dominant analysis
method in text mining research. An association rule such as concept 4 —
concept B indicates there may be a potentially interesting directional
association from A4 to B. Typically these are discovered by exploiting the co-
occurrence of concepts in the texts being mined (Hristovski et al., 2004).

Hirschman et al.,'s (2002) review of milestones in biomedical text mining
research, notes that the field began by focusing on three approaches to
processing text:

e Linguistic context of the text, such as the work of Fukuda et al. (1998)
who pioneered identification of protein names;

e Pattern matching, as seen in the work of Ng and Wong (1999), who used
templates that matched specific linguistic structures to recognize and
extract protein interaction information from MEDLINE documents; and
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e Word co-occurrence, such as Stapley and Benoit (2000) who extracted
co-occurrences of gene names from MEDLINE documents and used
them to predict their connections based on occurrence statistics.

As data mining technologies and NLP systems improve, more complex
text can be processed and corpus-based approaches developed, as seen in the
work of Pustejovsky et al. (2002), who used a corpus-based approach to
develop rules specific to a class of predicates on a corpus of inhibit-relations;
and Leroy and Chen (2005), whose Genescene system uses prepositions as
entry points into phrases in the text, then fills in a set of templates of patterns
of prepositions around verbs and nominalized verbs. NLP has also been used
to capture specific relations in databases. For example, EDGAR is a system
that extracts relationships between cancer-related drugs and genes from
biomedical literature, incorporating a stochastic part of speech tagger,
syntactic parser and semantic information from the UMLS (Rindflesch et al.,
2000).

These systems have worked to overcome some of the limitations
previously mentioned—such as decoding acronyms and abbreviations and
detecting synonyms—using machine learning methods, NLP and
incorporating ontologies (e.g., the Gene Ontology (GO)°, a controlled
vocabulary of genes and their products).

2.4 Literature-based Discovery IR Systems

As stated in the Introduction, the idea of discovering new relations from a
bibliographic database was introduced by Swanson as "undiscovered public
knowledge" that merit further investigation. Figure 7-1 illustrates Swanson's
characterization of one of his first "mutually isolated literatures": Raynaud's
disease, a peripheral circulatory disorder, and dietary fish oil. Although each
of the two literatures were public knowledge, they were not
bibliographically-related (i.e., did not cite one another), but were linked
through intermediate literatures that had not been noticed before (Swanson
and Smalheiser, 1997).

The premise of Swanson's approach is, given a body of literature
reporting that concept A influences or is related to concept B; and given
another body of literature reporting that concept B is related to or influences
concept C; it may be inferred that concept A is linked to concept C, and if
this relationship has not been experimentally tested, there is the potential to
uncover previously "undiscovered public knowledge," form hypotheses, and
investigate the relationship between concept 4 and concept C.

8 http:/twww.geneontology.org/
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In collaboration with Smalheiser over the past two decades, Swanson
explored potential linkages via intermediate topics or specializations
between bibliographically disconnected areas of specialization. Using this
method, several concept relationships have been discovered and proposed
for hypothesis testing, including the relationship between migraine and
magnesium (Swanson and Smalheiser, 1997) and automatically identifying
viruses that may be used as bioweapons (Swanson et al., 2001), among
others. ARROWSMITH, an interactive discovery system based on Swanson
and Smalheiser's methods, was created in 1991 and continues development
today.’

Since the introduction of literature-based discovery, efforts to automate
this approach and develop discovery algorithms that can be applied to a
knowledge base or bibliographic database have resulted in several systems.
One such system is BITOLA (Figure 7-2), which applies a general literature
discovery algorithm to a knowledge base derived from the known relations
between biomedical concepts (MeSH descriptors plus gene symbols in the
document title and abstract fields) in the MEDLINE bibliographic database.

TARGET SOURCE

LITERATURE LITERATURE

INTERMEDIATE LITERATURES

Figure 7-1. A Venn diagram that represents sets of articles or "literatures,"” 4 and C, that have
no articles in common but which are linked through intermediate literatures Bi (i = 1,2,...).

7 There are two implementations available on the Web: hup://kiwi.uchicago.edu and
http:/larrowsmith.psych.uic.edu
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Such a structure may contain unnoticed useful information that can be inferred by combining
pairs of intersections ABi and BiC. (From: Swanson and Smalheiser, 1997; reproduced with
permission of the author.

BITOLA uses HUGO (Human Genome Organisation), the National Center
for Biotechnology Information's (NCBI) LocusLink (a database of curated
sequence and descriptive information about genetic loci) and OMIM
(NCBI's Online Mendelian Inheritance in Man catalog of human genes and
genetic disorders) as sources for gene symbols and names as well as gene
locations. It also uses OMIM to obtain chromosomal locations. To decrease
the number of candidate relations and make the system more suitable for
disease candidate gene discovery, the system includes genetic knowledge
about the chromosomal location of the starting disecase as well as the
chromosomal location of the candidate genes (Hristovski et al., 2004).

Similar to Swanson's procedure, BITOLA first finds all the concepts Y
that are related to the starting concept X (e.g., if X is a disease then ¥ might
be pathological functions). Then all the concepts Z related to concepts Y are
found (e.g., if Y is a pathological function, Z might be a molecule related to
the pathophysiology of Y). Finally, the medical literature is searched to
check whether concept X and concepts Z appear together. If they do not
appear together, there is the possibility that a new relationship between
concept X and concept Z has been discovered. Figure 7-2 illustrates the
BITOLA literature discovery system.

Candidate Gene?

Concepts Y
(Pathologycal or Cell
Function, ...)

Concept X
(Disease)

Concepts Z
(Genes)

_

A

Chromosomal P Match .| Chromosomal
Region Location

Figure 7-2. Discovery algorithm overview as applied to candidate gene discovery. For a
starting disease X, we find the related concepts Y (disease characteristics) according to the
literature (MEDLINE), then find the genes Z that are related to disease characteristics Y.
(From: Hristovski et al., 2004; reproduced with permission of the author.)
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As mentioned earlier, one criticism of literature-based discovery IR
systems is the limitation imposed by utilizing only titles and/or abstracts.
Another criticism, given the exponential growth in MEDLINE records, is
their reliance on the use of words to "bridge" between unrelated domains;
with new information and records added to MEDLINE on a daily basis, the
scale of analysis required by these systems will continue to increase. In
addition, other limitations cited include the absence of using synonyms to
control vocabulary, the ambiguity produced when abbreviations are not
automatically expanded and, particularly with gene symbols, the redundant
use of a particular symbol that has differing meanings depending on the
context (Wren et al., 2004),

2.5 Summary

Several of the systems already mentioned are, in fact, hybrid systems
combining different text mining approaches (NLP, co-occurrence
techniques, machine learning, etc.) with incorporation of different
knowledge sources (UMLS Metathesaurus, GO, OMIM, etc.). It is obvious
that there is not one approach that might be applied to the diverse and wide-
ranging biomedical literature. Text formats vary from structured to
unstructured and systems vary from free-text analysis to those that focus on
document sections (titles and/or abstracts; specific document sections such
as methods or table/figure captions). While most of the systems mentioned
incorporate some controlled vocabulary component to reduce "noise," efforts
to overcome terminologic issues—such as synonym, acronym and
abbreviation ambiguity—vary widely.

It is notable, however, that most systems are genomic or proteomic-
specific. The issue of scalability of these specialized systems will play an
increasing role in their utility and future use as pathways for knowledge
creation and discovery.

3. CASE EXAMPLES

Vannevar Bush, often referred to as one of the early pioneers of what
later emerged into hypertext systems and the World Wide Web, suggested
the use of associations as the main organizing mechanism when filing and
retrieving records of information, and described an information space based
on the use of associative "trails" to retrieve information (Bush, 1945). We
have already mentioned several innovative approaches that are using
biomedical concept relationships for improved document and information
retrieval and analysis. In this section, we highlight two systems that include
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biomedical concept relationship extraction—Genescene and Telemakus—
and embody the suggestions of Vannevar Bush in making the increasing
body of recorded knowledge more easily accessible.

3.1 Genescene

Genescene,® which focuses on cellular processes, utilizes published
MEDLINE abstracts and allows retrieval and visualization of biomedical
relations extracted from the content of the abstracts. It uses a linguistic
relation parser and Concept Space, an automatically-generated, corpus-based
co-occurrence thesaurus of semantically related concepts. The system
combines bottom-up and top-down approaches. The parser provides precise
and semantically rich relations with a rule-based top-down algorithm.
Concept Space captures the relations between semantic concepts from large
collections of text using bottom-up techniques. The overall system offers a
bottom-up view on the data in that the data is allowed to speak for itself,
generating interesting patterns or associations that can be used to form new
hypotheses. What follows is a summary of the system as described in Leroy
and Chen (2005).

The process of creating the Concept Space begins with a download of
MEDLINE abstracts in XML format. Abstract and title areas are selected.
Using the AZ Noun Phraser (Tolle and Chen, 2000) optimized for
biomedical language by using the UMLS SPECIALIST Lexicon as a lexical
lookup—the linguistic parser extracts noun phrases. Phrases are analyzed
and sorted so that each phrase becomes represented as a concept. Phrase and
document frequencies are computed and used to weight each phrase.
Concept Space is generated in the final step, co-occurrence analysis. Co-
occurrence analysis produces a list of weighted, related noun phrases and
their individual components (e.g., modifiers, etc.). Noun phrases are
semantically tagged by three ontologies: HUGO, GO and the UMLS. The
relations between noun phrases represent the relationships in the entire
collection of abstracts originally downloaded from MEDLINE. Figure 7-3
illustrates the Genescene process. Future enhancements include an
interactive, graphical map display and visual text mining,.

By expanding biomedical literature mining beyond simply identifying
genes and proteins and by providing a means for researchers and scientists to
discover previously undiscovered gene associations, systems like Genescene
will play an increasingly critical role in aiding research, knowledge creation
and biomedical discovery.

8 A demo is currently accessible through hitp.//ai.eller.arizona.edu/
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Figure 7-3. Overview of the Genescene architecture Relation Parser. (From: Leroy and Chen,
2005; reproduced with permission of the author.)

3.2 Telemakus

A hybrid system, Telemakus’ has a broader focus than any system
mentioned other than ARROWSMITH. Although Telemakus currently
mines the biomedical literature concerned with the biology of aging, the
tools and system architecture have been built to handle other biomedical
domains as well. Telemakus uses document structure to limit its extraction
of research parameters (e.g., age and number of subjects, treatment, etc.) and
concept relationships by focusing on the document's methods section and
table and figure captions (Fuller et al., 2004; Revere et al., 2004).

In brief, Telemakus processing is initiated by an analyst who runs,
reviews and edits as necessary extractions from the document being
processed. The process begins similarly to Genescene, although Telemakus
utilizes other bibliographic databases in addition to MEDLINE. The first
phase is a download of the document's citation details (in XML format) from
which are extracted specific bibliographic fields. The electronic document is
then processed to extract additional data, including research parameters and
the table and figure legends. These document attributes are loaded into a

? Telemakus is freely available at http:www.telemakus.net/
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database for populating the document conceptual schema—a schematic
representation or surrogate of the document with extracted representations of
research environment, methods and findings (see Figure 7-4). Telemakus
employs the UMLS to control the vocabulary used for some fields, for
curating domain-specific thesauri and for concept relationship analysis.

Neuwrol, 59 (8): 1258-63. rpm2@ columbia.edu
STUDY DESIGN & CONDUCT
Source of Organisms Organisms Age Sex Pre-Treat Char  Number Treat Regimen

Volunteers Humans 6580 MF healthy; residing n 980 wa
vears geographically
defined area of
nerthenm
Manhanan; no
dementia

STUDY OUTCOME
TABLEFIGURES RESEARCH FINDINGS

Figure 7-4. Telemakus document schematic representation

The relationship analysis procedure is currently in the process of being
automated by incorporating MetaMap (Aronson, 2001), NLM's NLP tool, in
combination with term co-occurrence analysis. MetaMap maps arbitrary text
to concepts in the UMLS Metathesaurus; or, equivalently, it discovers
Metathesaurus concepts in text by parsing text into noun phrases, collecting
all UMLS terms containing one or more noun phrases or their variants, and
ranking the candidate UMLS terms according to their similarities to all the
noun phrases in the text.

Concept identification and assignment of concept relationships to
individual documents is derived from processing the document's data tables
and figures. Concentrating on data tables and figures focuses the concept
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identification and relationship process and reduces the background noise of
the full-text document, making the process tractable.

The Telemakus concept relationship approach is of primary significance.
On the document level, the basic motivation behind this analysis is to
identify what was actually studied and reported. On the larger, domain level,
the basic motivation is to capture concept relationships between the
documents that form the domain. The interlinking relationships among
concepts are represented graphically as concept maps. Concept mapping is a
means of spatially representing knowledge in a visual format and, in the
Telemakus system, displays the interrelationships between documents and
reported research findings.

Visualization of concept relationships offers significant advantages over
a textual listing or graph of relationships in that a spatial representation
provides a way for users to interact directly with complex information.
Visualization and visual exploration can assist in understanding conceptual
relationships across a domain and even assist in identifying previously
overlooked potential research connections. A strength of concept mapping is
that—even though it does not measure strength of relationship between
concepts—by aggregating links to concepts as in a many-to-one relationship,
a measure of strength is added. In addition, a visualization of concept
relationships may be significant for hypothesis generation, as the lack of
linkages (the "non-interactive literatures") is more visually apparent.

The following section demonstrates how an information system that
incorporates concept relationships can support knowledge creation and
discovery.

33 How Can a Concept Relationship System Help with
the Researcher's Problem and Questions?

Returning to the scenario at the beginning of this chapter, the AD
researcher has a number of questions regarding the potential for treatment of
the cognitive disabilities of AD or other neurodegenerative diseases with
caffeine and adenosine A2A receptor antagonists (A2A blockers):

e Both caffeine and A2A blockers are reported to have neurotoxicity-
blocking effects. Is there any relationship between caffeine consumption
and adenosine A2A receptor antagonists?

e Adenosine A2A receptor antagonists have been successfully used to treat
Parkinson's Disease. Have they been used to treat AD?

e Has anyone studied the relationship between caffeine and memory loss in
AD patients? If yes, how much and over what period of time must
caffeine be consumed to slow memory loss? Will a combination of
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caffeine and adenosine A2A receptor antagonists shorten that period of

time?
¢ Do the neurotoxicity-blocking effects of caffeine and adenosine A2A

receptor antagonists also come into play with other neurodegenerative
diseases? What about possible negative associations with other
conditions?

Another way to look at these questions is in terms of the concept
relationships they represent as listed in Table 7-1. It is notable that not one
concept relationship can encapsulate the researcher's information need and
that some individual concepts can be related to multiple concepts.

Table 7-1. List of Concepts and Possible Concept Relationships

Concept 1 Concept 2 Possible Semantic
Relationship(s)
caffeine memory loss associated_with / co-
occurs_with
memory loss Alzheimer's disease manifestation_of
caffeine neurodegenerative diseases treats
caffeine high blood pressure associated_with / complicates
caffeine neurotoxicity-blocking associated_with
effects
caffeine A2A blockers associated_with
A2A blockers neurotoxicity-blocking associated_with
effects
A2A blockers Parkinson's Disease treats

As mentioned previously, some of the information the researcher needs
will be found in the methods or results sections or in the figures and tables
rather than the document's title or abstract. For an information need such as
this, a system like Telemakus is an appropriate resource with its extracted
representations of the research environment, methods and outcomes of the
retriecved documents.

Providing the schematic representations (schemas) of retrieved
documents allows the researcher to "browse" the document retrieval space
without needing to read the articles in their entirety. In addition,
characterizing the concept relationships from each document in a visual
format maintains the inter-relationships between documents and reported
research findings, as well as assists in understanding conceptual
relationships across a domain.

Returning to our scenario, when the AD researcher uses Telemakus for
her query, she enters terms similarly to the approach she used with PubMed.
However, the list of citations returned provides a pathway to both the
content of each document—its methods and research findings—and to
interactive concept maps of linked relationships across the group of research
reports. Figure 7-5 illustrates the retrieval set interface for a search on
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Alzheimer's disease and caffeine.
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From this list, the researcher can browse

the schematic representations or schemas of the content of each document

(Figure 7-6).
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Figure 7-5. Caffeine and AD search retrieval set
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ox:.dats. va l=tress l-ant loxidants |

Figure 7-7. Telemakus concept map generated from a search on Alzheimer's disease. Note
that edges (lines) of the map signify relationships between concepts, but length does not
reflect any weighting scheme.

From the list of retrieved citations, the researcher can also activate the
concept mapping function for access to a visualized map of concept
relationships for the current retrieval set (Figure 7-7) by selecting "Map It"
(at the bottom of the retrieval list in Figure 7-6).

Within each schema, she can access the abstract, document full-text and,
by clicking on any blue highlighted item under "Table/Figure," she can link
to each table or figure in the full-text article. It is from the schema that the
researcher will obtain answers to several of her questions by either
examining a table or figure of interest or by browsing the information found
under "Study Design and Conduct."

The researcher can also explore individual concept relationships by
selecting any pair listed under "Research Findings" in the schema, activating
a search of the relationship across all documents in the Telemakus
knowledgebase. For example, selecting the pair "caffeine — cell death" will
result in a retrieval set listing all documents to which this concept
relationship has been assigned. The concept maps generated by Telemakus
will help the researcher answer other questions.

Further exploration can be done within the concept map by selecting
linkages between concept relationships and by selecting individual concepts.
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The iterative nature of the search process and ability to explore research
connections from both the schematic and concept map interfaces can support
the process of knowledge discovery in a way that mimics the way many
scientists work—by providing a means of exploring a variety of types of
connections and potentially discovering a new frame of reference for the
information problem.

34 Summary

Literature-based discovery systems provide the potential for supporting
"systematic serendipity." Originally coined by Garfield, systematic
serendipity refers to the organized process of discovering previously
unknown scientific relations using citation databases, leading to better
possibilities for a collaboration of human serendipity with computer-
supported knowledge discovery.

Hypothesis generation and testing are critical steps towards making
scientific discoveries. Along with the "aha" experience of insight and
discovery, hypothesis generation requires prior knowledge. Yet researchers
are sometimes unaware of relevant work by others that could be integrated
into theirs or are unable to put together enough "pieces" of their domain's
Jigsaw puzzle to recognize that one is missing or being overlooked. As
illustrated in the scenario above, literature-based knowledge discovery
systems that include concept relationships and schematic representations are
a means of providing additional pathways to these puzzle pieces.

4. CONCLUSIONS AND DISCUSSION

This chapter has presented a variety of approaches that have been used to
characterize biomedical concept relationships and document concept
interrelationships and some of the ways in which concept relationships have
been used in information search and retrieval. We have reviewed a very
small number of the innovative approaches utilizing biomedical concept
identification and relationships for improved document and information
retrieval and analysis. This arena in the knowledge discovery field—utilizing
biomedical concept relationships—is fairly young and promises to be a rich
and interdisciplinary endeavor.

In our survey of approaches to indexing and retrieval of documents, we
have noted that most systems rely on title and/or abstract text to assign or
mine concept relationships. In addition, most systems do not exploit the
structure of the document itself as a way of more precisely characterizing
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biomedical relationships. As more and more biomedical literature becomes
available electronically, we will likely see an increase in extraction
approaches that incorporate the full-text document.

We have assumed, given the rapid expansion of scientific research, that
there is great need for creating systems that aid in finding or integrating new
domain knowledge. While we have focused on the concept relationship
component of knowledge management systems that support biomedical
research, we have not thoroughly discussed the role and realistic utility of
such systems for creating knowledge. A significant research area that
requires attention is evaluation of these systems. Usability research is needed
to validate the utility of these approaches for scientists and researchers.
There are numerous questions for literature-based concept relationship
systems, including the following:

How exactly does including concept relationships in such systems
support the creative process of hypothesis development?

How can systems avoid hindering the "eureka" experience of scientific
research?

What methods must be employed to answer these questions?

While Swanson and Smalheiser established a discovery framework that
has been used by many researchers as a measurement standard, extensive
and comprehensive evaluation efforts are still needed for validating the
contribution these systems can make for knowledge creation and discovery.
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ONLINE RESOURCES

ARROWSMITH
http://kiwi.uchicago.edu
http://arrowsmith.psych.uic.edu

Genescene
http://ai.eller.arizona.edu/go/GeneScene/index.html

Telemakus System
http://www.telemakus.net/

Unified Medical Language System
http://www.nlm.nih.gov/research/umls/

QUESTIONS FOR DISCUSSION

1. Compare and contrast traditional indexing and more recent biomedical
concept indexing approaches. What are the advantages and disadvantages
of each approach?

2. Give five examples of biomedical concept relationships.

3. Why is building systems to promote literature-based knowledge
discovery important?
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Chapter Overview

Ontology design is an important aspect of medical informatics, and
reusability is a key issue that is determined by the level of compatibility
among ontology concepts and among the theories of the biomedical domain
they convey. In this article, we examine OpenGALEN, the UMLS Semantic
Network, SNOMED CT, the Foundational Model of Anatomy, and the
MENELAS ontology as well as descriptions of the biomedical domain in
two general ontologies, OpenCyc and WordNet. Using the representation of
Blood in each system, we examine issues in compatibility among these
ontologies. The presence of additional knowledge is also illustrated and
some issues in creating and aligning biomedical ontologies are discussed.
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1. INTRODUCTION

The purpose of biomedical ontology is to study classes of entities (i.e.,
substances, qualities and processes) in reality which are of biomedical
significance. Examples of such classes include substances such as the mitral
valve and glucose, qualities such as the diameter of the left ventricle and the
catalytic function of enzymes, and processes such as blood circulation and
secreting hormones. Unlike biomedical terminology, which collects the
names of entities employed in the biomedical domain, biomedical ontology
is concerned with the principled definition of biological classes and the
relations among them. In practice, as they are more than lists of terms but do
not necessarily meet the requirements of formal organization, the many
products developed by biomedical terminologists and ontologists often fall
between terminologies and ontologies and constitute an “ontology gradient”.

Ontologies may be categorized according to the domain they represent or
the level of detail they provide (Figure 8-1). General ontologies represent
knowledge at an intermediate level of detail independently of a specific task.
In such ontologies, upper levels reflect theories of time and space, for
example, and provide notions to which all concepts in existing ontologies are
necessarily related. Domain ontologies represent knowledge about a
particular part of the world, such as medicine, and should reflect the
underlying reality through a theory of the domain represented. Finally,
ontologies designed for specific tasks are called application ontologies.
Conversely, reference ontologies are developed independently of any
particular purpose and serve as modules sharable across domains.

Core categories should be sharable across ontologies. Lower levels of
upper level ontologies as well as general categories should be compatible
with the equivalent semantic areas in the corresponding domain ontologies.
For example, Disease in a general ontology should be compatible with that
concept in a biomedical ontology. In addition, generic theories and meta-
level categories should be shared by every type in every ontology. For
example, a representation of anatomy should re-use a generic theory of
spatial objects. In turn, as anatomy is central to biomedicine and essentially
stable, an ontology of anatomy can serve as a reference for ontologies
relying on a representation of the human body, e.g., for an ontology of
Diseases. In practice, however, these ideals are not always achieved. More
generally, constructing biomedical ontologies that accommodate knowledge
sharing by both humans and computer systems is challenging.

Ontologies play a fundamental role in medical informatics research
(Musen 2002), contributing, for example, to natural language processing
(e.g., Hahn et al. 1999), interoperability among systems (e.g., Degoulet et al.
1998), and access to heterogencous sources of information, including the



214 MEDICAL INFORMATICS

Semantic Web (e.g., Pisanelli et al. 2004). Increasingly, ontologies act as
enabling resources in a variety of biomedical applications.

Upper
Level
Ontology

\
General *|
\

Ontology Y,
\

Domain
Ontology

Figure 8-1. Kinds of ontologies.

The objective of this chapter is not to examine how applications benefit
from using ontologies, but rather to present the characteristics of some major
biomedical ontologies. In particular, we investigate how existing ontologies
give differing views of the biomedical domain. First, we examine the
representation of biomedicine in general systems such as OpenCyc and
WordNet. We then describe three systems in the biomedical domain,
GALEN, the UMLS, and SNOMED CT. A reference ontology, the
Foundational Model of Anatomy, is also explored. Finally, as an example of
an application ontology, we examine the MENELAS project. After a brief
presentation of the characteristics of these ontologies, we look at the concept
Blood in each system to illustrate common features and differences. Issues in
building a single, sharable framework for representing biomedical
knowledge are discussed.

This study was conducted at the U.S. National Library of Medicine as
part of the Medical Ontology Research project (Bodenreider 2001), which
focuses on developing methods for acquiring biomedical ontologies from
existing resources and for validating them against other knowledge sources.
References for the ontologies presented in this chapter are listed in the
appendix (Table 8-3) along with a summary of their main characteristics
(Table 8-4). It is beyond the scope of this chapter to present the techniques
(e.g., description logics and frames) and tools (e.g., Protégé) used for
representing ontologies. The interested reader is referred to references such
as (Sowa 2000; Brachman and Levesque 2003).



Biomedical Ontologies 215

2. REPRESENTATION OF THE BIOMEDICAL
DOMAIN IN GENERAL ONTOLOGIES

2.1 OpenCyc

Cyc,® a general ontology developed by Cycorp, Inc., is built around a
core of more than 1,000,000 hand-coded assertions (expressed in the formal
language CycL) that capture “common sense” knowledge and enable a
variety of knowledge-intensive applications. “Microtheories” are groups of
assertions sharing a common set of assumptions focused according to a
particular parameter, such as domain, level of detail, or time interval.
OpenCyc", the upper level, publicly available part of the ontology contains
6,000 concepts and 60,000 assertions about those concepts.

In OpenCyc as illustrated in Figure 8-2, Thing, the universal set, is the
collection of everything. Thing is partitioned into Set or collection vs.
Individual on the one hand and Intangible vs. Partially tangible on the other.
Entities in OpenCyc are both represented as instances of sets, e.g., Cancer is
an instance of the type Disease Type (#S$isa  #S$Cancer
#SDiseaseType) and organized in class/subclass hierarchies (#$genls
#$Cancer #$AilmentCondition). Further specification may be
provided by functions. CancerFn, for example, expresses that body parts can
be the location of cancers. This function has domain animal body parts and
range specific cancers: e.g., (#$CancerFn #$Throat).

Microtheories such as Biology or Ailment are relevant in the biomedical
domain and have two primary benefits: (1) some assertions have
microtheories as arguments: Everything true in Vertebrate Physiology is
also true in Ailment and (2) some entities have distinct representations under
distinct microtheories: in Animal Physiology, subordinates of Sensor
include Nose, Skin, and Ear, while in Naive Physics they include Tactile
sensor and Electromagnetic radiation sensor.

2.2 WordNet

WordNet® is an electronic lexical database developed at Princeton
University (Fellbaum 1999) that serves as a resource for applications in
natural language processing and information retrieval.

The core structure in WordNet is a set of synonyms (synset) that
represents one underlying concept. Synset formation is based on synonymy
(one meaning expressed by several words) and polysemy (one word having
several distinct meanings). There are separate structures for each linguistic
category covered: English nouns, verbs, adjectives, and adverbs. For
example, the adjective “renal” and the noun “kidney,” although similar in
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meaning, belong to two distinct structures, and a specific relationship,
“pertainymy,” relates the two forms.

{3 #S$genls
-------- #sisa

................
..........
cos®
-----
....
g

Set or
collection

Figure 8-2. Top level in OpenCyc (partial representation).

The current version of WordNet (2.0) contains over 114,000 noun
synsets categorized into nine hierarchies, each starting with a “unique
beginner” (see Figure 8-3). Each synset in the noun hierarchy belongs to at
least one is-a tree (hyponymy) and may additionally belong to several part-of-
like trees (meronymy). Hyponymy relations are established between synsets
according to the following definition: A concept represented by the synset
{x,x’,...} is said to be a hyponym of the concept represented by the synset
{y,y’,...} if native speakers of English accept sentences constructed from
frames such as “An x is a kind of y” (Fellbaum 1999). WordNet has been
influenced by cognitive psychology as well as linguistics, and its hierarchies
are not based on formal ontology theory. (Gangemi et al. 2001) provide an
ontological analysis of WordNet’s top level and propose a revised,
principled taxonomy.

Abstraction

Act

Entity

Event

Group

Phenomenon
Possession
Psychological feature
State

Figure 8-3. Top level in WordNet ("unique beginners").
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Many concepts that represent health disorders in medical terminologies,
when present in WordNet, are categorized appropriately; for example,
Leukemia is a hyponym of Cancer (Burgun and Bodenreider 2001a; Burgun
and Bodenreider 2001b). However, in some instances a medical sign or
symptom appears only as a hyponym of a non-medical concept: the
hypernym of Vasoconstriction (decrease in the diameter of blood vessels) is
Constriction. This view emphasizes physical mechanism rather than
pathology, and as a consequence, there is no formal relationship between
Vasoconstriction and the biomedical domain in WordNet.

3. EXAMPLES OF MEDICAL ONTOLOGIES

3.1 GALEN

GALEN (Generalised Architecture for Languages, Encyclopaedias, and
Nomenclatures in medicine) is a European Union project (1992-1999) that
seeks to provide re-usable terminology resources for clinical systems. An
ontology, the Common Reference Model, is formulated in a specialized
description logic, the GALEN Representation and Integration Language
(GRAIL), and is a core feature of GALEN (Rector et al. 1997). This
ontology aims to represent “all and only sensible medical concepts,”
independently of any application. OpenGALEN provides a point of access to
the GALEN Common Reference Model and to descriptions and
specifications of the GALEN technology.

A key feature of GALEN is that it was constructed by defining the
representation formalism and top level knowledge before populating the
ontology. In addition, unlike traditional terminological resources whose
terms are pre-coordinated, GALEN essentially provides the building blocks
required for describing terminologies, as well as a mechanism for combining
simple concepts. For example, the concepts Adenocyte and Thyroid gland
are present in GALEN. However, instead of providing an explicit
representation for Adenocyte of thyroid gland, GALEN indicates that it can
be described by a combination of concepts: (Adenocyte which < is structural
component of Thyroid gland >). The current version of OpenGALEN
(December 2002) contains about 25,000 concepts. The GALEN ontology
has been used for representing complex structures such as descriptions of
medical procedures (Trombert-Paviot et al. 2000).

The major division in top level categories (Figure 8-4) is between
Phenomenon, which subsumes structures, processes and substances, and
Modifier Concept. The latter notion is used to distinguish concepts that
represent things with independent existence (physical objects, for example)



218 MEDICAL INFORMATICS

from dependent concepts such as modifiers (Mild severity), states
(Pathological state) or roles (Infective role).

Domain Category

Modifier Concept

Generalised
Structure

Generalised
Substance
General Level
Substance Or Aspect Of Specification
Physical Structure '

CEeature) (Status) CSelector)
Quantity

Figure 8-4. Top level in OpenGALEN.

In addition to a hierarchy of categories, GALEN provides a rich
hierarchy of associative relationships used to define complex structures. Its
representation of partitive relations is particularly developed (Rogers and
Rector 2000), including has surface division (Hand has-surface-
division Palm), has solid division (Heart has-solid-division
Cardiac Septum), has layer (Heart has-layer Myocardium), has blind
pouch division (Caecum has-blind-pouch-division Appendix
Vermiformis), has linear division (Intestine has-linear-division
Jejunum), has specific structural component (Knee Joint has-specific-
structural-component Patella), and is specifically made of (Blood
Clot is-specifically-made-of Coagulated Blood).
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3.2 Unified Medical Language System

The Unified Medical Language System® (UMLS)® was developed by the
National Library of Medicine to help health care professionals and
researchers access biomedical information from a variecty of sources
(Lindberg et al. 1993). The Metathesaurus,” a large repository of concepts,
and the Semantic Network, a limited network of 135 semantic types,
integrate over one million concepts from more than a hundred vocabularies
and terminologies (2004AB version). While the structure of each source is
preserved in building the Metathesaurus, equivalent terms are clustered into
a semantically unique concept. Interconcept relationships are either inherited
from underlying vocabularies or specifically generated. Since the
Metathesaurus imposes no restrictions on sources, it cannot provide the kind
of organization expected from an ontology. In contrast, the Semantic
Network is developed independently of the vocabularies integrated in the
Metathesaurus and serves as a basic, high-level ontology for the biomedical
domain (McCray 2003). As illustrated in Figure 8-5, semantic types from the
Semantic Network are used to categorize all UMLS concepts (McCray and
Nelson 1995).

At the highest level, the Semantic Network is organized around the
opposition of entities and events, and two single-inheritance hierarchies
reflect this distinction. The immediate children of Entity are Physical Object
and Conceptual Entity, while Event has Activity and Phenomenon or Process
as direct descendants (Figure 8-6). Each semantic type in the network has a
textual definition and appears in one of these hierarchies. In addition to the
taxonomy, associative relationships in five subcategories are defined
between semantic types: physical (e.g., part_of, branch_of, ingredient_of),
spatial (e.g., location_of, adjacent_to), functional (e.g., treats, complicates,
causes), temporal (e.g., co-occurs_with, precedes), and conceptual (e.g.,
evaluation_of, diagnoses). Since each Metathesaurus concept is assigned at
least one semantic type, relationships between semantic types also define the
allowable semantics for relationships between concepts (McCray and
Bodenreider 2002).

The categorization of concepts by semantic type is subject to the
economy principle (similar to the notion of parsimony developed in (Gruber
1995; Swartout et al. 1996)) and has three key features: (1) Since the most
specific semantic type in the taxonomy is assigned to a concept, level of
granularity varies across the UMLS (McCray and Hole 1990). (2) Due to
single-inheritance tree structure rather than a lattice allowing multiple
inheritance, a Metathesaurus concept cross-categorized by two semantic
types is assigned to both types. (3) Rather than proliferating semantic types,



220 MEDICAL INFORMATICS
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Figure 8-5. The two-level structure in the UMLS.

concepts that cannot be categorized by existing sibling types are assigned
their common supertype (McCray and Nelson 1995). The consequences of
the economy principle for representing knowledge in the UMLS are
discussed elsewhere (Burgun and Bodenreider 2001c¢).

33 The Systematized Nomenclature of Medicine

The Systematized Nomenclature of Medicine (SNOMED®) Clinical
Terms® (SNOMED CT), developed by the College of American
Pathologists, was formed by the convergence of SNOMED RT and Clinical
Terms Version 3 (formerly known as the Read Codes). SNOMED CT is the
most comprehensive biomedical terminology recently developed in native
description logic formalism. The version described here (January 31, 2004)
contains 269,864 classes', named by 407,510 names®.. SNOMED CT is now
available as part of the UMLS’ at no charge for UMLS licensees in the

' SNOMED CT has a total of 357,135 classes of which 269,864 are “current”

2 Among the 957,349 names in SNOMED CT, 407,510 correspond to the 269,864 “current”
classes, excluding fully specified names and keeping only names whose status is “current”

3 http:/umlsinfo.nlm.nih.gov/
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United States. It is therefore likely to become widely used in medical
information systems.
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Figure 8-6. Top level in the UMLS Semantic Network.
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Each SNOMED CT concept is described by a variable number of
elements. For example, the class Viral meningitis has a unique identifier
(58170007), two parents (Infective meningitis and Viral infections of the
central nervous system), several names (Viral meningitis, Abacterial
meningitis, and Aseptic meningitis, viral). The roles (or semantic relations)
present in the definition of this concept are listed in Table 8-1.

Table 8-1. Roles present in the definition of Viral meningitis

Role Value

Causative agent Virus

Associated morphology Inflammation

Finding site Meninges structure

Onset Sudden onset;Gradual onset
Severitiy Severities

Episodicity Episodicities

Course Courses
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SNOMED CT consists of eighteen independent hierarchies reflecting, in
part, the organization of previous versions of SNOMED into “axes” such as
Diseases, Drugs, Living organisms, Procedures and Topography. The first
level concepts are listed in Table 8-2 with their frequency distribution.

Table 8-2. The eighteen top-level concepts in SNOMED CT and their frequency distribution

Top-level concepts Frequency

Attribute 991
Body structure 30,652
Clinical finding 95,605
Context-dependent categories 3,649
Environments and geographical locations 1,620
Events 87
Observable entity 7,274
Organism 25,026
Pharmaceutical / biologic product 16,867
Physical force 199
Physical object 4,201
Procedure 46,066
Qualifier value 8,134
Social context 4,896
Special concept 178
Specimen 1,053
Staging and scales 1,098
Substance 22,267

3.4 Foundational Model of Anatomy

Development of the Foundational Model of Anatomy (FMA) at the
University of Washington grew out of earlier work to enhance the
anatomical content of the UMLS. By focusing exclusively on the
representation of structure, the FMA expects to serve as a reference
ontology, i.e., to allow other ontologies of which anatomy is a component to
be aligned with it (Rosse and Mejino 2003). Specifically, the goal of the
FMA is to provide a conceptualization of the material objects and spaces that
constitute the human body. It integrates an Anatomical Ontology with two
much smaller structures: the Physical State Ontology and the Spatial
Ontology. The latter represents geometric objects and three-dimensional
shape classes, and also distinguishes between bona fide (real) and fiat
(virtual) boundaries of volumes, surfaces, and lines. The Anatomical
Ontology contains nearly 70,000 concepts originally limited to gross
anatomy and is now being extended to cellular and sub-cellular phenomena.
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FMA is implemented in Protégé!, which is a frame-based ontology editing
environment developed at Stanford University.

Definitions of physical anatomical entities in the FMA are formulated by
specifying constraints (Michael et al. 2001) based on spatial dimension,
mass, and inherent three-dimensional shape, as well as the structural units
that make up the body. Relationships, however, are constrained to the
structural organization of physical anatomical entities. The top level of the
taxonomy is Anatomical entity, which is divided into Physical anatomical
entity and Non-physical anatomical entity (Figure 8-7). Physical entities
have spatial dimension, while non-physical entities, such as Developmental
stage, do not. Further distinction is made between physical entities that have
mass, such as anatomical structures and body substances (Material physical
anatomical entity), and those that do not, including anatomical spaces,
surfaces, lines, and points (Non-material physical anatomical entity). The
attribute of inherent three-dimensional shape contrasts anatomical structures,
which are objects, with body substances.

In addition to the anatomical taxonomy, hierarchies have been
formulated using the transitive part-of relation as well as two anatomical
relations, branch-of and tributary-of, which represent relationships among tree-
like structures such as nerves, arteries, veins, and lymphatic vessels.
Moreover, the FMA extends these relationships to boundary, orientation,
connectivity, and location; the latter is specified using containment,
adjacency, and anatomical coordinates (Mejino et al. 2001).

35 MENELAS Ontology

MENELAS, a European Union project for accessing medical records in
several European languages (Zweigenbaum 1994), takes a knowledge-based
approach to natural language understanding. A pilot application covering
coronary artery disease has been developed, and resources (represented as
conceptual graphs) include domain-specific syntactic and semantic lexicons
as well as an ontology of coronary artery diseases enhanced with structured
encyclopedic knowledge for each concept.

The MENELAS ontology (see Figure 8-8 for the top level) has 1,800
concepts and 300 relationship types acquired from several sources, including
interviews with physicians, reuse of existing terminological resources, and
corpus analysis. It was initially developed as a lattice (Bouaud et al. 1994);
however, to avoid ambiguities due to multiple inheritance, the principles of
opposition of siblings and unique semantic axis were later adopted, leading
to a tree structure (Zweigenbaum et al. 1995). Concept labels in the ontology

* http://protege.stanford.edu/
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Figure 8-7. Top level in the Foundational Model of Anatomy (Anatomical taxonomy).

Non-physical
anatomical entity

are simply mnemonic; the actual meaning of a concept comes from its
position in the hierarchy. For example, Physical object is a child of Abstract
object, which in turn is a child of Substratum. The latter concept is defined
as having instances in the world and is opposed to Ideal object: Apple is an
Abstract object, whereas Two is an Ideal object.

Relations are categorized according to the kinds of concepts they link.
Relations between physical objects, for example, link mass objects and
countable objects (contains, has for dosage, and constituted of) or real objects
and pseudo-objects (component of). The part of relation links any kind of
physical object and has children part fragment and part segment. There is also
a relation, functional part, to represent functional viewpoints. Models and
schemas provide additional knowledge, which may be limited to the domain-
specific and task-oriented context of the MENELAS application. For
example, the model for organ component includes the notion of duct in order
to accommodate the coronary arteries.

4. REPRESENTATIONS OF THE CONCEPT BLOOD

Having discussed the general characteristics and top level organization of
several ontologies, we now examine the representation of blood in these
systems and analyze the differences among representations. We also show
how most ontologies provide a rich representation compared to mere
taxonomies by including additional knowledge.
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Abstract object
Intentional object Physical object

Figure 8-8. Top level in MENELAS.

4.1 Blood in Biomedical Ontologies

What makes the representation of Blood interesting is the dual nature of
blood as both tissue and fluid, a dichotomy reflected in medical dictionary
definitions: (1) “the fluid that circulates through the heart, arteries,
capillaries, and veins, carrying nutriment and oxygen to the body cells”
(Dorland’s Illustrated Medical Dictionary); and (2) “the ‘circulating tissue’
of the body; the fluid and its suspended formed elements that are circulating
through the heart, arteries, capillaries, and veins” (Stedman’s Medical
Dictionary). In the following discussion, comparison of the ontologies is
based on textual and formal definitions of Blood as well as ontological
properties of that concept.

Although not represented as a type in OpenCye, Blood is a specialization
of Mixture, along with Mud, Air, and Carbonated beverage. (Blood referring
to lineage is represented separately.) Mixture is a subclass of Partially
tangible and represents a homogeneous, partially tangible thing composed of
two or more different constituents which have been mixed. Because its
constituents do not form chemical bonds, a mixture may be resolved by a
separation event. As a mixture, Blood is an element of the collection Existing
stuff type (#S$isa #$Mixture #$ExistingStuffType), which implies
that division in time or space does not destroy its stuff-like quality. In
OpenCyc, Blood is represented differently from Sweat and Semen, which are
subordinates of Bodily secretion. In addition, Sweat, considered as a waste,
is also a descendant of Excretion substance.

Blood is defined in WordNet as “the fluid (red in vertebrates) that is
pumped by the heart. Blood carries oxygen and nutrients to the tissues and
carries waste products away; the ancients believed that blood was the seat of
the emotions.” There are five other meanings of “blood,” including one
referring to temperament or disposition. The direct hypernym of Blood is
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Liquid body substance. (The complete hierarchy for Blood in WordNet is
given in Figure 8-9a.) Blood, Sweat, and Semen, are categorized as Liquid
body substance. Unlike Blood, Sweat is linked to Liguid body substance
through the synset Secretion.

In OpenGALEN, Blood is a subordinate of Soft tissue as well as
Lymphoid tissue, Integument, and Erectile tissue, among others. The
hierarchy for Blood in GALEN appears in Figure 8-9b. This structure is
actually a lattice, since Substance is the common subtype of Generalised
substance and Substance or physical structure, both being subtypes of
Phenomenon. In GALEN, Blood is represented differently from Sweat and
Semen, which are subordinates of Body fluid.

Blood has the semantic type Tissue in the UMLS Metathesaurus, which
is defined as “An aggregation of similarly specialized cells and the
associated intercellular substance. Tissues are relatively non-localized in
comparison to body parts, organs or organ components.” Tissue is a
subordinate of Fully-formed anatomical structure in the Semantic Network
(Figure 8-9¢ has the entire is-a hierarchy for Blood). In the UMLS, Blood is
not assigned the same semantic type as Sweat and Semen, which are
categorized as Body substance. Moreover, in the Metathesaurus, ancestors of
Blood include Body fluid, Body substance, Soft tissue and Connective tissue.

In SNOMED CT, Blood is found in the concept category Substance as a
subordinate of Blood material, as well as Blood component. (The
hierarchical environment for Blood in SNOMED CT is given in Figure 8-
9d.) Multiple inheritance allows Body fluid, an ancestor of Blood, to inherit
from both Body substance and Liquid substance. These two concepts are
descendants of the top level category Substance. Subordinates of Body fluid
also include Sweat and Semen, as well as Lymph and Pus.

The Foundational Model of Anatomy (FMA) represents Blood as a
subordinate of Body substance, which is defined as “a material physical
anatomical entity in a gaseous, liquid, semisolid or solid state, with or
without the admixture of cells and biological macromolecules; produced by
anatomical structures or derived from inhaled and ingested substances that
have been modified by anatomical structures as they pass through the body.”
In addition to Blood, this definition covers other cellular fluids, such as
Semen, as well as secretions (e.g., Saliva and Sweat), transudates (e.g.,
Lymph, and Cerebrospinal fluid), excretions (e.g., Feces and Urine), along
with Respiratory air and Aqueous humor of eyeball. Blood is not considered
to be a tissue in the FMA. The complete is-a hierarchy for Blood is
represented in Figure 8-9¢, and this lineage is distinct from that of Tissue,
largely because substances, as defined in the FMA, do not have inherent
three-dimensional shape. Tissue inherits properties from its ancestor
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Anatomical structure, which is a sister of Body substance and is
differentiated from it by the feature inherent 3D shape.

In MENELAS, Blood (along with Lymph) is a subordinate of Body fluid.
The ancestors of Blood can be found in Figure 8-9f. One of these, Mass
object, has three subtypes: Agglomerate (divided into Inorganic agglomerate
and Organic agglomerate), Substance (Biochemical substance and Chemical
substance), and Tissue (Body fluid and Connective tissue). Blood as a child
of Body fluid belongs to a different branch from the one dominated by
Substance. Furthermore, Tissue, defined as a set of cells, is differentiated
from Substance, defined as a set of molecules. A “model” (which provides
additional knowledge) is associated with the concept Body fluid and
emphasizes one property of fluids, namely viscosity, a feature pertinent to
natural language understanding in the MENELAS application. The
representation of Body fluid as tissue in MENELAS is noncanonical, given
that other ontologies separate fluids and substances from tissue. Semen is
outside the scope of this application ontology for interpreting coronary
angiography reports, while Sweat is categorized as Cutaneous sign
(sweating), rather than Substance.

4.2 Differing Representations

The differing representations of Blood in several systems raise issues
about compatibility among ontologies. Obviously, the representation of most
concepts is simpler than that of Blood, and the ontologies studied often
provide compatible views on the biomedical domain. What makes the
representation of Blood more complex is that two different superordinates
are found: Tissue and Body substance. GALEN and the UMLS Semantic
Network categorize Blood as Tissue while the Foundational Model of
Anatomy categorizes it as Body substance. In between, WordNet, SNOMED
CT and MENELAS categorize Blood as Body fluid, itself categorized as
Body substance in WordNet and SNOMED CT, but as Tissue in MENELAS.
Finally, in GALEN, Tissue is a subtype of Body substance. A composite
representation of Blood is shown in Figure 8-10.

Superficially, this dual representation of Blood, as both Tissue and Body
substance, does not reveal any major incompatibility, such as circular
hierarchical relationships. However, a unified representation in which Blood
is a common subtype of Tissue and Body substance would violate the
constraint of opposition of siblings. Analyzed more carefully, the definitions
of Tissue in the Foundational Model of Anatomy (FMA) and the Semantic
Network are closely related but not equivalent (the complete definitions are
shown in Figure 8-10). In both systems, Tissue is a kind of anatomical
structure consisting of “similarly specialized cells and intercellular
substance/matrix.”
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Figure 8-9. Representation of Blood in several biomedical ontologies.

The difference between the two systems lies in the precision — found only
in the FMA - that this aggregation must follow ‘“genetically determined
spatial relationships”. Blood cells in suspension in plasma or aggregated
after sedimentation are indeed similarly specialized and correspond to the
definition of Tissue in the UMLS Semantic Network. However, their spatial
organization differs from that of an epithelium, muscle tissue and neural
tissue in that it is not genetically determined but rather depend on the
characteristics of blood circulation. This additional criterion is particularly
relevant for disambiguating the classification of Blood in the FMA.
Moreover, the categorization of Blood as Body substance rather than Tissue
in the FMA is consistent with the distinction introduced between Anatomical
structure (of which Tissue is a subtype) and Body substance through the
property has inherent 3D shape, which is present in Tissue and absent in
Body substance.

The representation of Blood illustrates other differences across
ontologies. While most ontologies represent the prototypical form of blood
(i.e., the fluid circulating in the -cardiovascular system), GALEN
distinguishes between liquid and coagulated blood. The issue here is that the
properties inherent to fluids are inherited by Blood in WordNet, SNOMED
CT, FMA and MENELAS. As a consequence, if GALEN were integrated
with these representations as shown in Figure 8-10, Coagulated blood, a
descendant of Blood, would wrongly inherit such properties. Analogously,
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Body substance is likely to represent different entities in FMA and in
GALEN. As mentioned earlier, Body substance in FMA is a Material
physical anatomical entity with no inherent three-dimensional shape. In
GALEN, Body substance is more general, encompassing both Tissue and
Body fluid and defined as an Organic substance playing a role in physiology.

Extracellular material, or mixtures of cells and An aggregation of similarly specialized cells
= extracellular material, produced, excreted, or and the associated intercellular substance.
accreted by the body. [UMLS) Tissues are relatively non-localized in —

comparison to body parts, organs or organ
components. [UMLS]

Material physical anatomical entity in a
gaseous, liquid, semisolid or solid state, with or

without the admixture of cells and biological Anatomical structure, which consists of
macromolecules; produced by anatomical similarly specialized cells and intercellular

| .1 structures or derived from inhaled and ingested matrix, aggregated according to genetically o
substances that have been modified by determined spatial relationships. Examples:
anatomical structures as they pass through the epithelium, muscle tissue, connective tissue,
body. Examples: saliva, semen, cerebrospinal neural tissue, lymphoid tissue. [FMA]

fluid, inhaled air, urine, feces, blood, plasma,
lymph. {FMA}

Material physical
anatomical structure

Fully-formed
anatomical structure

UMLS

WordNet
SNOMED CT

WordNet
SNOMED CT

FMA

Figure 8-10. Composite representation of Blood.

4.3 Additional Knowledge

Taxonomy, i.e., the arrangement of concepts in is-a hierarchies, plays a
central role in ontologies, of which such hierarchies constitute the backbone.
In addition to the relative position of Blood in their hierarchies, most
ontologies provide additional knowledge about Blood through properties
attached to this concept and through the associative relations of Blood to
other concepts. OpenCyc categorizes Blood as a Mixture, indicating that it
can be subject to events such as Separation mixture. Erythrocyte
sedimentation, resulting from the reversible separation of blood components,
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is an example of such events. In SNOMED CT, Blood is involved in the
definition of other concepts through specific roles which provide additional
knowledge about it. Blood can be analyzed (e.g., Blood specimen has
specimen substance Blood), can be the object of medical procedures
(e.g., Transfusion of whole blood has direct substance
Blood and Finger-prick sampling has direct substance
Blood) and can enter in the composition of clinical drugs (e.g.,
Antithrombin III preparation has active Iingredient
Blood). As a Body fluid in MENELAS, Blood acquires the viscosity
property. Blood is also a subtype of Mass object and inherits the general
knowledge represented for this type through relations (e.g., Mass object may
be a component of Countable object) and properties (e.g., quantity,
expressed with quantitative values and units). GALEN identifies two distinct
physical states for Blood: Liquid blood and Coagulated blood, (both
represented as descendants of Blood). In addition, Blood inherits the
properties of Body substance (e.g., Body substance plays
physiological role Organic role). Additionally, GALEN extends
the representation of Blood through roles such as Blood has
countability Infinitely divisible. This role, inherited from
Substance, expresses that Blood is not a discrete object. By categorizing
Blood as Tissue in the UMLS, potential relationships with other kinds of
entities can be inferred from the Semantic Network. Relationships of Tissue
to other Semantic Types, result in predicates including Tissue produces
Bioclogically active substance, Tissue 1is a location of
Pathologic function, Embryonic structure is a
developmental form of Tissue, and Tissue surrounds Tissue.
In the Foundational Model of Anatomy, Blood inherits from Body substance
the value False for the property has inherent 3D shape. The anatomical
structures containing Blood including Cavity of cardiac chamber and Lumen
of cardiovascular system are represented through relations such as Blood
contained in Cavity of cardiac chamber.

S. ISSUES IN ALIGNING AND CREATING
BIOMEDICAL ONTOLOGIES

As more biomedical ontologies are created, users might be tempted to
integrate these sets of concepts and relations into a single system. However,
the analysis of the differences in representation of Blood illustrated the
limitations of a naive approach to merging ontologies, even when
representations occur within a single theory of the domain (i.e., Western
medicine). While difference in granularity is usually not a problem, different
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naming conventions, the lack of reliable textual definitions and the lack of
explicit and consistently applied classificatory principles may result in
merging difficulties. Additional difficulty is encountered when attempting to
merge ontologies that convey different theories of the domain (e.g., Western
and Oriental medicine or modern medical knowledge and pre-scientific
representations of the human body). In this case, the target system must be
able to clearly identify the underlying theories and to represent them
separately. Tools have been developed to assist the ontology developer in
merging existing ontologies (Noy and Musen 1999).

Ontology design can benefit from two complementary approaches. First,
some methodologies such as the Protégé software engineering methodology,
aim at providing a clear division between domain ontologies and domain-
independent problem-solvers that, when mapped to domain ontologies, can
solve application tasks (Musen 1998). Second, ontologies can be improved
by drawing on the results of recent research in philosophy called formal
ontology. For example, Guarino et al. (2000) have developed methods built
around the fundamental philosophical theories of identity, unity, rigidity and
dependence, that can be used to reduce inconsistencies in is-a hierarchies.
Mereotopology, the theory of parts and boundaries, addresses issues in part-
of hierarchies. Exploiting these theories helps design principled ontologies.
Applied to the biomedical domain, formal ontology addresses, for example,
distinctions between a person and its body, or between being a person and
being a patient. More generally, formal ontology helps create consistent
upper-level ontologies to which domain ontologies can be hooked. For
example, the principles of mereotopology have been applied to the
representation of anatomical structures and subdivisions of the human body.

6. CONCLUSION

Although general ontologies and limited application ontologies may be
useful, biomedical applications (e.g., clinical decision support systems,
medical language processing and information retrieval) would benefit from
large, principled domain ontologies. We examined some of the biomedical
ontologies currently available and found that none of them fully meets the
requirements of formal organization. Not surprisingly, we observed a certain
lack of compatibility among their representations. Several factors contribute
to this situation. First, there is no agreement on an upper level ontology to
which a biomedical ontology could hook its concepts. Second, there is no
unique theory of the domain, and some characteristics of biomedicine make
it particularly difficult to represent (e.g., large number of concepts and
vagueness of some concepts). Finally, pragmatic aspects rather than formal
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principles often prevail in the design of biomedical ontologies. The
contribution of formal ontology has been acknowledged and will
undoubtedly benefit medical ontology. Meanwhile, we believe that
identifying and clarifying the core concepts and relationships of the domain
will contribute to improve the sharability of existing ontologies as well as
the interoperability of the applications that rely on them.
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SUGGESTED READINGS

Pisanelli, D.M (Ed.). (2004. Ontologies in medicine, Studies in Health Technology and
Informatics, Vol. 102, IOS Press, Amsterdam; Burke, VA.
The aim of this book is both to review fundamental theoretical issues in ontology and to
demonstrate the practical effectiveness of the ontological approach by means of a series of
case studies in specific problem areas. This book presents a survey of the most important
contributions to the topic of formal ontology in medicine.

Smith, B. (2004. Ontology, in: The Blackwell guide to the philosophy of computing and
information (ed. L. Floridi), Blackwell Pub., Malden, MA, pp. 155-166.
This article defines philosophical ontology and discusses relevance to information
systems. It provides numerous references to recent studies on formal ontology.

ONLINE RESOURCES

Ontology development resources:

¢ Protégé (ontology editor, available at http://protege.stanford.edu/)

¢ N. Noy and D. L. McGuinness. Ontology Development 101: A Guide to Creating Your
First Ontology. Stanford University, 2001, Technical report SMI-2001-0880.
(Available at http://www-smi.stanford.edu/pubs/SMI_Reports/SMI-2001-0880.pdf)

More than one hundred biomedical vocabularies are integrated in the Unified Medical
Language System (UMLS) Metathesaurus, along with the UMLS Semantic Network and
the SPECIALIST lexicon and lexical programs (available at http://umlsks.nlm.nih.gov/).
The UMLS is available free of charge, but users are required to sign a license agreement.

Biomedical terminology and ontology resources not discussed in the chapter:
o  Standards and Ontologies for Functional Genomics (http://sofg.org/)

¢ Gene Ontology (http://geneontology.org/)

e  Open Biological Ontologies (http://obo.sourceforge.net/)
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National Cancer Institute’s Thesaurus

http://ncicb.nci.nih.gov/download/index.jsp

QUESTIONS FOR DISCUSSION

1. What are the principal differences between ontologies and controlled
vocabularies?
2. What are the different kinds of ontologies?
3. What are the major kinds of relationships represented in biomedical
ontologies?
4. What are the major formalisms used to represent biomedical ontologies?
5. What is the main difference between the representation of anatomy in the
FMA and in other biomedical ontologies?
6. Is it possible / desirable to merge several biomedical ontologies into a
single structure?
7. Why are upper-level ontologies important to biomedical ontologies?
8. How can biomedical ontology benefit from the philosophical principles
of formal ontology?
9. What tasks would benefit from biomedical ontologies?
APPENDIX
Table 8-3. References for the ontologies mentioned in this chapter
Ontology URL
Foundational Model of Anatomy http://fma.biostr.washington.edu/
MENELAS http://www.biomath.jussieu.fr/~pz/Menelas/
OpenCyc™ http://www.opencyc.com/
OpenGALEN http://www.opengalen.org/
SNOMED CT® http://www.snomed.org/
Unified Medical Language http://umlsks.nlm.nih.gov/
System® (free UMLS registration required)

WordNet® http://www.cogsci.princeton.edu/~wn/
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Chapter 9

INFORMATION RETRIEVAL AND
DIGITAL LIBRARIES

William R. Hersh

Department of Medical Informatics & Clinical Epidemiology, School of Medicine, Oregon
Health and Science University, Portland, OR 97239

Chapter Overview

The field of information retrieval (IR) is generally concerned with the
indexing and retrieval of knowledge-based information. Although the name
implies the retrieval of any type of information, the field has traditionally
focused on retrieval of text-based documents, reflecting the type of
information that was initially available by this early application of computer
use. However, with the growth of multimedia content, including images,
video, and other types of information, IR has broadened considerably. The
proliferation of IR systems and on-line content has also changed the notion
of libraries, which have traditionally been viewed as buildings or
organizations. However, the developments of the Internet and new models
for publishing have challenged this notion as well, and new digital libraries
have emerged.

Keywords
Information retrieval; digital library; indexing; controlled vocabulary;
searching; knowledge-based information
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1. OVERVIEW OF FIELDS

IR systems and digital libraries store and disseminate knowledge-based
information (Hersh, 2003). What exactly do we mean by “knowledge-
based”? Although there are many ways to classify biomedical information,
for the purposes of this chapter we broadly divide it into two categories.
Patient-specific information applies to individual patients. Its purpose is to
inform health care providers, administrators, and researchers about the
health and disease of a patient. This information typically comprises the
patient’s medical record. The other category of biomedical information is
knowledge-based information.  This information forms the scientific
foundation of biomedicine and is derived and organized from observational
and experimental research. In the clinical setting, this information provides
clinicians, administrators, and researchers with knowledge that can be
applied to individual patients. In the basic science (or really any scientific)
setting, knowledge-based information provides the archive of research
reports upon which further research builds.

Knowledge-based information is most commonly provided in scientific
journals and proceedings but can be published in a wide variety of other
forms, including books, clinical practice guidelines, consumer health
literature, Web sites, and so forth. Figure 9-1 depicts the “life cycle” of
primary literature, which is derived from original research and whose
publication is dependent upon the peer review process that insures the
methods, results, and interpretation of results meets muster with one’s
scientific peers. In some fields, such as genomics, there is an increasing
push for original data to enter public repositories. In most fields, primary
information is summarized in secondary publications, such as review articles
and textbooks. Also in most fields, the authors relinquish the copyright of
their papers to publishers, although there is increasing resistance to this, as
described later in this chapter.

IR systems have usually, although not always, been applied to
knowledge-based information, which can be subdivided in other ways.
Primary knowledge-based information (also called primary literature) is
original research that appears in journals, books, reports, and other sources.
This type of information reports the initial discovery of health knowledge,
usually with either original data or re-analysis of data (e.g., meta-analyses).

Secondary knowledge-based information consists of the writing that
reviews, condenses, and/or synthesizes the primary literature. As seen in
Figure 9-1, secondary literature emanates from original publications. The
most common examples of this type of literature are books, monographs,
and review articles in journals and other publications. Secondary literature
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also includes opinion-based writing such as editorials and position or policy
papers.

Secondary

Public data
publications
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Write up
results
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Figure 9-1. The “life cycle” of scientific information.

All literature

|
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|
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Information
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{ extraction,
text mining
Structured
knowledge

Figure 9-2. Information retrieval and extraction in context.

IR is a distinct process from information extraction (IE), which is
covered in many subsequent chapters of this book dealing with vocabularies
and ontologies, natural language processing, and text mining. A perspective
of the role of IR is provided in Figure 9-2, which shows the flow of
extracting knowledge from the scientific literature. IR typically focuses on
the initial narrowing of the broad literature, ideally passing off a more
focused set of articles for the more intensive processing required for IE and
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text mining. A goal for the latter processes is often to create structured
knowledge resources that can be accessed by other informatics applications.

Libraries have been the historical place where knowledge-based
information has been stored.Libraries actually perform a variety of functions
including the following:

e Acquisition and maintenance of collections

o Cataloging and classification of items in collections to make them more
accessible to users

e Serving as a place where individuals can go to seek information with
assistance, including information on computers

¢ Providing work or studying space (particularly in universities)

Digital libraries provide some of these same services, but they tend to be
more focused on content, particularly in digital form, as opposed to a
location, although most physical libraries offer increasing amounts of digital
library services (Humphreys, 2000).

2. INFORMATION RETRIEVAL

Now that we have had a general overview of knowledge-based
biomedical information, we can look in further detail at IR systems. A
model for the IR system and the user interacting with it is shown in Figure 9-
3 (Hersh, 2003). The ultimate goal of a user of an IR system is to access
content, which may be in the form of a digital library. In order for that
content to be accessible, it must be described with metadata. The major
intellectual processes of IR are indexing and retrieval. In the remainder of
this section, we will discuss content, indexing, and retrieval, followed by an
overview of how IR systems are evaluated.

Rety Metadata

Queries

Indexing

Content

Search
engine

Figure 9-3. A graphic representation of the information retrieval process (Hersh, 2003).
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2.1 Content

The ultimate goal of IR systems and digital libraries is to deliver
information to users for specific tasks. It is useful to classify the different
types of knowledge-based information to better understand the issues in its
indexing and retrieval. In this section, we classify content into
bibliographic, full-text, database/collection, and aggregated categories and
provide an overview of each.

2.1.1 Bibliographic

The first category consists of bibliographic content. It includes what was
for decades the mainstay of IR systems: literature reference databases. Also
called bibliographic databases, this content consists of citations or pointers
to the medical literature (i.e., journal articles). The best-known and most
widely used biomedical bibliographic database is MEDLINE, which is
produced by the National Library of Medicine (NLM) and contains
bibliographic references to the biomedical articles, editorials, and letters to
the editors in approximately 4,500 scientific journals. At present, about
500,000 references are added to MEDLINE yearly. It now contains over 12
million references.

The current MEDLINE record contains up to 49 fields. Probably the
most commonly used fields are the title, abstract, and indexing terms. But
other fields contain specific information that may be of great importance to
smaller audiences. For example, a genomics researcher might be highly
interested in the Supplementary Information (SI) field to link to genomic
databases. Likewise, the Publication Type (PT) field can be of help to
clinicians, designating whether an article is a practice guideline or
randomized controlled trial. The NLM also partitions MEDLINE into
subsets for users wishing to search on a focused portion of the database, such
as AIDS or Complementary and Alternative Medicine.

MEDLINE is only one of many databases produced by the NLM
(Anonymous, 2000c). Other more specialized databases are also available,
covering topics from AIDS to space medicine and toxicology. There are a
variety of non-NLM bibliographic databases that tend to be more focused on
subjects or resource types. The major non-NLM database for the nursing
field is CINAHL (Cumulative Index to Nursing and Allied Health Literature,
CINAHL Information Systems, www.cinahl.com), which covers nursing and
allied health literature, including physical therapy, occupational therapy,
laboratory technology, health education, physician assistants, and medical
records. Another database is Excerpta Medica (Elsevier Science Publishers,
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www.excerptamedica.com). EMBASE, the clectronic version of Excerpta
Medica, contains over § million records dating back to 1974.

A second, more modern type of bibliographic content is the Web catalog.
There are increasing numbers of such catalogs, which consist of Web pages
containing mainly links to other Web pages and sites. It should be noted that
there is a blurry distinction between Web catalogs and aggregations (the
fourth category in this classification). In general, the former contain only
links to other pages and sites, while the latter include actual content that is
highly integrated with other resources. Some well-known Web catalogs
include:

e HealthWeb (healthweb.org)—topics maintained by a consortium of 12
midwestern universities (Redman, Kelly et al., 1997)

o HealthFinder (healthfinder.gov)—consumer-oriented health information
maintained by the Office of Disease Prevention and Health Promotion of
the U.S. Department of Health and Human Services

There are a number of large general Web catalogs that are not limited to
health topics. Two examples are Yahoo (www.yahoo.com) and Open
Directory (dmoz.org), both of which have significant health components.

The final type of bibliographic content is the specialized registry. This
resource is very close to a literature reference database except that it indexes
more diverse content than scientific literature. One specialized registry of
great importance for clinicians is the National Guidelines Clearinghouse
(NGC, www.guideline.gov). Produced by the Agency for Healthcare
Research and Quality (AHRQ), it is a bibliographic database with exhaustive
information about clinical practice guidelines.

2.1.2 Full-text

The second type of content is full-text content. A large component of
this content consists of the online versions of books and periodicals. A wide
variety of the traditional paper-based biomedical literature, from textbooks
to journals, is now available electronically. The electronic versions may be
enhanced by measures ranging from the provision of supplemental data in a
journal article to linkages and multimedia content in a textbook. The final
component of this category is the Web site. Admittedly the diversity of
information on Web sites is enormous, and sites may include every other
type of content described in this chapter. However, in the context of this
category, “Web site” refers to a localized collection (that may be large) of
static and dynamic pages at a discrete Web location.

Most biomedical journals are now published in electronic form.
Electronic publication not only allows easier access, but additional features
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not possible in print versions. For example, journal Web sites can provide
additional data with additional figures and tables, results, images, and even
raw data. A journal Web site also allows more dialogue about articles than
could be published in a Letters to the Editor section of a print journal.
Electronic publication also allows true bibliographic linkages, both to other
full-text articles and to the MEDLINE record. The Web also allows linkage
directly from bibliographic databases to full text. In fact, the MEDLINE
database now has a field for the Web address of the full-text paper.

Several hundred biomedical journals use Highwire Press
(www.highwire.org) to provide on-line access to their content. The
Highwire system provides a retrieval interface that searches over the
complete online contents for a given journal. Users can search for authors,
words limited to the title and abstract, words in the entire article, and within
a date range. The interface also allows searching by citation by entering
volume number and page, as well as searching over the entire collection of
journals that use Highwire. Users can also browse through specific issues as
well as collected resources.

The most common full-text secondary literature source is the traditional
textbook, an increasing number of which are available in electronic form. A
common approach with textbooks is to bundle multiple books, sometimes
with linkages across them. An early bundler of textbooks was Stat!-Ref
(Teton Data Systems, www.statref.com), which like many began as a CD-
ROM product and then moved to the Web. An early product that
implemented linking across books was Harrison’s Online (McGraw-Hill,
www.harrisonsonline.com), which contains the full text of Harrison’s
Principles of Internal Medicine and the drug reference Gold Standard
Pharmacology. Another textbook collection of growing stature is the NCBI
Bookshelf, which contains many volumes on biomedical research topics
(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Books). Some books,
such as On-Line Mendelian Inheritance in Man (OMIM,
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM) have ceased
publishing paper copies.

Electronic textbooks offer additional features beyond text from the print
version. While many print textbooks do feature high-quality images,
clectronic versions offer the ability to have more pictures and illustrations.
They also have the ability to use sound and video, although few do at this
time. As with full-text journals, electronic textbooks can link to other
resources, including journal references and the full articles. Many Web-
based textbook sites also provide access to continuing education self-
assessment questions and medical news. In addition, electronic textbooks let
authors and publishers provide more frequent updates of the information
than is allowed by the usual cycle of print editions, where new versions
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come out only every 2 to 5 years.

As noted above, Web sites are another form of full-text information.
Probably the most effective user of the Web to provide health information is
the U.S. government. The bibliographic databases of the NLM and AHRQ
have already been described. These and other agencies, such as the National
Cancer Institute (NCI) and Centers for Disease Control and Prevention
(CDC) have also been innovative in providing comprehensive full-text
information for healthcare providers and consumers as well. Some of these
will be described later as aggregations, since they provide many different
types of resources. In addition, a large number of private consumer health
Web sites have emerged in recent years. Of course they include more than
just collections of text, but also interaction with experts, online stores, and
catalogs of links to other sites. There are also Web sites that provide
information geared toward healthcare providers as well as scientists.

2.1.3 Databases/Collections

The third category consists of databases and other specific collections of
content. These resources are usually not stored as freestanding Web pages
but instead are often housed in database management systems. This content
can be further subcategorized into discrete information types:

o Image databases—collections of images from radiology, pathology, and
other areas

e Genomics databases—information from gene sequencing, protein
characterization, and other genomics research

o Citation databases—bibliographic linkages of scientific literature

o Evidence-based medicine (EBM) databases—highly structured
collections of clinical evidence

e Other databases—miscellaneous other collections

A great number of image databases are available on the Web, particularly
those from the “visual” medical specialties, such as radiology, pathology,
and dermatology. One collection of note is the Visible Human Project of the
NLM, which consists of three-dimensional representations of normal male
and female bodies (Spitzer, Ackerman et al., 1996). This resource is built
from cross-sectional slices of cadavers, with sections of 1 mm in the male
and 0.3 mm in the female. Also available from each cadaver are transverse
computerized tomography (CT) and magnetic resonance (MR) images. In
addition to the images themselves, a variety of searching and browsing
interfaces have been created which can be accessed via the project Web site
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(http://www.nlm.nih.gov/research/visible/visible_human.html).

Many genomics databases are available across the Web. Some of these
are text-based, but even those that are not (such as sequence or structure
databases) often contain textual annotations of their data. A key attribute of
these databases is their linkage across the Web, such that a record in one
database about a gene may have a link to a sequence database with its
nucleotide or amino acid sequence, a structure database with the structure of
its protein product, or a literature database with papers describing
experiments describing the gene. The first issue each year of the journal
Nucleic Acids Research catalogs and describes these databases (Baxevanis,
2003). At the center of this network of databases are those produced by the
National Center for Biotechnology Information (NCBI). All of NCBI’s
databases are linked among themselves, along with PubMed and OMIM, and
are searchable via the Entrez system (http://www.ncbi.nlm.nih.gov/Entrez).

Citation databases provide linkages to articles that cite others across the
scientific literature. The best-known citation databases are the Science
Citation Index (SCI, ISI Thompson) and Social Science Citation Index
(SSCI, ISI Thompson). A recent development is the Web of Science, a Web-
based interface to these databases. Another system for citation indexing is
the Research Index (formerly called CiteSeer, -citeseer.nj.nec.com)
(Lawrence, Giles et al., 1999). This index uses a process called autonomous
citation indexing that adds citations into its database by automatically
processing papers from the Web. It also attempts to identify the context of
citations, showing words similar across citations such that the commonality
of citing papers can be observed.

EBM databases are devoted to providing synopses of evidence-based
information in forms easily accessible by clinicians. Some examples of
these databases include the Cochrane Database of Systematic Reviews, one
of the original collections of systematic reviews (www.cochrane.org), and
Clinical Evidence, an “evidence formulary” (www.clinicalevidence.com).

There are a variety of other databases/collections that do not fit into the
above categories, such as the ClinicalTrials.gov database that contains
details of ongoing clinical trials sponsored by the National Institutes of
Health.

2.14 Aggregations

The final category consists of aggregations of content from the first three
categories. The distinction between this category and some of the highly
linked types of content described above is admittedly blurry, but
aggregations typically have a wide variety of different types of information
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serving diverse needs of their users. Aggregated content has been developed
for all types of users from consumers to clinicians to scientists.

Probably the largest aggregated consumer information resource is
MEDLINEplus (medlineplus.gov) from the NLM (Miller, Lacroix et al.,
2000). MEDLINEplus includes all of the types of content previously
described, aggregated for easy access to a given topic. At the top level,
MEDLINEplus contains health topics, drug information, medical
dictionaries, directories, and other resources. MEDLINEplus currently
contains over 400 health topics. The selection of topics is based on analysis
of those used by consumers to search for health information on the NLM
Web site (Miller, Lacroix et al., 2000). Each topic contains links to health
information from the NIH and other sources deemed credible by its
selectors. There are also links to current health news (updated daily), a
medical encyclopedia, drug references, and directories, along with a
preformed PubMed search, related to the topic.

Aggregations of content have also been developed for clinicians. Merck
Medicus (www.merckmedicus.com) was developed by the well-known
publisher and pharmaceutical house, is available to all licensed US
physicians, and includes such well-known resources as Harrison’s Online,
MDConsult (www.mdconsult.com), and Dxplain
(http://www.lcs.mgh.harvard.edu/dxplain.htm).

There are many aggregations of content for biomedical researchers as
well.  Probably the best known among these are the model organism
databases (Perkel, 2003). These databases bring together bibliographic
databases, full text, and databases of sequences, structure, and function for
organisms whose genomic data has been highly characterized, such as the
mouse (Bult, Blake et al., 2004) and Saccharomyces yeast (Bahls, Weitzman
et al., 2003). Another well-known aggregation of genomics information is
the SOURCE (source.stanford.edu) database, which aggregates information
from many other sources about individuals genes in species (Dichn,
Sherlock et al., 2003).

2.2 Indexing

Most modern commercial IR systems index their content in two ways. In
manual indexing, human indexers, usually using standardized terminology,
assign indexing terms and attributes to documents, often following a specific
protocol. Manual indexing is typically done using controlled vocabularies,
which consist of the set of allowable terms and relationships between them.
In automated indexing, on the other hand, computers make the indexing
assignments, usually limited to breaking out each word in the document (or
part of the document) as an indexing term.
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Manual indexing is used most commonly with bibliographic databases.
In this age of proliferating electronic content, such as online textbooks,
practice guidelines, and multimedia collections, manual indexing has
become either too expensive or outright unfeasible for the quantity and
diversity of material now available. Thus there are increasing numbers of
databases that are indexed only by automated means.

2.21 Controlled Vocabularies

Before discussing specific vocabularies it is useful to define some terms,
since different writers attach different definitions to the various components
of thesauri. A concept is an idea or object that occurs in the world, such as
the condition under which human blood pressure is elevated. A term is the
actual string of one or more words that represent a concept, such as
Hypertension or High Blood Pressure. One of these string forms is the
preferred or canonical form, such as Hypertension in the present example.
When one or more terms can represent a concept, the different terms are
called synonyms.

A controlled vocabulary usually contains a list of terms that are the
canonical representations of the concepts. They are also called thesauri and
contain relationships between terms, which typically fall into three
categories:

¢ Hierarchical—terms that are broader or narrower. The hierarchical
organization not only provides an overview of the structure of a
thesaurus but also can be used to enhance searching.

¢ Synonymous—terms that are synonyms, allowing the indexer or searcher
to express a concept in different words.

e Related—terms that are not synonymous or hierarchical but are somehow
otherwise related. These usually remind the searcher of different but
related terms that may enhance a search.

The Medical Subject Headings (MeSH) vocabulary is used to manually
index most of the databases produced by the NLM (Coletti and Bleich,
2001). The latest version contains over 21,000 subject headings (the word
MeSH uses to denote the canonical representation of its concepts). It also
contains over 100,000 supplementary concept records in a separate chemical
thesaurus. In addition, MeSH contains the three types of relationships
described in the previous paragraph:

¢ Hierarchical-—MeSH is organized hierarchically into 15 trees, such as
Diseases, Organisms, and Chemicals and Drugs.
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o Synonymous—MeSH contains a vast number of entry terms, which are
synonyms of the headings.

o Related—terms that may be useful for searchers to add to their searches
when appropriate are suggested for many headings.

The MeSH vocabulary files, their associated data, and their supporting
documentation are available on the NLM’s MeSH Web site
(www.nlm.nih.gov/mesh/).  There is also a browser that facilitates
exploration of the vocabulary (www.nlm.nih.gov/mesh/MBrowser.html).

There are features of MeSH designed to assist indexers in making
documents more retrievable (Anonymous, 2000b). One of these is
subheadings, which are qualifiers of subject headings that narrow the focus
of a term. Under Hypertension, for example, the focus of an article may be
on the diagnosis, epidemiology, or treatment of the condition. Another
feature of MeSH that helps retrieval is check tags. These are MeSH terms
that represent certain facets of medical studies, such as age, gender, human
or nonhuman, and type of grant support. Related to check tags are the
geographical locations in the Z tree. Indexers must also include these, like
check tags, since the location of a study (e.g., Oregon) must be indicated.
Another feature gaining increasing importance for EBM and other purposes
is the publication type, which describes the type of publication or the type of
study. A searcher who wants a review of a topic may choose the publication
type Review or Review Literature. Or, to find studies that provide the best
evidence for a therapy, the publication type Meta-Analysis, Randomized
Controlled Trial, or Controlled Clinical Trial would be used.

MeSH is not the only thesaurus used for indexing biomedical documents.
A number of other thesauri are used to index non-NLM databases.
CINAHL, for example, uses the CINAHL Subject Headings, which are based
on MeSH but have additional domain-specific terms added (Brenner and
McKinin, 1989). EMBASE has a vocabulary called EMTREE, which has
many features similar to those of MeSH
(www.elsevier.nl/homepage/sah/spd/site/locate_embase.html).

2.2.2 Manual Indexing

Manual indexing of bibliographic content is the most common and
developed use of such indexing. Bibliographic manual indexing is usually
done by means of a controlled vocabulary of terms and attributes. Most
databases utilizing human indexing usually have a detailed protocol for
assignment of indexing terms from the thesaurus. The MEDLINE database
is no exception. The principles of MEDLINE indexing were laid out in the
two-volume MEDLARS Indexing Manual (Charen, 1976; Charen, 1983).
Subsequent modifications have occurred with changes to MEDLINE, other
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databases, and MeSH over the years (Anonymous, 2000a). The major
concepts of the article, usually from two to five headings, are designed as
central concept headings, and designated in the MEDLINE record by an
asterisk. The indexer is also required to assign appropriate subheadings.
Finally, the indexer must also assign check tags, geographical locations, and
publication types.

Few full-text resources are manually indexed. One type of indexing that
commonly takes place with full-text resources, especially in the print world,
is that performed for the index at the back of the book. However, this
information is rarely used in IR systems; instead, most online textbooks rely
on automated indexing (see below). One exception to this is MDConsult,
which uses back-of-book indexes to point to specific sections in its online
books.

Manual indexing of Web content is challenging. With several billion
pages of content, manual indexing of more than a fraction of it is not
feasible. On the other hand, the lack of a coherent index makes searching
much more difficult, especially when specific resource types are being
sought. A simple form of manual indexing of the Web takes place in the
development of the Web catalogs and aggregations as described above.
These catalogs make not only explicit indexing about subjects and other
attributes, but also implicit indexing about the quality of a given resource by
the decision of whether to include it in the catalog.

Two major approaches to manual indexing have emerged on the Web,
which are not mutually incompatible. The first approach, that of applying
metadata to Web pages and sites, is exemplified by the Dublin Core
Metadata Initiative (DCMI, www.dublincore.org). The second approach, to
build directories of content, is further described below.

Table 9-1. Elements of Dublin Core Metadata.

Element Definition

DC.title The name given to the resource

DC.creator The person or organization primarily responsible for creating
the intellectual content of the resource

DC.subject The topic of the resource

DC.description A textual description of the content of the resource

DC.publisher The entity responsible for making the resource available in its
present form

DC.date A date associated with the creation or availability of the
resource

DC.contributor A person or organization not specified in a creator element who

has made a significant intellectual contribution to the resource
but whose contribution is secondary to any person or
organization specified in a creator element

continued
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Element Definition
DC.type The category of the resource
DC.format The data format of the resource, used to identify the software

and possibly hardware that might be needed to display or
operate the resource

DC.identifier A string or number used to uniquely identify the resource

DC.source Information about a second resource from which the present
resource is derived

DC.language The language of the intellectual content of the resource

DC.relation An identifier of a second resource and its relationship to the
present resource

DC.coverage The spatial or temporal characteristics of the intellectual
content of the resource

DC.rights A rights management statement, an identifier that links to a

rights management statement, or an identifier that links to a
service providing information about rights management for the
resource

The goal of the DCMI has been to develop a set of standard data
elements that creators of Web resources can use to apply metadata to their
content (Weibel, 1996). The specification has defined 15 elements, as
shown in Table 9-1 (Anonymous, 1999). The DCMI has been anointed a
standard by the National Information Standards Organization (NISO) with
the designation Z39.85 (Anonymous, 2001a).

While Dublin Core Metadata was originally envisioned to be included in
HTML Web pages, it became apparent that many non-HTML resources exist
on the Web and that there are reasons to store metadata external to Web
pages. For example, authors of Web pages might not be the best people to
index pages or other entities might wish to add value by their own indexing
of content. An emerging standard for cataloging metadata is the Resource
Description Framework (RDF) (Miller, 1998). A framework for describing
and interchanging metadata, RDF 1is wusually expressed in XML.
Increasingly XML is being used to interchange data between databases and
has been designated the preferred interchange format in the Clinical
Document Architecture of the Health Level-7 (HL7, www.hl7.org) standard
(Dolin, Alschuler et al., 2001). RDF also forms the basis of what some call
the future of the Web as a repository not only of content but also knowledge,
which is also referred to as the Semantic Web (Lassila, Hendler et al., 2001).
Dublin Core Metadata (or any type of metadata) can be represented in RDF
(Beckett, Miller et al., 2000).

Another approach to manually indexing content on the Web has been to
create directories of content. The first major effort to create these was the
Yahoo! search engine, which created a subject hierarchy and assigned Web
sites to elements within it (www.yahoo.com). When concern began to
emerge that the Yahoo! directory was proprietary and not necessarily
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representative of the Web community at large (Caruso, 2000), an alternative
movement sprung up, the Open Directory Project.

Manual indexing has a number of limitations, the most significant of
which is inconsistency. Funk and Reid (Funk and Reid, 1983) evaluated
indexing inconsistency in MEDLINE by identifying 760 articles that had
been indexed twice by the NLM. The most consistent indexing occurred
with check tags and central concept headings, which were only indexed with
a consistency of 61 to 75%. The least consistent indexing occurred with
subheadings, especially those assigned to non-central concept headings,
which had a consistency of less than 35%. Manual indexing also takes time.
While it may be feasible with the large resources the NLM has to index
MEDLINE, it is probably impossible with the growing amount of content on
Web sites and in other full-text resources. Indeed, the NLM has recognized
the challenge of continuing to have to index the growing body of biomedical
literature and is investigating automated and semi-automated means of doing
so (Aronson, Bodenreider et al., 2000).

2.2.3 Automated Indexing

In automated indexing, the work is done by a computer. Although the
mechanical running of the automated indexing process lacks cognitive input,
considerable intellectual effort may have gone into building the automated
indexing system. In this section, we will focus on the automated indexing
used in operational IR systems, namely the indexing of documents by the
words they contain.

Some may not think of extracting all the words in a document as
“indexing,” but from the standpoint of an IR system, words are descriptors
of documents, just like human-assigned indexing terms. Most retrieval
systems actually use a hybrid of human and word indexing, in that the
human-assigned indexing terms become part of the document, which can
then be searched by using the whole controlled vocabulary term or
individual words within it. Indeed, most MEDLINE implementations have
always allowed the combination of searching on human indexing terms and
on words in the title and abstract of the reference. With the development of
full-text resources in the 1980s and 1990s, systems that only used word
indexing began to emerge. This trend increased with the advent of the Web.

Word indexing is typically done by taking all consecutive alphanumeric
characters between white space, which consists of spaces, punctuation,
carriage returns, and other nonalphanumeric characters. Systems must take
particular care to apply the same process to documents and the user’s
queries, especially with characters such as hyphens and apostrophes. Some
systems go beyond simple identification of words and attempt to assign
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weights to words that represent their importance in the document (Salton,
1991).

Many systems using word indexing employ processes to remove
common words or conflate words to common forms. The former consists of
filtering to remove stop words, which are common words that always occur
with high frequency and are usually of little value in searching. The stop
list, also called a negative dictionary, varies in size from the seven words of
the original MEDLARS stop list (and, an, by, from, of, the, with) to the 250
to 500 words more typically used. Examples of the latter are the 250-word
list of van Rijsbergen (vanRijsbergen, 1979), the 471-word list of Fox (Fox,
1992), and the PubMed stop list (Anonymous, 2001c). Conflation of words
to common forms is done via stemming, the purpose of which is to ensure
words with plurals and common suffixes (e.g., -ed, -ing, -er, -al) are always
indexed by their stem form (Frakes, 1992). For example, the words cough,
coughs, and coughing are all indexed via their stem cough. Stop word
removal and stemming also reduce the size of indexing files and lead to
more efficient query processing,

A commonly used approach for term weighting is TF*IDF weighting,
which combines the inverse document frequency (IDF) and term frequency
(TF). The IDF is the logarithm of the ratio of the total number of documents
to the number of documents in which the term occurs. It is assigned once for
each term in the database, and it correlates inversely with the frequency of
the term in the entire database. The usual formula used is:

IDF (term) = log number of documents in database 11

number of documents with term (1)

The TF is a measure of the frequency with which a term occurs in a given
document and is assigned to each term in each document, with the usual
formula:

TF (term,document) = frequency of term in document @)

In TF*IDF weighting, the two terms are combined to form the indexing
weight, WEIGHT:.

WEIGHT (term,document) = TF (term,document) * IDF (term) 3)

Another automated indexing approach generating increased interest is the
use of link-based methods, fueled no doubt by the success of the Google
(www.google.com) search engine. This approach gives weight to pages
based on how often they are cited by other pages. The PageRank algorithm
is mathematically complex, but can be viewed as giving more weight to a
Web page based on the number of other pages that link to it (Brin and Page,
1998). Thus, the home page of the NLM or a major medical journal is likely
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to have a very high PageRank (and presumed to be more “authoritative”),
whereas a more obscure page will have a lower PageRank. A whole
industry has evolved around improving the PageRank scores of one’s Web
sites (Anonymous, 2003).

Similar to manual indexing, word-based automated indexing has a
number of limitations, including:

o Synonymy—different words may have the same meaning, such as high
and elevated. This problem may extend to the level of phrases with no
words in common, such as the synonyms hypertension and high blood
pressure.

¢ Polysemy—the same word may have different meanings or senses. For
example, the word lead can refer to an element or to a part of an
electrocardiogram machine.

e Content—words in a document may not reflect its focus. For example,
an article describing Aypertension may make mention in passing to other
concepts, such as congestive heart failure, that are not the focus of the
article.

e Context—words take on meaning based on other words around them.
For example, the relatively common words high, blood, and pressure,
take on added meaning when occurring together in the phrase high blood
pressure.

¢ Morphology—words can have suffixes that do not change the underlying
meaning, such as indicators of plurals, various participles, adjectival
forms of nouns, and nominalized forms of adjectives.

e Granularity—queries and documents may describe concepts at different
levels of a hierarchy. For example, a user might query for antibiotics in
the treatment of a specific infection, but the documents might describe
specific antibiotics themselves, such as penicillin.

2.3 Retrieval

There are two broad approaches to retrieval. Exact-match searching
allows the user precise control over the items retrieved. Partial-match
searching, on the other hand, recognizes the inexact nature of both indexing
and retrieval, and instead attempts to return the user content ranked by how
close it comes to the user’s query. After general explanations of these
approaches, we will describe actual systems that access the different types of
biomedical content.
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2.3.1 Exact-match

In exact-match searching, the IR system gives the user all documents that
exactly match the criteria specified in the search statement(s). Since the
Boolean operators AND, OR, and NOT are usually required to create a
manageable set of documents, this type of searching is often called Boolean
searching. Furthermore, since the user typically builds sets of documents
that are manipulated with the Boolean operators, this approach is also called
set-based searching. Most of the early operational IR systems in the 1950s
through 1970s used the exact-match approach, even though Salton was
developing the partial-match approach in research systems during that time
(Salton and Lesk, 1965). In modern times, exact-match searching tends to
be associated with retrieval from bibliographic databases, while the partial-
match approach tends to be used with full-text searching. A more detailed
example of an exact-match searching system, PubMed, is provided below.

Typically the first step in exact-match retrieval is to select terms to build
sets. Other attributes, such as the author name, publication type, or gene
identifier (in the secondary source identifier field of MEDLINE), may be
selected to build sets as well. Once the search term(s) and attribute(s) have
been selected, they are combined with the Boolean operators. The Boolean
AND operator is typically used to narrow a retrieval set to contain only
documents about two or more concepts. The Boolean OR operator is usually
used when there is more than one way to express a concept. The Boolean
NOT operator is often employed as a subtraction operator that must be
applied to another set. Some systems more accurately call this the
ANDNOT operator.

Some systems allow terms in searches to be expanded by using the wild-
card character, which adds all words to the search that begin with the letters
up until the wild-card character. This approach is also called truncation.
Unfortunately there is no standard approach to using wild-card characters, so
syntax for them varies from system to system. PubMed, for example, allows
a single asterisk at the end of a word to signify a wild-card character. Thus
the query word can* will lead to the words cancer and Candida, among
others, being added to the search. The AltaVista search engine
(www.altavista.com) takes a different approach. The asterisk can be used as
a wild-card character within or at the end of a word but only after its first
three letters. For example, col/*r will retrieve documents containing color,
colour, and colder.
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2.3.2 Partial-match

Although partial-match searching was conceptualized in the 1960s, it did
not see widespread use in IR systems until the advent of Web search engines
in the 1990s. This is most likely because exact-match searching tends to be
preferred by “power users” whereas partial-match searching is preferred by
novice searchers, the ranks of whom have increased substantially with the
growth and popularity of the Web. Whereas exact-match searching requires
an understanding of Boolean operators and (often) the underlying structure
of databases (e.g., the many fields in MEDLINE), partial-match searching
allows a user to simply enter a few terms and start retrieving documents.

The development of partial-match searching is usually attributed to
Salton (Salton, 1991). Although partial-match searching does not exclude
the use of nonterm attributes of documents, and for that matter does not even
exclude the use of Boolean operators (e.g., see (Salton, Fox et al., 1983)), the
most common use of this type of searching is with a query of a small number
of words, also known as a natural language query. Because Salton’s
approach was based on vector mathematics, it is also referred to as the
vector-space model of IR. In the partial-match approach, documents are
typically ranked by their closeness of fit to the query. That is, documents
containing more query terms will likely be ranked higher, since those with
more query terms will in general be more likely to be relevant to the user.
As a result this process is called relevance ranking. The entire approach has
also been called lexical-statistical retrieval.

The most common approach to document ranking in partial-match
searching is to give each a score based on the sum of the weights of terms
common to the document and query. Terms in documents typically derive
their weight from the TF*IDF calculation described above. Terms in queries
are typically given a weight of one if the term is present and zero if it is
absent. The following formula can then be used to calculate the document
weight across all query terms:

Documentweight= z Weightof termin query* Weightof termindocument “4)

all queryterms

This may be thought of as a giant OR of all query terms, with sorting of
the matching documents by weight. The usual approach is for the system to
then perform the same stop word removal and stemming of the query that
was done in the indexing process. (The equivalent stemming operations
must be performed on documents and queries so that complementary word
stems will match.)
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24 Evaluation

There has been a great deal of research over the years devoted to
evaluation of IR systems. As with many areas of research, there is
controversy as to which approaches to evaluation best provide results that
can assess their searching and the systems they are using. Many frameworks
have been developed to put the results in context. One of these frameworks
organizes evaluation around six questions that someone advocating the use
of IR systems might ask (Hersh and Hickam, 1998):

e Was the system used?

e For what was the system used?

e Were the users satisfied?

e How well did they use the system?

o What factors were associated with successful or unsuccessful use of the
system?

¢ Did the system have an impact on the user’s task?

A simpler means for organizing the results of evaluation, however,
groups approaches and studies into those which are system-oriented, i.e., the
focus of the evaluation is on the IR system, and those which are user-
oriented, i.e., the focus is on the user.

24.1 System-oriented

There are many ways to evaluate the performance of IR systems, the
most widely used of which are the relevance-based measures of recall and
precision. These measures quantify the number of relevant documents
retrieved by the user from the database and in his or her search. They make
use of the number of relevant documents (Rel), retrieved documents (Ret),
and retrieved documents that are also relevant (Retrel). Recall is the
proportion of relevant documents retrieved from the database:

Retrel
Rel (5)

In other words, recall answers the question, For a given search, what
fraction of all the relevant documents have been obtained from the database?
One problem with Eq. (5) is that the denominator implies that the total
number of relevant documents for a query is known. For all but the smallest
of databases, however, it is unlikely, perhaps even impossible, for one to
succeed in identifying all relevant documents in a database. Thus most

Recall =
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studies use the measure of relative recall, where the denominator is
redefined to represent the number of relevant documents identified by
multiple searches on the query topic.

Precision is the proportion of relevant documents retrieved in the search:

Retrel
Ret

Precision = (6)

This measure answers the question, For a search, what fraction of the
retrieved documents are relevant?

One problem that arises when one is comparing systems that use ranking
versus those that do not is that nonranking systems, typically using Boolean
searching, tend to retrieve a fixed set of documents and as a result have fixed
points of recall and precision. Systems with relevance ranking, on the other
hand, have different values of recall and precision depending on the size of
the retrieval set the system (or the user) has chosen to show. For this reason,
many evaluators of systems featuring relevance ranking will create a recall-
precision table (or graph) that identifies precision at various levels of recall.
The “standard” approach to this was defined by Salton (Salton, 1983), who
pioneered both relevance ranking and this method of evaluating such
systems.

To generate a recall-precision table for a single query, one first must
determine the intervals of recall that will be used. A typical approach is to
use intervals of 0.1 (or 10%), with a total of 11 intervals from a recall of 0.0
to 1.0. The table is built by determining the highest level of overall
precision at any point in the output for a given interval of recall. Thus, for
the recall interval 0.0, one would use the highest level of precision at which
the recall is anywhere greater than or equal to zero and less than 0.1. An
approach that has been used more frequently in recent times has been the
mean average precision (MAP), which is similar to precision at points of
recall but does not use fixed recall intervals or interpolation (Voorhees,
1998). Instead, precision is measured at every point at which a relevant
document is obtained, and the MAP measure is found by averaging these
points for the whole query.

No discussion of IR evaluation can ignore the Text REtrieval Conference
(TREC, trec.nist.gov) organized by the U.S. National Institute for Standards
and Technology (NIST, www.nist.gov) (Voorhees and Harman, 2000).
Started in 1992, TREC has provided a testbed for evaluation and a forum for
presentation of results. TREC is organized as an annual event at which the
tasks are specified and queries and documents are provided to participants.
Participating groups submit “runs” of their systems to NIST, which
calculates the appropriate performance measure, usually recall and precision.
TREC is organized into tracks geared to specific interests. Voorhees
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recently grouped the tracks into general IR tasks (Voorhees and Harman,
2001):

e Static text—Ad Hoc

e Streamed text—Routing, Filtering

¢ Human in the loop—Interactive

e Beyond English (cross-lingual)}—Spanish, Chinese, and others
¢ Beyond text—OCR, Speech, Video

e Web searching—Very Large Corpus, Web

e Answers, not documents—Question-Answering

¢ Retrieval in a domain—Genomics

TREC has been an initiative for the general IR community and, as such,
has mostly newswire, government, and Web (i.e., non-biomedical) content.
However, a recent track has been formed using biomedical data, the TREC
Genomics Track (http://medir.ohsu.edu/~genomics). The first year of the
track featured tasks in both IR and IE (Hersh and Bhupatiraju, 2003).
Further iterations of the track will feature more advanced approaches to
evaluation of retrieval as well as user studies. Another advantage of this
track has been to bring the IR and bioinformatics research communities into
more contact.

Relevance-based measures have their limitations. While no one denies
that users want systems to retricve relevant articles, it is not clear that the
quantity of relevant documents retrieved is the complete measure of how
well a system performs (Swanson, 1988; Harter, 1992). Hersh (Hersh, 1994)
has noted that clinical users are unlikely to be concerned about these
measures when they simply seek an answer to a clinical question and are
able to do so no matter how many other relevant documents they miss
(lowering recall) or how many nonrelevant ones they retrieve (lowering
precision).

What alternatives to relevance-based measures can be used for
determining performance of individual searches? Many advocate that the
focus of evaluation put more emphasis on user-oriented studies, particularly
those that focus on how well users perform real-world tasks with IR systems.
Some of these studies are described in the next section, while a series of
biomedically focused user studies by Hersh and colleagues are presented
later.

2.4.2 User-oriented

A number of user-oriented evaluations have been performed over the
years looking at users of biomedical information. Most of these studies have
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focused on clinicians. One of the original studies measuring searching
performance in clinical settings was performed by Haynes et al. (Haynes,
McKibbon et al.,, 1990). This study also compared the capabilities of
librarian and clinician searchers. In this study, 78 searches were randomly
chosen for replication by both a clinician experienced in searching and a
medical librarian. During this study, each original (“novice”) user had been
required to enter a brief statement of information need before entering the
search program. This statement was given to the experienced clinician and
librarian for searching on MEDLINE. All the retrievals for each search were
given to a subject domain expert, blinded with respect to which searcher
retrieved which reference. Recall and precision were calculated for each
query and averaged. The results (Table 9-2) showed that the experienced
clinicians and librarians achieved comparable recall, although the librarians
had statistically significantly better precision. The novice clinician searchers
had lower recall and precision than either of the other groups. This study
also assessed user satisfaction of the novice searchers, who despite their
recall and precision results said that they were satisfied with their search
outcomes. The investigators did not assess whether the novices obtained
enough relevant articles to answer their questions, or whether they would
have found additional value with the ones that were missed.

Table 9-2. Recall and precision of MEDLINE searchers.

Users Recall (%) Precision (%)
Novice clinicians 27 38
Experienced clinicians 48 49
Medical librarians 49 58

A follow-up study yielded some additional insights about the searchers
(McKibbon, Haynes et al., 1990). As was noted, different searchers tended
to use different strategies on a given topic. The different approaches
replicated a finding known from other searching studies in the past, namely,
the lack of overlap across searchers of overall retrieved citations as well as
relevant ones. Thus, even though the novice searchers had lower recall, they
did obtain a great many relevant citations not retrieved by the two expert
searchers. Furthermore, fewer than 4% of all the relevant citations were
retrieved by all three searchers. Despite the widely divergent search
strategies and retrieval sets, overall recall and precision were quite similar
among the three classes of users.

Other user-oriented evaluation has looked at how well users complete
tasks with IR systems. Egan et al. (Egan, Remde et al., 1989) evaluated the
effectiveness of the Superbook application by assessing how well users
could find and apply specific information. Mynatt et al. (Mynatt, Leventhal
et al., 1992) used a similar approach in comparing paper and clectronic
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versions of an online encyclopedia, while Wildemuth et al. (Wildemuth,
deBliek et al., 1995) assessed the ability of students to answer testlike
questions using a medical curricular database. The TREC Interactive Track
has also used this approach. This work showed that some algorithms found
effective using system-oriented, relevance-based evaluation measures did
not maintain that effectiveness in experiments with real users (Hersh, 2001).

2.5 Research Directions

A steady stream of research continues to look at new approaches to IR, a
detailed discussion of which is beyond the scope of this chapter. The NLM
sponsors biomedical IR research both internally and externally. Its biggest
internal project is the Indexing Initiative, which is investigating new
approaches to automated and semi-automated indexing, mostly based on
tools using the UMLS and natural language processing tools (Aronson,
Bodenreider et al., 2000).

Other approaches to research have focused on improving aspects of
automated indexing and retrieval. A number of these have been found to
improve retrieval performance in the TREC environment, including:

* Improved approaches to term weighting, such as Okapi (Robertson and
Walker, 1994), pivoted normalization (Singhal, Buckley et al., 1996),
and language modeling (Ponte and Croft, 1998)

o Passage retrieval, where documents are given more weight in the ranking
process based on local concentrations of query terms within them
(Callan, 1994)

* Query expansion, where new terms from highly ranking documents are
added to the query in an automated fashion (Srinivasan, 1996; Xu and
Croft, 1996)

Additional work has focused on improving the user interface for the
retrieval process by organizing the output better. An example of this is
Dynacat, a system for consumers which uses UMLS knowledge and MeSH
terms to organize search results (Pratt, Hearst et al., 1999). The goal is to
present search results with documents clustered into topical groups, such as
the treatments for a disease or the tests used to diagnose it. Another
approach is to make the search system vocabulary more understandable in
context. The Cat-a-Cone system provides a means to explore term
hierarchies by using cone trees, which rotate the primary term of interest to
the center of the screen and show conelike expansion of other hierarchically
related terms nearby (Hearst and Karadi, 1997).
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3. DIGITAL LIBRARIES

Discussion of IR “systems” thus far has focused on the provision of
retrieval mechanisms to access online content. Even with the expansive
coverage of some IR systems, such as Web search engines, they are often
part of a larger collection of services or activities. An alternative
perspective, especially when communities and/or proprietary collections are
involved, is the digital library. Digital libraries share many characteristics
with “brick and mortar” libraries, but also take on some additional
challenges. Borgman (Borgman, 1999) notes that libraries of both types
elicit different definitions of what they actually are, with researchers tending
to view libraries as content collected for specific communities and
practitioners alternatively viewing them as institutions or services.

3.1 Access

Probably every Web user is familiar with clicking on a Web link and
receiving the error message: HTTP 404 - File not found. Digital libraries
and commercial publishing ventures need mechanisms to ensure that
documents have persistent identifiers so that when the document itself
physically moves, it is still obtainable. The original architecture for the Web
envisioned by the Internet Engineering Task Force was to have every
uniform resource locator (URL), the address entered into a Web browser or
used in a Web hyperlink, linked to a uniform resource name (URN) that
would be persistent (Sollins and Masinter, 1994). The combination of a
URN and URL, a uniform resource identifier (URI), would provide
persistent access to digital objects. The resource for resolving URNs and
URIs was never implemented on a large scale.

One approach that has begun to see widespread adoption by publishers,
especially scientific journal publishers, is the digital object identifier (DOI,
www.doi.org) (Paskin, 1999). The DOI has recently been given the status of
a standard by the National Information Standards Organization (NISO) with
the designation Z39.84. The DOI itself is relatively simple, consisting of a
prefix that is assigned by the IDF to the publishing entity and a suffix that is
assigned and maintained by the entity. For example, the DOI for articles
from the Journal of the American Medical Informatics Association have the
prefix 10.1197 and the suffix jamia M####, where #### is a number
assigned by the journal editors. Likewise, all publications in the Digital
Library of the  Association for  Computing  Machinery
(http://www.acm.org/dl) have the prefix 10.1145 and a unique identifier for
the suffix (e.g., 345508.345539) for the paper. Publishers are encouraged to
facilitate resolution by encoding the DOI into their URLs in a standard way,
e.g., http://doi.acm.org/10.1145/345508.345539.
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3.2 Interoperability

As noted throughout this chapter, metadata is a key component for
accessing content in IR systems. It takes on additional value in the digital
library, where there is desire to allow access to diverse but not necessarily
exhaustive resources. One key concern of digital libraries is interoperability
(Besser, 2002). That is, how can resources with heterogeneous metadata be
accessed? Arms et al. (Arms, Hillmann et al., 2002) note that three levels of
agreement must be achieved:

e Technical agreements over formats, protocols, and security procedures

e Content agreement over the data and the semantic interpretation of its
metadata

¢ Organizational agreements over ground rules for access, preservation,
payment, authentication, and so forth

One approach to interoperability gaining increasing use is the Open
Archives  Initiative  (OAI, www.openarchive.org) (Lagoze and
VandeSompel, 2001). While the OAI effort is rooted in access to scholarly
communications, its methods are applicable to a much broader range of
content. Its fundamental activity is to promote the “exposure” of archives’
metadata such that digital library systems can learn what content is available
and how it can be obtained. Each record in the OAI system has an XML-
encoded record. The OAI Protocol for Metadata Harvesting (PMH) then
allows selective harvesting of the metadata by systems. Such harvesting can
be date-based, such as items added or changed after a certain date, or set-
based, such as those belonging to a certain topic, journal, or institution. A
growing number of biomedical resources have adopted OAI (McKiernan,
2003).

33 Preservation

Another concern for digital libraries is the preservation of content,
especially with the growing trend towards electronic subscriptions to
journals that result in fewer physical copies (electronic or printed) being
produced. Also a concern is the longevity of digital materials (Lesk, 1997).
Of all media, the longevity is the least for magnetic materials, with the
expected lifetime of magnetic tape being 5 to 10 years. Optical storage has
somewhat better longevity, with an expected lifetime of 30 to 100 years
depending on the specific type. Ironically, paper has a life expectancy well
beyond all these digital media. A growing concern is that with the
increasing move towards eclectronic publishing, there are fewer copies of
journal material produced using media that have lesser longevity.

As such, there is an imperative to preserve documents of many types,
whatever their medium (Tibbo, 2001). For society in general, there is
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certainly impetus to preserve historical documents in an unaltered form.
And in all of science, certainly biomedicine, there is need to preserve the
archive of scientific discoveries, particularly those presenting original
experiments and their data. A number of initiatives have been undertaken to
insure preservation of digital information. These include the National
Digital Information Infrastructure Preservation Program (NDIIPP,
www.digitalpreservation.gov) of the US Library of Congress (Friedlander,
2002) and the Digital Preservation Coalition in the United Kingdom
(Beagrie, 2002).

4. CASE STUDIES

In this section, we will explore three case studies or examples of IR in
further detail. These include a retrieval system, user-oriented evaluation,
and issues surrounding electronic publishing.

4.1 PubMed

Probably the best known and most widely used biomedical IR system is
PubMed (pubmed.gov) from the NLM. (Unless one considers Google to be
a biomedical IR system, for which a tenable case can be made!) PubMed
searches MEDLINE and other bibliographic databases from the NLM.
Although presenting the user with a simple text box, PubMed does a great
deal of processing of the user’s input to identify MeSH terms, author names,
common phrases, and journal names (Anonymous, 2001c). In this automatic
term mapping, the system attempts to map user input, in succession, to
MeSH terms, journal names, common phrases, and authors. Remaining text
that PubMed cannot map is searched as text words (i.e., words that occur in
any of the MEDLINE fields).

PubMed allows the use of wild-card characters. It also allows phrase
searching in that two or more words can be enclosed in quotation marks to
indicate they must occur adjacent to each other. If the specified phrase is in
PubMed’s phrase index, then it will be searched as a phrase. Otherwise the
individual words will be secarched. PubMed allows specification of other
indexing attributes via the PubMed “Limits” screen. These include
publication types, subsets, age ranges, and publication date ranges.

As in most bibliographic systems, users search PubMed by building
search sets and then combining them with Boolean operators to tailor the
search. Consider a user searching for studies assessing the reduction of
mortality in patients with congestive heart failure (CHF) through the use of
medications from the angiotensin-converting (ACE) inhibitors class of
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drugs. A simple approach to such a search might be to combine the terms
ACE Inhibitors and CHF with an AND. The easiest way to do this is to
enter the search string ace inhibitors AND CHF. (The operator AND must
be capitalized because PubMed treats the lowercase and as a text word,
since some MeSH terms, such as Bites and Strings, have the word and in
them.) Figure 9-4 shows the PubMed History screen such a searcher might
develop.

PubMed also has a Clinical Queries interface, where the subject terms
are limited by search statements designed to retrieve the best evidence based
on principles of EBM. There are two different approaches. The first uses
strategies for retrieving the best evidence for the four major types of clinical
question. These strategies arise from research assessing the ability of
MEDLINE search statements to identify the best studies for therapy,
diagnosis, harm, and prognosis (Haynes, Wilczynski et al., 1994). The
second approach to retrieving the best evidence aims to retrieve evidence-
based resources including meta-analyses, systematic reviews, and practice
guidelines. When the Clinical Queries interface is used, the search statement
is processed by the usual automatic term mapping and the resulting output is
limited (via AND) with the appropriate statement.

PubMed is actually part of the larger Entrez system at NLM that provides
access to the entire range of on-line content
(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi).  Another interface that
searches over the range of NLM content is the NLM Gateway
(http://gateway.nlm.nih.gov/gw/Cmd).

4.2 User-oriented Evaluation

Recognizing the limitations of recall and precision for evaluating clinical
users of IR systems, Hersh and colleagues have carried out a number of
studies assessing the ability of systems to help students and clinicians
answer clinical questions. The rationale for these studies is that the usual
goal of using an IR system is to find an answer to a question. While the user
must obviously find relevant documents to answer that question, the quantity
of such documents is less important than whether the question is
successfully answered. In fact, recall and precision can be placed among the
many factors that may be associated with ability to complete the task
successfully.
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Figure 9-4. PubMed History screen. (Courtesy of NLM.)

The first study by this group using the task-oriented approach compared
Boolean versus natural language searching in the textbook Scientific
American Medicine (Hersh, Elliot et al., 1994). Thirteen medical students
were asked to answer 10 short-answer questions and rate their confidence in
their answers. The students were then randomized to one or the other
interface and asked to search on the five questions for which they had rated
confidence the lowest. The study showed that both groups had low correct
rates before searching (average 1.7 correct out of 10) but were mostly able to
answer the questions with searching (average 4.0 out of 5). There was no
difference in ability to answer questions with one interface or the other.
Most answers were found on the first search of the textbook. For the
questions that were incorrectly answered, the document with the correct
answer was actually retrieved by the user two-thirds of the time and viewed
more than half the time.

Another study compared Boolean and natural language searching of
MEDLINE with two commercial products, CD Plus (now Ovid,
www.ovid.com) and Knowledge Finder (Aries Systems,
www.ariessystems.com) (Hersh, Pentecost et al., 1996). These systems
represented the ends of the spectrum in terms of using Boolean searching on
human-indexed thesaurus terms (CD Plus) versus natural language searching
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on words in the title, abstract, and indexing terms (Knowledge Finder).
Sixteen medical students were recruited and randomized to one of the two
systems and given three yes/no clinical questions to answer. The students
were able to use each system successfully, answering 37.5% correct before
searching and 85.4% correct after searching. There were no significant
differences between the systems in time taken, relevant articles retrieved, or
user satisfaction. This study demonstrated that both types of system can be
used equaily well with minimal training.

The most comprehensive study looked at MEDLINE searching by
medical and nurse practitioner (NP) students to answer clinical questions. A
total of 66 medical and NP students searched five questions each (Hersh,
Crabtree et al., 2002). This study used a multiple-choice format for
answering questions that also included a judgment about the evidence for the
answer. Subjects were asked to choose from one of three answers:

o Yes, with adequate evidence
¢ Insufficient evidence to answer question
e No, with adequate evidence

Both groups achieved a presearching correctness on questions about
equal to chance (32.3% for medical students and 31.7% for NP students).
However, medical students improved their correctness with searching (to
51.6%), whereas NP students hardly did at all (to 34.7%).

This study also assessed what factors were associated with successful
searching. A number of factors, such as age, gender, computer experience,
and time taken to search, were not associated with successful answering of
questions. However, successful answering was associated with answering
the question correctly before searching, spatial visualization ability
(measured by a validated instrument), searching experience, and EBM
question type (prognosis questions casiest, harm questions most difficult).
An analysis of recall and precision for each question searched demonstrated
their complete lack of association with ability to answer these questions.

4.3 Changes in Publishing

Any discussion of IR systems and digital libraries cannot ignore the
larger context of the political and economic aspects of publishing. While a
complete discussion is beyond the scope of a chapter like this, some of the
high points can and should be elucidated, if for no other reason than that
they impact access to content for the kinds of innovations and research
described in this book.

The Internet and WWW have had profound impact in the publishing of
knowledge-based information. The technical impediments to electronic
publishing of journals have largely been solved. Most scientific journals are
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published electronically in some form already. Journals that do not publish
electronically likely could do so easily, since most of the publishing process
has already been converted to the electronic mode. A modern Internet
connection is sufficient to deliver most of the content of journals. Indeed, a
near turnkey solution is already offered through Highwire Press, which has
an infrastructure that supports journal publishing from content preparation to
searching and archiving.

There is great enthusiasm for electronic availability of journals, as
evidenced by the growing number of titles to which libraries provide access.
Likewise, since most scientists have the desire for widespread dissemination
of their work, they have incentive for their papers to be available on the
Web. Indeed, it has been shown, at least in the computer science domain,
that papers freely available on the Web have a higher likelihood of being
cited by other papers than those which are not (Lawrence, 2001). As
citations are important to authors for academic promotion and grant funding,
authors have incentive to maximize the accessibility of their published work.

The technical challenges to electronic scholarly publication have been
replaced by economic and political ones (Hersh and Rindfleisch, 2000;
Anonymous, 2001b). Printing and mailing, tasks no longer needed in
electronic publishing, comprised a significant part of the “added value” from
publishers of journals. There is, however, still value added by publishers,
such as hiring and managing editorial staff to produce the journals and
managing the peer review process. Even if publishing companies as they are
known were to vanish, there would still be some cost to the production of
journals. Thus, while the cost of producing journals electronically is likely
to be less, it is not zero, and even if journal content is distributed “free,”
someone has to pay the production costs.

The economic issue in electronic publishing, then, is who is going to pay
for the production of journals. This introduces some political issues as well.
One of them centers on the concern that much research is publicly funded
through grants from federal agencies such as the National Institutes of
Health (NTH) and the National Science Foundation (NSF). In the current
system, especially in the biomedical sciences (and to a lesser extent in
nonbiomedical sciences), researchers turn over the copyright of their
publications to journal publishers. The political concern is that the public
funds the research and the universities carry it out, but individuals and
libraries then must buy it back from the publishers to whom they willingly
cede the copyright (McCook, 2004). This problem is exacerbated by the
general decline in funding for libraries that has occurred over the last couple
decades (Boyd and Herkovic, 1999; Meek, 2001).

Some have proposed models of scholarly publishing that keep the archive
of science freely available. One of these is open access publishing, where
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authors and their institutions pay the cost of production of manuscripts up
front after they are accepted through a peer review process. It has been
suggested that this cost could even be included in the budgets of grant
proposals submitted for funding agencies. After the paper is published, the
manuscript becomes freely available on the Web. The first publisher to take
this approach has been Biomed Central (BMC, www.biomedcentral.com).
Another highly visible open access approach is the Public Library of Science
(PLOS, www.plos.org). Although legislation has been proposed requiring
research funded by government agencies to be open access (McLellan,
2003), at least one journal editor has expressed caution that the untested
model may not work as well as advertised, especially for the major
biomedical journals that devote substantial resources to insuring the quality
of high-profile biomedical research (DeAngelis and Musacchio, 2004).

Another model is that of PubMed Central (PMC, pubmedcentral.gov),
which provides free access to published literature but allows publishers to
maintain copyright as well as optionally keep the papers on their own
servers. A lag time of up to 6 months is allowed so that journals can reap the
revenue that comes with initial publication. The number of journals
submitting their content to PMC has been modest, and there are currently
about 100 that contribute to its repository.

S. ACKNOWLEDGEMENTS

The author’s research has been generously funded by the National
Library of Medicine, Agency for Healthcare Quality and Research, and
National Science Foundation over the years. He is particularly grateful to
the NLM for its strong leadership in promoting research and education in the
field of medical informatics.

REFERENCES

Anonymous. (1999). Dublin Core Metadata Element Set, Version 1.1: Reference Description.
Dublin Core Metadata Initiative, http://www.dublincore.org/documents/dces/.

Anonymous.  (2000a). Cataloging Practices. National Library of Medicine,
http://www.nlm.nih.gov/mesh/catpractices.html.

Anonymous. (2000b). Features of the MeSH Vocabulary. National Library of Medicine,
http://www.nlm.nih.gov/mesh/features.html.

Anonymous. (2000c). Organization of National Library of Medicine Bibliographic Databases.
National Library of Medicine,
http://www.nlm.nih.gov/pubs/techbull/mj00/mj00_buckets.html.

Anonymous. (2001a). The Dublin Core Metadata Element Set. Dublin Core Metadata
Initiative, http://www.niso.org/standards/resources/Z39-85.pdf.



270 MEDICAL INFORMATICS

Anonymous. (2001b). "The Future of the Electronic Scientific Literature," Nature, 413: 1-3.

Anonymous. (2001c).  PubMed  Help. National Library of  Medicine,
http://www.ncbi.nlm.nih.gov/entrez/query/static/help/pmhelp.html.  Accessed: July 1,
2002.

Anonymous. (2003). The Google Ranking Report. Sedona, AZ, Cyberdifference Corp.,
http://www.mseo.com/google ranking_report.html,

Arms, W., Hillmann, D., et al. (2002). "A Spectrum of Interoperability: The Site for Science
Prototype for the NSDL," D-Lib Magazine, 8,
http://www.dlib.org/dlib/january02/arms/01arms.html.

Aronson, A., Bodenreider, O., et al. (2000). "The NLM Indexing Initiative," in Proceedings of
the AMIA 2000 Annual Symposium, Los Angeles, CA. Hanley & Belfus, 17-21.

Bahls, C., Weitzman, J., et al. (2003). "Biology's Models," The Scientist. June 2, 2003. 5,
http://www.the-scientist.com/yr2003/jun/feature_030602.html.

Baxevanis, A. (2003). "The Molecular Biology Database Collection: 2003 update," Nucleic
Acids Research, 31: 1-12.

Beagrie, N. (2002). "An Update on the Digital Preservation Coalition," D-Lib Magazine, 8,
http://www.dlib.org/dlib/april02/beagrie/04beagrie.html.

Beckett, D., Miller, E., et al. (2000). Using Dublin Core in XML. Dublin Core Metadata
Initiative, http://dublincore.org/documents/demes-xml/.

Besser, H. (2002). "The Next Stage: Moving from Isolated Digital Collections to
Interoperable Digital Libraries," First Monday, 7(6),
http://www.firstmonday.dk/issues/issue7_6/besser/

Borgman, C. (1999). "What are Digital Libraries? Competing Visions," Information
Processing and Management, 35: 227-244.

Boyd, S. and Herkovic, A. (1999). Crisis in Scholarly Publishing: Executive Summary.
Stanford Academic Council Committee on Libraries,
http://www.stanford.edu/~boyd/schol_pub_crisis.html.

Brenner, S. and McKinin, E. (1989). "CINAHL and MEDLINE: A Comparison of Indexing
Practices," Bulletin of the Medical Library Association, 77. 366-371.

Brin, S. and Page, L. (1998). "The Anatomy of a Large-scale Hypertextual Web Search
Engine," Computer Networks, 30: 107-117.

Bult, C., Blake, J., et al. (2004). "The Mouse Genome Database (MGD): Integrating Biology
with the Genome," Nucleic Acids Research, 32: D476-481.

Callan, J. (1994). "Passage Level Evidence in Document Retrieval," in Proceedings of the
17th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, Dublin, Ireland. Springer-Verlag. 302-310.

Caruso, D. (2000). "Digital Commerce; If the AOL-Time Warner Deal is about Proprietary
Content, Where Does that Leave a Noncommercial Directory It Will Own?" New York
Times. January 17, 2000.

Charen, T. (1976). MEDLARS Indexing Manual, Part I: Bibliographic Principles and
Descriptive Indexing, 1977. Springfield, VA: National Technical Information Service.

Charen, T. (1983). MEDLARS Indexing Manual, Part II. Springfield, VA: National Technical
Information Service.

Coletti, M. and Bleich, H. (2001). "Medical Subject Headings Used to Search the Biomedical
Literature," Journal of the American Medical Informatics Association, 8: 317-323.

DeAngelis, C. and Musacchio, R. (2004). "Access to JAMA," Journal of the American
Medical Association, 291: 370-371.

Diehn, M., Sherlock, G., et al. (2003). "SOURCE: A Unified Genomic Resource of
Functional Annotations, Ontologies, and Gene Expression Data," Nucleic Acids Research,
31:219-223,



Information Retrieval and Digital Libraries 271

Dolin, R., Alschuler, L., et al. (2001). "The HL7 Clinical Document Architecture," Journal of
the American Medical Informatics Association, 8: 552-569.

Egan, D., Remde, J., et al. (1989). "Formative Design-evaluation of Superbook," 4CM
Transactions on Information Systems, 7: 30-57.

Fox, C. (1992). "Lexical Analysis and Stop Lists,” in Frakes, W. and Baeza-Yates, R., eds.
Information Retrieval: Data Structures and Algorithms, Englewood Cliffs, NI: Prentice-
Hall, pp.102-130,

Frakes, W. (1992). "Stemming Algorithms," in Frankes, W. and Baeza-Yates, R., eds.
Information Retrieval: Data Structures and Algorithms, Englewood Cliffs, NJ: Prentice-
Hall, pp. 131-160.

Friedlander, A. (2002). "The National Digital Information Infrastructure Preservation
Program: Expectations, Realities, Choices, and Progress to Date," D-Lib Magazine, §,
http://www.dlib.org/dlib/april02/friedlander/04friedlander.html.

Funk, M. and Reid, C. (1983). "Indexing Consistency in MEDLINE," Bulletin of the Medical
Library Association, 71: 176-183.

Harter, S. (1992). "Psychological Relevance and Information Science," Journal of the
American Society for Information Science, 43: 602-615.

Haynes, R., McKibbon, K., et al. (1990). "Online Access to MEDLINE in Clinical Settings,"
Annals of Internal Medicine, 112: 78-84.

Haynes, R., Wilczynski, N., et al. (1994). "Developing Optimal Search Strategies for
Detecting Clinically Sound Studies in MEDLINE," Journal of the American Medical
Informatics Association, 1: 447-458.

Hearst, M. and Karadi, C. (1997). "Cat-a-Cone: An Interactive Interface for Specifying
Searches and Viewing Retrieval Results Using a Large Category Hierarchy," in
Proceedings of the 20th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, Philadelphia, PA. ACM Press. 246-255.

Hersh, W. (1994). "Relevance and Retrieval Evaluation: Perspectives from Medicine,"
Journal of the American Society for Information Science, 45: 201-206.

Hersh, W. (2001). "Interactivity at the Text Retrieval Conference (TREC),” Information
Processing and Management, 37: 365-366.

Hersh, W. (2003). Information Retrieval: A Health and Biomedical Perspective. Second
Edition. New York: Springer-Verlag, http://www.irbook.org.

Hersh, W. and Bhupatiraju, R. (2003). "TREC Genomics track overview,” in The Twelfth
Text Retrieval Conference: TREC 2003, Gaithersburg, MD. National Institute of Standards
& Technology, http://trec.nist.gov/pubs/treci2/papers/GENOMICS.OVERVIEW3 pdf.

Hersh, W., Crabtree, M., et al. (2002). "Factors Associated with Success for Searching
MEDLINE and Applying Evidence to Answer Clinical Questions,” Journal of the
American Medical Informatics Association, 9: 283-293.

Hersh, W., Elliot, D., et al. (1994). "Towards New Measures of Information Retrieval
Evaluation,” in Proceedings of the 18th Annual Symposium on Computer Applications in
Medical Care, Washington, DC. Hanley & Belfus. 895-899.

Hersh, W. and Hickam, D. (1998). "How Well Do Physicians Use Electronic Information
Retrieval Systems? A Framework for Investigation and Review of the Literature,”
Journal of the American Medical Association, 280: 1347-1352, http://jama.ama-
assn.org/cgi/content/full/280/15/1347.

Hersh, W., Pentecost, J., et al. (1996). "A Task-oriented Approach to Information Retrieval
Evaluation,” Journal of the American Society for Information Science, 47: 50-56.

Hersh, W. and Rindfleisch, T. (2000). "Electronic Publishing of Scholarly Communication in
the Biomedical Sciences,” Journal of the American Medical Informatics Association, T:
324-325.



272 MEDICAL INFORMATICS

Humphreys, B. (2000). "Electronic Health Record Meets Digital Library: A New
Environment for Achieving an Old Goal,” Journal of the American Medical Informatics
Association, T: 444-452.

Lagoze, C. and VandeSompel, H. (2001). "The Open Archives Initiative: Building a Low-
barrier Interoperability Framework,” in Proceedings of the First ACM/IEEE-CS Joint
Conference on Digital Libraries, Roanoke, VA. ACM Press. 54-62.

Lassila, O., Hendler, J., et al. (2001). "The Semantic Web,” Scientific American, 284(5): 34-
43, http://www.scientificamerican.com/article.cfm?articleID=00048 144-10D2-1C70-
84A9809EC588EF21 &catID=2.

Lawrence, S. (2001). "Online or Invisible?" Nature, 411: 521.

Lawrence, S., Giles, C., et al. (1999). "Digital Libraries and Autonomous Citation Indexing,”
Computer, 32: 67-71.

Lesk, M. (1997). Practical Digital Libraries - Books, Bytes, and Bucks. San Francisco:
Morgan Kaufmann.

McCook, A. (2004). "Open Access to US Govt Work Urged,” The Scientist,
http://www.biomedcentral.com/news/20040721/01.

McKibbon, K., Haynes, R., et al. (1990). "How Good Are Clinical MEDLINE Searches? A
Comparative Study of Clinical End-user and Librarian Searches,” Computers and
Biomedical Research, 23(6): 583-593.

McKiernan, G. (2003. "Open Archives Initiative Service Providers. Part I: Science and
Technology,” Library Hi Tech News, 20(9): 30-38,
http://www.public.iastate.edu/~gerrymck/OAI-SP-Lpdf.

McLellan, F. (2003). "US Bill Says Government Funded Work Must Be Open Access,”
Lancet, 362: 52.

Meek, J. (2001). "Science World in Revolt at Power of the Journal Owners,” The Guardian,
http://www.guardian.co.uk/Archive/Article/0,4273,4193292,00.html.

Miller, E. (1998). "An Introduction to the Resource Description Framework,” D-Lib
Magazine, 4, http://www.dlib.org/dlib/may98/miller/05miller.html.

Miller, N., Lacroix, E., et al. (2000). "MEDLINEplus: Building and Maintaining the National
Library of Medicine's Consumer Health Web Service,” Bulletin of the Medical Library
Association, 88: 11-17.

Mynatt, B., Leventhal, L., et al. (1992). "Hypertext or Book: =~ Which Is Better for
Answering Questions?" in Proceedings of Computer-Human Interface 92. 19-25.

Paskin, N. (1999). "DOIL: Current Status and Outlook,” D-Lib Magazine, 5,
http://www.dlib.org/dlib/may99/05paskin.html.

Perkel, J. (2003). "Feeding the Info Junkies,” The Scientist. June 2, 2003. 39, http://www.the-
scientist.com/yr2003/jun/feature14_030602.html.

Ponte, J. and Croft, W. (1998). "A Language Modeling Approach to Information Retrieval,"
in Proceedings of the 21st Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, Melbourne, Australia. ACM Press. 275-281.

Pratt, W., Hearst, M., et al. (1999). "A Knowledge-based Approach to Organizing
Retrieved Documents,” in Proceedings of the 16th National Conference on Artificial
Intelligence, Orlando, FL. AAAI. 80-85.

Redman, P., Kelly, J., et al. (1997). "Common Ground: The HealthiWeb Project as a Model
for Internet Collaboration,” Bulletin of the Medical Library Association, 85: 325-330.

Robertson, S. and Walker, S. (1994). "Some Simple Effective Aproximations to the 2-Poisson
Model for Probabilistic Weighted Retrieval,” in Proceedings of the 17th Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval, Dublin, Ireland. Springer-Verlag. 232-241.

Salton, G. (1983). Introduction to Modern Information Retrieval. New York: McGraw-Hill.



Information Retrieval and Digital Libraries 273

Salton, G. (1991). "Developments in Automatic Text Retrieval,” Science, 253: 974-980.

Salton, G., Fox, E., et al. (1983). "Extended Boolean Information Retrieval,” Communications
of the ACM, 26: 1022-1036.

Salton, G. and Lesk, M. (1965). "The SMART Automatic Document Retrieval System: An
Itustration,” Communications of the ACM, 8: 391-398.

Singhal, A., Buckley, C., et al. (1996). "Pivoted Document Length Normalization," in
Proceedings of the 19th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, Zurich, Switzerland. ACM Press. 21-29.

Sollins, K. and Masinter, L. (1994). Functional Requirements for Uniform Resource Names.
Internet Engineering Task Force, http://www.w3.org/Addressing/rfc1737.txt.

Spitzer, V., Ackerman, M., et al. (1996). "The Visible Human Male: A Technical Report.,"
Journal of the American Medical Informatics Association, 3 118-130.

Srinivasan, P. (1996). "Query Expansion and MEDLINE,” Information Processing and
Management, 32: 431-444.

Swanson, D. (1988). "Historical Note: Information Retrieval and the Future of an Illusion,”
Journal of the American Society for Information Science, 39: 92-98.

Tibbo, H. (2001). "Archival Perspectives on the Emerging Digital Library,” Communications
of the ACM, 44(5): 69-70.

vanRijsbergen, C. (1979). Information Retrieval. London. Butterworth.

Voorhees, E. (1998). "Variations in Relevance Judgments and the Measurement of Retrieval
Effectiveness,” in Proceedings of the 21st Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, Melbourne, Australia. ACM
Press. 315-323.

Voorhees, E. and Harman, D. (2000). "Overview of the Sixth Text REtrieval Conference
(TREC),” Information Processing and Management, 36: 3-36.

Voorhees, E. and Harman, D. (2001). "Overview of TREC 2001,” in Proceedings of the Text
Retrieval Conference 2001, Gaithersburg, MD. 1-15.

Weibel, S. (1996). "The Dublin Core: A Simple Content Description Model for Electronic
Resources,” ASIS Bulletin, 24(1): 9-11, http://www.asis.org/Bulletin/Oct-97/weibel.htm.
Wildemuth, B., DeBliek, R., et al. (1995). "Medical Students' Personal Knowledge, Searching
Proficiency, and Database Use in Problem Solving,” Journal of the American Society for

Information Science, 46: 590-607.

Xu, I. and Croft, W. (1996). "Query Expansion Using Local and Global Document Analysis,"
in Proceedings of the 19th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, Zurich, Switzerland. ACM Press. 4-11.

SUGGESTED READINGS

Baeza-Yates, R. and Ribeiro-Neto, B., eds. 1999. Modern Information Retrieval. New York.
McGraw-Hill. A book surveying most of the automated approaches to information
retrieval.

Frakes, W.B., Baeza-Yates, R. Information Retrieval: Data Structures and Algorithms,
Englewood Cliffs, NJ: Prentice-Hall, 1992. A textbook on implementation of information
retrieval systems. Covers all of the major data structures and algorithms, including
inverted files, ranking algorithms, stop word lists, and stemming. There are plentiful
examples of code in the C programming language.



274 MEDICAL INFORMATICS

Hersh, W.R. Information Retrieval, A Health and Biomedical Perspective (Second Edition),
New York: Springer-Verlag, 2003. A textbook on information retrieval systems in the
health and biomedical domain that covers the state of the art as well as research systems.

Humphreys, B., Lindberg, D., et al. 1998. The Unified Medical Language System: an
informatics research collaboration. Journal of the American Medical Informatics
Association, 5: 1-11. A paper describing the motivation and implementation of the
National Library of Medicine’s Unified Medical Language System.

Miles, W.D. A History of the National Library of Medicine, Bethesda, MD: U.S. Dept. of
Health and Human Services, 1982. A comprehensive history of the National Library of
Medicine and its forerunners, covering the story of Dr. John Shaw Billings and his
founding of Index Medicus to the modern implementation of MEDLINE.

Salton, G. Developments in automatic text retrieval, Science, 253: 974-980, 1991. The last
succinct exposition of word-statistical retrieval systems from the person who originated
the approach.
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Biomed Central
http://www.biomedcentral.com

Highwire Press
http://www.highwire.org

National Center for Biotechnology Information
http://www.ncbi.nlm.nih.gov

National Library of Medicine
http://www.nlm.nih.gov

ACM Digital Library
http://www.acm.org/d]

CiteSeer
http://citeseer.ist.psu.edu

D-Lib Magazine
http://www.dlib.org

MEDLINEplus consumer health information resource
http://medlineplus.gov

PubMed access to MEDLINE
http://pubmed.gov
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TREC
http://trec.nist.gov

QUESTIONS FOR DISCUSSION

1. With the advent of full-text searching, should the National Library of
Medicine abandon human indexing of citations in MEDLINE? Why or
why not?

2. Explain why open access publishing is or is not a good idea.

3. Devise a curriculum for teaching clinicians, researchers, or patients the
most important points about searching for health-related information.

4. What are the limitations of recall and precision as evaluation measures
and what alternatives would improve upon them?

5. Describe how one might devise a system that achieved a happy medium
between protection of intellectual property and barrier-free access to the
archive of science.

6. How might IR systems be developed to lower the effort it takes for
clinicians to get to the information they need rapidly in the busy clinical
setting?

7. Can standards be developed for digital libraries that facilitate
interoperability but maintain ease of use, protection of intellectual
property, and long-term preservation of the archive of science?
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Chapter Overview

Given the amount of literature relevant to many of the areas of biomedicine,
researchers are forced to use methods other than simply reading all the
literature on a topic. Necessarily one must fall back on some kind of search
engine. While the Google PageRank algorithm works well for finding
popular web sites, it seems clear one must take a different approach in
searching for information needed at the cutting edge of research. Information
which is key to solving a particular problem may never have been looked at
by many people in the past, yet it may be crucial to present progress. What
has worked well to meet this need is to rank documents by their probable
relevance to a piece of text describing the information need (a query). Here
we will describe a general model for how this is done and how this model
has been realized in both the vector and language modeling approaches to
document retrieval. This approach is quite broad and applicable to much
more than biomedicine. We will also present three example document
retrieval systems that are designed to take advantage of specific information
resources in biomedicine in an attempt to improve on the general model.
Current challenges and future prospects are also discussed.

Keywords
relevance; probability; ranking; term weighting; vector model; unigram
language model; smoothing
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1. INTRODUCTION

Most papers written on the subject of text retrieval begin with the
observation that the digital age has brought a deluge of natural language text
and we are more or less overwhelmed by the amount of text available on the
web and even in the specialized databases of interest to researchers.
Certainly this is true in the field of biomedicine. The serious question is
whether a researcher must personally read everything remotely related to her
field of interest, or can technology rule some texts as not useful for her
purposes and allow her to concentrate her search on a few texts where her
efforts will have high yield. The answer is that, with a certain risk,
technology can reduce the work load for information access in textual
databases.

To better understand the risk of using technology in lieu of reading all the
documents for oneself, it is helpful to think in terms of a simple model. Let
the user be denoted by X', the information need state of X be denoted by S,
and finally let the query by which X has expressed their information need
be denoted by g. Typically for users of a search engine, g consists of one
to three words or a short phrase. Such a short query is naturally quite
inadequate to represent the need state.S'. In fact, an important study by
Furnas et al. (1987) found that common objects are generally referred to by,
on the average, five different names over a sample of references by different
people. This same fact is underlined by the famous Blair and Maron (1985)
study of retrieval in the area of legal documents. They discovered that legal
experts, after a careful search using keywords and Boolean queries, felt they
had found most of the relevant material pertaining to a case, but in fact more
extensive and careful search showed they had only found less than 20% of
what was relevant to the case. It proved impossible to predict the words
people would use to describe relevant material. Further evidence on this
point is provided by a study of MEDLINE® indexing. Funk et al. (1983)
found inter-indexer consistencies ranging from 0.3 to 0.6 for different types
of MeSH® term assignments. But to the extent we are unable to predict the
indexing we are also unable to use it effectively for retrieval.

While we might try to improve indexing by expending more human
effort on the process, there is an even more fundamental barrier to perfect
retrieval. This stems from the variation observed in what people judge to be
relevant to a query. Different judges agree on what is relevant to a query
from 40% to 75% of the time (Saracevic, 1991; Swanson, 1988). This is true
even for queries as long as the title and abstract of a MEDLINE document
(Wilbur, 1998). If a human processing the query g can only find material
relevant to user X with a precision of 75%, then that says something very
important. An algorithm that is as “smart” as a typical human is also going
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to find relevant material with a precision no better than 75%. Of course we
do not have algorithms that can perform at a human level and probably will
not for the foreseeable future (Shieber, 1994). Now one can lengthen the
query g and thereby decrease the ambiguity. One way to accomplish this is
to allow the user to choose a document that represents what they would like
to see. Our research (Wilbur and Coffee, 1994) shows that one can make a
substantial improvement in the retrieval process by this method. The chosen
document becomes a query in its own right which is generally much longer
and more detailed than one a user is willing to write. One can carry this idea
even further by applying relevance feedback. Here a user makes judgments
for the top few documents retrieved and these judgments are used to improve
the ranking of the documents the user has not yet examined. Results of one
study (Wilbur, 1998) show that if a user makes judgments on the top 50
documents, then a machine learning algorithm can convert that additional
information into retrieval on new documents at a level at least as good as a
human agent could accomplish based on the original query. Of course, even
this is not as good as the user can do for himself and probably not as good as
a human agent could do given the additional information consisting of the
user’s judgments. Furthermore there are practical limits in getting users to
make multiple relevance judgments and the method has seen little use.

Based on the above described limitations it seems unlikely that any
algorithm can ever remove the risk of missing important information. On the
other hand it is clear that users must rely on algorithms because there are few
topics in biomedicine where one could hope to read all the literature
available. The best algorithms are those that minimize the risk of
information loss.

2. LITERATURE REVIEW

One could say that the field of modern information retrieval began with
the work of Maron and Kuhns (Maron and Kuhns, 1960) describing how to
calculate probability of relevance of documents to a query. Their approach
required that the individual documents have index terms assigned, each with
a probability that if that document were retrieved this index term would be
the term used to retrieve it. While such probabilistic indexing is doable in
principle it is not very practical. However the approach clearly showed the
way to a probabilistic treatment of information retrieval as reflected in later
work by Sparck Jones and Robertson (Robertson and Sparck Jones, 1976;
Sparck Jones, 1972). One of the problems with the probabilistic approach to
information retrieval is a lack of the specific information needed to give the
best possible estimates of the probabilities involved. Work by Croft and
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Harper (Croft and Harper, 1979) pointed the way to giving reasonable
estimates without detailed relevance information. We believe the traditional
probabilistic approach to information retrieval has achieved its most mature
statement in (Sparck Jones et al., 2000a, 2000b).

At about the same time as the efforts to understand information retrieval
in terms of probability theory just described, there was a significant initiative
to perform computerized retrieval experiments at Cornell University under
the direction of Gerard Salton (Salton (Ed.), 1971). A retrieval system called
the SMART system was under development and a number of different
algorithms were tested on a variety of test databases to assess the value of
different approaches to retrieval. Out of this effort came #f xidf term
weighting (Salton, 1975) and the vector retrieval approach (Salton et al.,
1975). Here tf stands for a factor related to the frequency of a term in a
specific document (local factor) and idf stands for a factor related to the
frequency of the term throughout the database (global factor). The vector
approach assumes that each document can be represented by a vector in a
space with as many dimensions as there are unique keywords throughout the
database. A vector representing a particular document will have a co-
ordinate value corresponding to a particular keyword that is the #f xidf
weight for that keyword in that particular document. As a general rule ¢f
(and hence #f xidf ) is zero when the keyword does not occur in the
document. Thus documents are represented by sparse vectors in the vector
space model.

Though the vector space model may seem to be fundamentally different
than the probabilistic model, in the final analysis the probabilistic model
may be seen to be a special case of the vector space model by simply
choosing the formulas for #/ and idf to be the values they receive in the
probabilistic model. In fact, the vector space model is quite general and
allows for the possibility of many different forms depending on how the #f'
and idf formulas are chosen. We shall subsequently give forms for these
quantities which we have found very useful for retrieval in the PubMed
database. However, Witten, Moffat, and Bell (Witten et al., 1999) make the
following significant observations. Whatever formula is used for #f, within
a single document a term with a higher frequency within that document
should have a #f at least as great as any term with lower frequency.
Likewise, globally a term with a lower frequency throughout the database
should have an idf value at least as great as any term of higher frequency.
They point out that hundreds of formulas that obey these constraints have
been tested on the TREC (Text REtrieval Conference, http:/trec.nist.gov/)
data (Zobel and Moffat, 1998) and no one formula is best. Rather the choice
of formula is a matter of taste and perhaps of the idiosyncrasies of the
particular type of data at hand.
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In 1998 Ponte and Croft (Ponte and Croft, 1998) introduced a new
approach to information retrieval with what they termed language modeling.
The idea is that given a query and a document in the database, one may use
the frequencies of words in the document to estimate the probabilities of the
words in the query and hence the likelihood that the query came from the
same source as the document. It is assumed that the document which assigns
the highest probability to the words in the query is the document most likely
to be relevant to the query. One of the difficulties faced by the method is
that not all the words in the query necessarily appear in the document. This
is solved by a process of smoothing, which relies on the frequencies of
words throughout the database to estimate the probability of seeing words in
the query that do not occur in the document. This smoothing process is the
real tie to language modeling. The language modeling approach is
competitive with other methods and is an active area of research (Kurland
and Lee, 2004; Zaragoza et al., 2003; Zhai and Lafferty, 2004). It remains to
be seen whether it offers an advantage over other methods and whether there
is one best way to do it, or many ways that each offer some small advantage
for a particular type of text or a particular database.

In what follows we present an ideal model of information retrieval and
then show how the different methods we have described can be seen as
special cases of this ideal model. Finally we give some examples of systems
that attempt to use particular resources and aspects of biology to advantage
to provide a more convenient or more effective approach to information
retrieval in limited subdomains.

3. AN IDEAL MODEL

Because of the inherent limitations of information retrieval from natural
language texts the problem is most conveniently formulated in terms of
probability theory. It is helpful to approach the problem by first describing
an ideal retrieval model. We assume that people can be in any one of a set of
mutually exclusive states of information need. Such a set of states can be
denoted by {S;}. Then given a document d there are three different
probabilities that are important to consider:

p(S) - The prior probability that the randomly chosen human X is in the
information need state S;. This is global information and has nothing to do
with a particular person or a particular document.

p(d]S;) - The probability that a person in the information need state S;
would consider d relevant to that information need. This is local information
about S; and the probability that d gives useful information about the concern
expressed by S;.
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The third probability can be expressed in terms of the first two through
application of Bayes’ theorem

p(d|S)p(S)

p(S; |d)==3 :
2., P@d1S)p(S)

0

This is the probability that if a person has judged the document d
relevant, that person is in information need state S;.

Now we make an assumption about information need states. Namely, the
need state of a user contains all the information about that user’s need and
once the need state is known the relevance of different documents to the
need state become independent events. The probability that a person who
sees document d as relevant will also see document e as relevant is an
important quantity in the theory. By use of the probabilities just considered
we may write this probability.

. Y. p(elS)pd]S,)p(S))
pleld)= Zj=1p(e 1S)p(S, | d) =L -
2 p(d]S,)p(S,)

Here the equality on the left follows from the assumed independence of
the relevance of e and d given the information need state S;. The right
side equality follows from substitution of Eq. (1) into the middle term of Eq.
(2). Ttisillegal to substitute d in place of e in Eq. (2) because the formula
is only derivable if e and d are independent as assumed and d cannot be
independent of itself. The value p(d|d ) is of course 1, while if one
incorrectly substitutes d for e in Eq. (2) one generally obtains a number
less than 1.

The information that a person has observed the document d could change
the state of information need, but that is not dealt with in this model. It
would require some modification of Bayes’ formula as it appears in Eq. (1).
To deal with this one can make the distinction of transient and stable states
of information need. This introduces the concept of dynamics into the
problem. In our formulation here we deal with only stable states. A person
can deal with a change in state in a search for neighbors by simply dropping
the search and perhaps taking up another thread of interest where there is
still a need which is described by a different state. In this approach the
human deals with the issue and it is not necessary to introduce this
complexity into the computer model.
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If we are given a document d and the knowledge that a user has found it
relevant to their information need, then we may wish to find other
documents most likely also relevant. For this purpose we may apply Eq. (2)
to rank all the other documents. In this process d is constant and all we are
concerned about is the relative ratings. Thus we may simplify the formula to

Sim(e,d)=27=1p(elsj)l9(d|Sj)p(Sj)
=(p(e|Sl) p(S,),...,p(eISN)\/p(SN))'(3)

(P(@18)P(S)s-s(d15,){[P(Sy))

This formula has the advantage that it is symmetric in its arguments and
can be written as a vector dot product of vectors that represent the two
documents involved. These vectors are not normalized in general because
they come from probabilities which need not obey such rules. On the other
hand the possibility that they are normalized is not excluded.

The formula Eq. (3) may be applied to find the documents related to a
given document d or it may be applied more generally when d is
understood to represent some query text g . The key to its application is to
identify some meaningful set of information need states that can represent
the set {S;}. How this may be done is the subject of the next section.

4. GENERAL TEXT RETRIEVAL

In general text retrieval, two kinds of information have proven useful.
First, the frequency of a term throughout the database carries information
about the general usefulness of the term. The less frequent the term is
overall, the more informative that term tends to be. Second, the frequency of
a term in a document and the overall size of the document combine to give
an indication of the importance of the term within the document. The higher
the frequency of a term relative to the frequency of other terms in the
document the more important the term is likely to be in representing the
document’s subject matter. These two kinds of information together provide
the raw material from which need states may be constructed. There are two
important ways that this has been done.

4.1 Vector Models

The vector model assumes that each keyterm is weighted by a global
weight gw, for the term ¢ and by a local weight that relates the term to the
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document and may be denoted by /w,. For any document d we can then
construct a vector

vd = (Zwrd x gwt)teT (4)

where T represents the set of all keyterms used in the database. Typically
the local weight /w,, is zero if the term ¢ does not appear in the document.
With this representation the similarity between two documents is given by

sim(d,e)=v, v, 5)

Equations (3) and (5) will correspond if we identify the set of states of
information need with the set of keyterms 7 and define the probabilities by

p(t)=(gw)
p(d|t)=thd

With these identifications we have an exact correspondence between the
two equations. There is one minor problem with the correspondence. That is
that (gw,)’ may not be a number between zero and one and further the sum
of all such numbers may not be one. Both these problems can be corrected
easily by making the definition

pt)=(ew)’ /)., (gw)*. ()

This has no effect on the ranking because the normalization factor is a
constant, but it endows the numbers with the correct formal properties to be
probabilities. Thus the typical vector retrieval formula can be derived from
the state space paradigm by making the correct identification of the
probabilities involved.

One must ask how realistic it is to identify the set of states of information
need with the set of keyterms. There are several pieces of evidence that favor
this interpretation. First, it finds some justification in the fact that in search
engines people typically express their information need with one or a very
few terms (Silverstein and Henzinger, 1999). Thus in many cases a single
word will express an information need effectively. Second, the formulation
provides a natural probabilistic interpretation to vector retrieval, which has
been viewed as ad hoc and empirical (Salton, 1991). Third, some of the local
weight formulas that prove to be very effective in practice produce a number
between 0 and 1 which is readily interpretable as a probability. This grows
out of work by Harter who hypothesized (Harter, 1975) that important and
unimportant terms follow two different Poisson distributions in their
occurrence within documents. While this hypothesis did not initially lead
directly to an advantage in information retrieval, Robertson and Walker

(6)
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(Robertson and Walker, 1994) used the basic idea to design formulas for the
local weighting of terms in documents. One of their more effective formulas
appeared in (Ponte and Croft, 1998)

w, =tf, /(tfd +0.5+O.5*dlen/avedlen) ®)

Here tf,, is the number of occurrences of ¢ in d and dlen is the length
of d and equals the number of tokens in d while avedlen is the average
length of documents over the whole collection. Our own formulation is
based on a more direct application of Harter’s idea. Assuming two different
rate constants, A, for important words in a document and A, for
unimportant words, the probability that a word is important is given by

-1

thd = [1 + Ce(l,-—/l,,)dlen (/1“ /’11‘ )tfd-l i|‘1 _ [1_*_ eo_0044dlen (0'7),fd_li| . (9)

Here the constants are determined by the data to obtain good
performance. We find a slight (not statistically significant) advantage with
Eq. (9) on our test data and also prefer it because of its sound theoretical
basis in probability theory. It is used in computing the related documents in
PubMed. For the global weight we use the traditional /DF weighting formula
log(N/n,) and set

gw, =Jlog(N/n,) (10)

where N is the total number of documents in the database and n, the
number of documents that contain the term ¢.

4.2 Language Models

Beginning with the seminal paper by Ponte and Croft (1998), unigram
language models have become an important approach to textual information
retrieval. Typically a language model is estimated from some corpus of text
and used to estimate the probability of some new piece of text that is not a
part of the corpus used to produce the language model. Bigram or trigram
models involve the frequencies of word pairs or triples, respectively. They
are useful in speech recognition or spelling correction tasks where one uses
the most recent word or pair of words in an attempt to predict the next word.
In a unigram model one simply uses the frequencies of words in an attempt
to estimate the probability of seeing each word in a piece of text and thereby
the probability of that piece of text. This approach to computing the
probability of a piece of text naturally fits the paradigm of Eq. (3) provided
we identify the states of information need with the possible language models
that would be used to describe text in the arca of need. This approach to
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information retricval has been articulated by Zaragoza et al. (2003).
Assuming a Dirichlet prior distribution p(S ) and assuming a unigram
language model (multinomial) the distribution p(S |d ) has a natural
interpretation as the conjugate Dirichlet distribution. They are able to use
this approach to compute p (q |d ) .

p(ald)=— [ p(a1S)p(d|S) p(S)dS an
p(d) s

This equation is just a form of Eq. (2) when one recognizes that the
integral is a generalized sum. For ranking purposes this is equivalent to
p(d | q) (assuming a flat prior distribution p(d ) ). For further details we
refer the reader to the original paper.

The more typical approach in language modeling for retrieval is to
assume the distribution p(S |d ) is all concentrated in the single language
model that maximizes p(d IS ) p(S ) In this calculation the prior
distribution p (S ) is assumed to be Dirichlet and is based on the collection
frequencies of all terms. The resulting maximum likelihood language model
blends the term counts in d with the collection frequencies and produces
probabilities for individual terms given by

p(t)ztf;l"'/"p(tlc)

12
dlen+ u (12)

Here p(t |C ) is the fraction of tokens in the collection C that are f.
This formula blends the estimate that would be based on the term counts in
the document with the estimate that comes from the whole database. Terms
that occur in the document would otherwise have their probabilities over
estimated while terms that did not occur would have their probabilities under
estimated. The result of the formula is a correction for this and is known as
smoothing. Typically the parameter u is several hundred to a few thousand
(Zaragoza et al., 2003; Zhai and Lafferty, 2004). A method to automatically
choose u for good performance has been proposed in (Zhai and Lafferty,
2004).

Given the probabilities of individual words as in Eq. (12), the probability
of a query text, ¢ =¢,q,...q, , is computed as

p(gld)<] ] r(g)- (13)

Such numbers are equivalent to p(d Iq) (because p(d ) is assumed to
be a constant over documents) and are used to rank the documents for
retrieval.

One may naturally ask which approach to text retrieval, vector or
language modeling, is best? We are not aware of any definitive comparison
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of the two techniques. Researchers reporting on the language modeling
approach have found it to perform well and it seems to be competitive with
the more traditional vector approach of single term weighting. There are
some differences in the two theories, in particular relating to how a user’s
information need state S is conceived (Robertson and Hiemstra, 2001;
Sparck Jones, 2001). On the other hand it can be shown that in practice the
way the two models are implemented produces results that are closely
related (Zhai and Lafferty, 2004) and smoothing in the language model
produces the equivalent of /DF weighting in the vector model.

We believe progress is possible in the general retrieval model, provided
one can find a more realistic model for the information need states of a user.
One can imagine that a more realistic way to represent an information need
is in terms of concepts. However, it has not yet proved practical to represent
the full scope of needs for a user of a large database with concepts. Concepts
tend to be difficult to define and require a good deal of human curation.
Even the concepts defined in the Unified Medical Language System
(Humphreys et al., 1998) are not sufficient to represent all the different ideas
that come into play in medical literature. An automatic way of finding
concepts could lead to progress in this area.

5. EXAMPLE TEXT RETRIEVAL SYSTEMS
SPECIALIZED TO A BIOLOGICAL DOMAIN

Given a large database in a medical or biological field as opposed to a
general text collection such as the Brown Corpus or a collection of news
articles from the Wall Street Journal, one might expect that there would be
methods of retrieval in the area of biology in general that would work better
for biology than for other areas. However, there is no approach that we are
aware of that really makes information retrieval in the biological area better
than general retrieval. This is true because the area of biology is simply too
broad to allow any simplifications specific to biology. Just about any kind of
text construction or topic that can appear in a large database of text in the
field of biology can appear in any other collection, though the frequency of
some types of text is less in documents on biology. As a consequence the
PubMed  (http://web.ncbi.nlm.nih.gov/PubMed/)  search-engine-related
documents function is based on a version of vector retrieval as outlined in
the previous section. However, there are attempts to create databases in
specialty areas of biology and medicine where retrieval can improve on the
general model. We will describe several of those systems here.
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51 Telemakus

The Telemakus system developed by S. Fuller and colleagues (Fuller et
al., 2004) at the University of Washington represents research reports
schematically with twenty-two fields or slots that contain information
describing the research in different ways. Twelve slots are bibliographic and
filled from PubMed, one is the Telemakus ID, and the remainder are
extracted from the full text of the document. Among the fields filled from
the document are items from the Methods section of a report that describe
how the research was performed. Perhaps of most significance is the field
that holds research findings. These are extracted especially from the captions
of figures and tables and the extraction process makes use of the fact that the
language in such captions is somewhat restricted and easier to process.
Telemakus uses automated extraction to initially produce the schematic
surrogate for a document. Then this automatically produced surrogate is
displayed along with a marked up version of the original report so that a
human expert can correct errors and finalize the schematic representation of
the document.

Once data representing research reports has been entered into the system a
user can access this information by keyword searching or in some cases
browsing an index. When a particular study has been displayed, figures and
tables can be accessed directly as can the full text document if available.
Research findings are displayed for the study and can be queried for other
studies reporting the same finding. In addition concepts that are represented
in the database can be displayed in a window as a concept map. Such a map
displays the concept along with other related concepts (measured by co-
occurrence in research reports). One can then navigate by clicking on
different concepts to search for concepts related to the original but perhaps
more specific to the information need. A concept map for “neoplasms” is
illustrated in Figure 10-1.

The Telemakus system is available at http://www.telemakus.net/ and
currently comprises a database of research reports on Caloric Restriction and
the Nutritional Aspects of Aging. A strength of the system is the case with
which one can examine the important findings in a report without having to
read the whole report. A potential weakness is the need for a subject expert
to examine each surrogate for a report and correct mistakes. Ways are being
sought to make the system more nearly automatic. Currently the system is
tied to the area of biology as a number of Unified Medical Language
resources are used in its processing. However, there is in principle nothing to
preclude its application in a wider context.
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Figure 10-1. A concept map of research findings linked to “caloric restriction” (links reported
by authors as statistically significant are in blue in original).

5.2 XplorMed

XplorMed is a system developed by Perez-Iratxeta and colleagues
(Perez-Iratxeta et al., 2002; Perez-Iratxeta et al., 2001, 2003) for browsing
the MEDLINE literature database. Given a set of MEDLINE abstracts (up
to 500) the system computes the words with the strongest relations with
other words (stop words excluded) as the keywords for the set. One keyword
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is said to include another at a level greater than « if the presence of the first
keyword in an abstract implies the presence of the second with a probability
of at least & based on the data in the set of abstracts under analysis. The
inclusion relation is used to define chains of words that all occur together in
at least some of the documents. Keywords, included words, and word chains
are displayed to the user during a session.

To begin a session the user of XplorMed may define a subset of
MEDLINE abstracts by running a PubMed query or importing an already
defined subset from another source or application. In the first step the set of
abstracts is broken up into mutually exclusive subsets based on a set of
broad MeSH categories. The user may then select a combination of the
documents in any number of these categories to include in his analysis. Once
the set of abstracts is finalized the system extracts keywords and computes
their relationships to each other. Keywords are displayed as a list to the user
who then has a number of options including asking to see a particular
keyword in context in the abstracts in which it occurs, asking for the words
implied by or included with a given keyword, or asking for all the word
chains involving the keywords. Given a word chain one can then ask for a
ranked list of those documents that contain the word chain. At the same time
one may request to display links from the resulting set of documents to other
databases such as OMIM, SwissProt, etc. It is also possible to display a
listing of the MeSH terms that are contained in the resulting set of
documents. Finally one may take the current set of documents and start the
analysis cycle over. One also has the option at this stage to enlarge the set by
pulling in related documents using the PubMed related documents function
and to restart the analysis with this larger set.

A strength of the XplorMed system is its application of simple statistics
on word use to find useful relationships between text words without reliance
on a controlled vocabulary. A weakness is that such processing cannot
guarantee that the relationships found are useful at the level that defined
relationships between elements of a thesaurus are useful.

53 ABView:HivResist

In order to focus on a small set of the MEDLINE literature, Belew and
Chang (2004) have developed a system called ABView:HivResist. This
system is designed to provide an enhanced environment for the study of HIV
drug resistance and the mutations that produce it. Currently the system
contains 9,190 MEDLINE abstracts in the area of HIV protease inhibitors.
Focusing on a limited set such as this reduces the ambiguity of terms,
especially abbreviations, and makes practical the construction of a thesaurus
which captures much of the synonymy in the domain. In particular the
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thesaurus includes alternative ways of referring to mutations in the HIV
protease molecule and the different names applied to the drugs studied for
their inhibitory effects on this molecule. Relatedness of documents within
the set may be assessed based on the citation of one by the other or by their
relatedness as computed in the related documents function from PubMed.
The user of ABView:HivResist interacts with the system through a GUI

and the results of a Boolean query appear in the main window (see Figure
10-2).

Query! 482
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Figure 10-2. ABView:HivResist GUI allowing user to see the results of a search for
documents that mention a mutation replacing valine by alanine at position 82 in the HIV-1
protease molecule.

Each document is represented as an icon and the most relevant
documents appear highest in the window, while horizontal position in the
window denotes time of publication over the past ten years. The citation of
one document by another is denoted by an arrow from one icon to the other
in the display. Documents directly retrieved by the query are displayed in
dark green and those present only by virtue of a related document link to a
direct hit are displayed in light green. There are also two histograms
displayed, one showing which residues of HIV protease are mentioned and
the other which inhibitory drugs are mentioned in the documents displayed.
Clearly one of the strengths of this system is the narrow focus which allows
one to develop a thesaurus tailored to a particularly important research
problem. The drawback is the human effort required to develop this
enhanced facility.

5.4 The Future

The three systems presented here each have the objective of using
specialized information resources to enhance retricval. We believe that such
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approaches are the future of information retrieval. However, there are
several problems that stand in the way of progress in improving information
retrieval for specialized domains. The first problem is related to the
cognitive effort required to create the structures that allow improved
retrieval. Such cognitive effort is required in both Telemakus and
ABView:HivResist. In Telemakus a human operator must examine the
automatically produced surrogate document and make any necessary
corrections. Ideally one would produce a completely reliable surrogate
automatically, but computers do not have the necessary capabilities to
understand language. Thus it is not possible to tell reliably what is a research
finding without human intervention. Likewise ABView:HivResist required a
human to describe the different ways a mutation is indicated in text. This is a
specialized task and could not be done automatically based on the UMLS
Thesaurus, for example. On the other hand the UMLS Thesaurus may be
helpful in indicating alternative names for drugs used to treat drug resistant
HIV. However, again one could not rely on any pre-constructed source to
reveal just which drugs are important in treating drug resistance in HIV
infection. The point is simply that in order to construct such specialized
access tools a significant human effort is required and this will limit the
more global application of such methods until the time we have more
reliable automatic language processing tools.

A second problem standing in the way of progress is the lack of
understanding of what the human mind is actually doing when one is
searching for information. If we understood this we might be able to
leverage the computer’s strengths to help in the processing. Computers are
very good at certain tasks, such as rapidly processing huge amounts of data
looking for matching strings or strings satisfying simple criteria. A computer
also has the ability to perfectly remember large amounts of information. But
what are people actually doing when they look for information? We do not
really know the answer. This is a problem in human cognition and its
solution promises at some level to give guidance in how to perform better
retrieval. For example, XplorMed uses simple statistics to provide terms
that may be useful in refining a search. Is this really something that fits well
what a user is trying to accomplish when he is searching? We do not know
the answer to this, but it clearly would be helpful to know. We may hope
that future research on human cognition will provide some answers.

Finally one of the important unsolved problems in this area of research is
how to measure success. How can one accurately measure the utility of such
a complicated system? Clearly successful usage will depend to a large extent
on the knowledge and skill of the operator. Also one strategy for the use of a
system may not be as good as another. Such heterogeneity makes



294 MEDICAL INFORMATICS

comparison of different systems difficult. As far as we are aware there are no
published formal evaluations of the systems presented here.
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ONLINE RESOURCES

Information Retrieval Links: Lists many resources related to the field of information
retrieval. Included are links to access the software for the SMART retrieval system
developed by Gerard Salton and his students:
http://www-a2k.is.tokushima-u.ac.jp/member/kita/NLP/IR.htm]

Information Retrieval Software: This site provides links to information retrieval software
(some as freeware), to internet search engines and web directories, and to search engine
optimization sites: http://www.ir-ware.biz

The Apache Jakarta Project: Jakarta Lucene is a high-performance, full-featured text search
engine library written entirely in Java. It is a technology suitable for nearly any application
that requires full-text search, especially cross-platform. Jakarta Lucene is an open source
project available for free download from Apache Jakarta:
http://jakarta.apache.org/lucene/docs/index.html

QUESTIONS FOR DISCUSSION

1. Describe how one might use the World Wide Web to construct a
representation for the information need states {S;}. How might one
estimate p(S,.) and p(d | S,.) used in equation (2) for such a model?
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2.

In choosing the features to represent documents in the vector method of
retrieval it is generally found that single words work as well or better
than single words plus phrases. Provide what you believe could be an
explanation for this phenomenon.

In the MEDLINE database each document has on the average about a
dozen MeSH headings assigned to help characterize the subjects
discussed in the document. These MeSH terms make useful features for
retrieval but they involve a significant expense and human effort to
assign. Describe what you think the barriers are to making these MeSH
assignments more useful.

The MEDLINE record of a document does not contain the list of
citations or references which generally appear at the end of a document.
However, some databases do have such information. Describe how these
citations could be used as features in a vector retrieval system along with
the words in the text. How would you weight them?

Describe one method that you feel would be appropriate to evaluate the
Telemakus system and how this method could be used to make decisions
about use of the system.

Describe one method that you feel would be appropriate to evaluate the
XplorMed system and how this method could be used to make decisions
about use of the system.

Some retrieval systems, such as ABView:HivResist, attempt to use
graphical displays of documents in space to convey information. What do
you see as problems with this approach? How do you think the
relationships between documents could best be represented graphically or
otherwise?
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Chapter Overview

Described here is an R&D project at the National Library of Medicine with
the goal of creating systems to (a) provide the lay public images of the
human anatomy, specifically high resolution color cryosections from NLM’s
Visible Human Project and 3D images of anatomic structures created from
these cryosections; (b) enhance text-based information services with relevant
anatomic images. To accomplish these objectives, investigations into
advanced techniques and technologies were conducted, including multi-tier
system architectures, database design, design of suitable image viewers,
image compression, and use of the Unified Medical Language System
(UMLS), among others. This research has contributed to the design and
development of AnatQuest, a system released for use by the lay public. It
has also helped define the system architecture and essential functions
required to link biomedical terms in documents to relevant anatomic
structures in our database through UMLS concepts and relationships and to
display these to the reader. In this chapter, we describe how our research has
informed the overall goal to explore and implement new and visually
compelling ways to bring anatomic images from the Visible Human dataset
to the general public.

Keywords

anatomic images; AnatQuest system; Visible Human project; multimedia;
object-oriented database; client-server architecture; Unified Medical
Language System; text-to-image linking; public access; Java applet; servlet
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1. INTRODUCTION

Ever since the Internet and the World Wide Web became ubiquitous, the
lay public, as much as the scientific community, has taken for granted easy
and reliable access to information of all kinds. This expectation continues to
be met by commercial database providers and, increasingly, by national
institutions such as the Library of Congress and the U.S. National Library of
Medicine (NLM). Expressly stated as a goal in NLM’s long range plan
formulated in 2000 is to “Encourage use of high quality information by
health professionals and the public.” In addition, among the high priority
new initiatives identified by NLM’s Board of Regents in 2001 is Health
Information for the Public (National Library of Medicine, 2001). In
implementing this vision, NLM has created such services as MedlinePlus®,
ClinicalTrials.gov, and NIHSeniorHealth, all primarily for the public rather
than for its more traditional constituencies, the biomedical clinical and
research communities (National Library of Medicine website).

It is in this same spirit that the AnatQuest project discussed here has been
organized. Our focus is to provide the lay public images of the human
anatomy, specifically high resolution color cryosections from NLM’s
Visible Human Project (National Library of Medicine, 2003; Ackerman,
1998) and 3D images of anatomic structures created from these cryosections.
By enabling public access to these images, we contribute to the increasingly
important mission of the NLM to “universalize” access to biomedical
information.

This effort, however, requires investigation into advanced techniques and
technologies, e.g., multi-tier system architectures, database design, design of
suitable image viewers, image compression, and others. Research in these
areas inform our overall goal which is to explore and implement new and
visually compelling ways to bring anatomic images from the Visible Human
(VH) dataset to the general public. Specific objectives are to:

1. Develop a system, also called AnatQuest, to let users query the VH
image database via visual and textual navigation, and retrieve and
display high resolution images, assuming minimal bandwidth
requirements.

2. Investigate techniques to extend text-based information services for
the lay public (e.g., MedlinePlus) to include access to anatomic
images.
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3. Explore options to segment and label the high resolution VH cross-
section images beyond the thorax, the only region currently
segmented and labeled, to enable the creation of images of 3D
structures from all anatomic regions of the Visible Male and Female
datasets.

Since its availability, the VH image set has inspired many projects and
applications worldwide. Of these many applications there are a few that meet
three conditions we consider important for public access: Internet
accessibility via browsers; the provision of at least some labels for anatomic
structures in each cryosection slice; and acceptable user interaction in a low
bandwidth environment. One is the Workshop Anatomy for the Internet
(WAI) from the Johannes Gutenberg University in Mainz, Germany. WAI
contains both labeled and unlabeled cryosections, correlated CT and MRI
images (also part of the VH image set), animations, and a vocabulary of
gross anatomy. Another is the Visible Human Web Server from Ecole
Polytechnique Federale de Lausanne in Switzerland. This application offers
services for extracting labeled slices, surfaces, and animations; real-time
navigation through the body; constructing 3D anatomic structures; and
creating teaching modules. A third application, Net Anatomy, is a
multimodal teaching tool for anatomy from Scholar Educational Systems,
Inc.

While these are effective means for the public to view and use VH
images, none of them offer the high resolution version of the image set. The
high resolution set was created by digitizing 70mm film frames captured
during cryosectioning to a resolution of 4K x 6K, and cropped to 4K x 2.7K.
The “standard” resolution set was directly captured by a charge coupled
device (CCD) camera at 2048 x 1216 pixels. The latter is universally used by
application developers, but we use the high resolution images with the
expectation that fine, subtle structures possibly missed in the CCD-captured
images would be evident in these (with four times the number of pixels).

This chapter is organized as follows. In Section 2 we briefly describe
earlier in-house projects as background. In Section 3 we present the design
tradeoffs that underlie the development of the online AnatQuest system, and
the design considerations in creating a kiosk version of AnatQuest for onsite
exhibits. In Section 4 we describe ongoing work that should provide the lay
public greater access to anatomic images. All work described here has been
done at the Communications Engineering Branch of the Lister Hill National
Center for Biomedical Communications, an R&D division of the NLM.



Public Access to Anatomic Images 303

2. BACKGROUND
2.1 Previous Work

Previous in-house work undergirding the AnatQuest project includes the
VHSystems and 3DSystems projects. First, the VHSystems project
established a means for the bulk transfer of Visible Human data, mainly the
color cross-sections, over the Internet. Both high resolution images as well
as the original CCD-captured files were disseminated by an FTP server that
continues to deliver an increasing amount of data, as seen in Figure 11-1.
Demand for these images is widespread, as evident from the geographic and
domain distribution of the recipients (Table 11-1).

Visible Human files downloaded from FTP site

0 Male
B Female
B Total

Number of Files (millions)

1996 1997 1998 1999 2000 2001 2002 2003 2004

Figure 11-1. Visible Human files downloaded from FTP site.

Table Chapter 11-1. Domain distribution of Visible Human files downloaded.
Educational

(.edun) 1,942,254 Brazil 51,709 South Africa 11,660
Network (.net) 770,223 Belgium 47,288 Switzerland 10,311
Commercial

(.com) 648,003 Italy 45,716 Slovenia 9,021
Japan 623,679 India 45,150 Romania 6,529

United States

Germany 365,791 Hong Kong 41,262 (.us) 5,831
Canada 254,616 Mexico 35,542 Colombia 5,514

continued
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Domain distribution of Visible Human files downloaded, continued

United Kingdom 228,301 Portugal 32,243 Greece 5,340
Korea (South) 103,289 Sweden 26,366 Malaysia 4,069
Czech Republic 100,405 Spain 25,948  Norway 3,872
Taiwan 91,247 Israel 23,447 Austria 3,739
Netherlands 77,967 Finland 22,607 Denmark 2,710
France 75,735 Ireland 16,384 Military (.mil) 646
US Government

(-gov) 75,352 Venezuela 14,787 Thailand 140
Singapore 61,360 Chile 14,188 Egypt 93
Poland 60,750 Hungary 14,011 New Zealand 13

Organization
China 53,759 (.org) 13,793
Australia 52,984 Iceland 13,589

The main goals of the second project, 3DSystems, were to create a
database out of the VH dataset and to create suitable data and file structures
so that access would be provided to the original images as well as to
derivative products. A non-proprietary file format, VHI (Henderson et al.,
1998), was created to accommodate a wide range of image types: color
cross-sections, MRI, CT, segment masks (identifying contours and labels on
anatomic structures in the cross-sectional images), and volume of interest
(VOI) image stacks. The targeted uses for these images were: rendered
images for education, e.g., for curriculum development; the segment masks
and VOI stacks for product development, e.g., to create surface and volume
rendered images of organs; and the color cross-sections for research into the
design of algorithms for segmentation, registration, and rendering.

To achieve the goals of the 3Dsystems project, a prototype image
management system, AnatLine (Strupp-Adams and Henderson, 2000), was
developed to import and store the images and to retrieve and export them. As
a means for validating the design and implementation of the database and
image management system, example 3D rendered images and VOI stacks
were required. To create these, the thorax region of the male (consisting of
411 slices out of the total 1,878) was segmented and labeled, and a tool
VHVis (Zhou et al., 1998), was developed to use these labeled segments to
surface-render selected anatomic objects.

Also developed were tools needed to use AnatLine: VHParser and
VHDisplay. The first is for unpacking the VHI data files into individual
components (cross-section images, byte masks, coordinate and label tables,
etc.). VHDisplay is for displaying both cross-sectional and rendered images.
Also, VHDisplay is augmented to audibly voice the names of anatomic
structures as the images are displayed. These tools may be downloaded from
the AnatQuest Website: anatquest.nlm.nih.gov/anatline/.
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2.2 Prologue: Database Design

Since the AnatQuest system inherits the image and data repository
developed for the AnatLine system as part of the earlier 3Dsystems project,
here we present the principal design considerations leading to AnatLine. We
focus on: the conceptual data model, the choice of the object-oriented
framework for the design of the database, and the selection of a specific
object-oriented DBMS. Each of these is discussed next.

a. Data

In addition to the raw color cryosection images and the CT and MRI
images from the data collection process, the data to be stored also includes
annotated rendered images, as well as segmented and labeled images from
the Visible Male’s thorax region. Concepts and relations in the
Metathesaurus of NLM’s Unified Medical Language System (UMLS) were
used to assign labels to the segments, and anatomical relationships among
the segmented structures were identified. The x-y-z coordinates of the
segmented structures were used to compute their spatial relationships. The
anatomical and spatial relationships transform the database of structures to a
form essential for navigating through the body. These entities and their
relationships are described next in the data model.

b. Data Model

The data model, as shown in the object relationship diagram in Figure
11-2, is organized around a number of objects representing: the body (i.e.,
the male or female cadaver), body regions (e.g., thorax, abdomen, ectc.), the
anatomical structures (e.g., organs and their parts), and the images. Note that
the data model is general enough to accommodate future data from other
cadavers or their parts.

The relationships among these objects may be either hierarchical or not.
Hierarchical relationships allow for inheritance of shared properties. For
example, the male and female body objects inherit generic descriptions of a
heart and cardiovascular system, but have different reproductive systems.
Non-hierarchical relationships (that do not exhibit inheritance properties)
represent the anatomical relationships among anatomical objects. These are
modeled in terms of part-of and contains (or has-part) relationships as shown
in the conceptual model in Figure 11-2.

Each of the objects is described in terms of its attributes. Simple
attributes are brief, such as a name. More complex are the relational ones
that contain instances of other objects which define a part-of /contains
relationship between two objects.
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As seen in the figure, the anatomical structure object consists of
attributes for its name, superstructure, the region of which it is a part, and the
physiologic systems to which it belongs. The "superstructure” attribute of an
anatomical structure object refers to a second anatomical structure object
which contains the first object. For example the right-ventricle's
superstructure is heart, which means that the right ventricle structure is part-
of the heart structure. The "body region" attribute points to a body-region
object which contains the anatomical structure object. For example, heart
belongs to the thoracic region. A physiologic system is a function of the
body in which a structure is a component. For example, heart is a
component of the cardiovascular system.

In addition, each of these database objects points to image metadata
objects in the database representing data descriptive of an available image
(whether MRI, CT, a color slice, a rendered image, a segment mask, etc.),
including its size and the name of the image file in the Visible Human file
server where the images actually reside.

The male and female body objects are represented in terms of their basic
characteristics such as age, gender, and race.

Physiologic System

Name

Part-of Anatomical Structures

Part-of N
Anatomical Structure Body
Part-of Gender

UMLS Concept Identificr Age
Anatomical Name Height
Superstructure Weight
Physiologic System O— Race
Body Q Body Region Cause of Death
Body Regions Q )
Images 0] Part-of Name

Body 0 —

Images 0 »

Substructures O Comainsr Image Metadata

Sub-Regions O

Image Identifier
Image Type
Image size
Image File Name Q »
x-y-z coordinates

Contains

Pointer to Image File

Server

Figure 11-2. Database conceptual model.

c. Object-oriented Framework

The choice of the object-oriented framework for programming and data
modeling was influenced by a number of factors including the structure of
the data and the requirement for efficient data representation and retrieval, as
discussed below.
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Data structure:  Anatomical data consists of both spatial and
structural information, which in turn are represented by other
complex objects. For example, a heart object consists of four other
objects, each describing one of its chambers in terms of other
substructures, e.g., right atrium containing the right auricular
appendage. Such nested structures form graphs of objects that are
represented more readily in object-oriented environments.

Efficient data representation: An object-oriented programming
framework provides efficient data representation through instantiation
and inheritance. Male and female hearts, for example, are instances of
the same structure which can be described once but instantiated
twice. To give another example, a degenerative heart is a normal
heart with extra conditions associated with it. This is-a relationship
forms a class hierarchy which allows specialized objects to inherit
characteristics of their exemplar objects, thereby providing a more
efficient representation for reuse and maintenance. Since the
"healthy" heart object is described by the common characteristics of
heart, the "degenerative" heart only needs to add the extra conditions,
because it inherits the generic information from its exemplar object
(the healthy heart). These examples demonstrate the benefits of the
instantiation and inheritance of objects in the object-oriented
framework allowing efficient data representation, modeling, and
maintenance.

Efficient data and image retrieval: A goal of the 3Dsystems project
was to enable the development of human atlases in which users may
explore the body by navigating through structures, substructures, and
sub-sub-structures by using the spatial and structural relationships
among anatomical parts. This requirement is best supported w1th the
graph navigation property of the object-oriented framework.

d. Object-oriented Database

The advantages of the object-oriented framework listed above
determined the selection of an object-oriented database over a relational
alternative. Object-oriented databases offer the following advantages over
their relational counterparts in the object-oriented programming environment
used in developing AnatLine:

Transparent persistence: The objects within the programming
environment are automatically saved in, and retrieved from, the
database. This makes the database an extension of the computer
memory and hence transparent to the programmer. For example,
when navigating through a heart object, its right ventricle is retrieved
from the database transparently when needed, with no additional
programming. For relational databases additional modules would be
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required to provide the necessary mapping between the database and
the object in memory.

o Unified model: A single model for representation of data in the
object-oriented programming language as well as the object-oriented
database is preferable from the point of view of reduced effort in
development and maintenance and eliminating mapping between two
disparate models.

+ FEase of navigation: The navigation through objects corresponds to a
graph or tree, thereby fitting the requirement for a navigable human
image atlas.

In light of these factors, ObjectStore® was selected as the database
management system (DBMS). It was found to provide efficient data
management, good performance, concurrency, and multithreading. Unlike
relational or object-relational DBMS which retrieve related rows of data by
executing joins at runtime, ObjectStore stores and manages data components
and objects with their relationships intact. Also, as in any DBMS,
ObjectStore offers concurrency (allowing multiple users and applications to
simultaneously access and update the database) and a multithreading feature
(allowing the use of kernel threads, asynchronous I/O and shared memory).

3. THE ANATQUEST SYSTEM
3.1 Need for Public Access

In this section we give reasons for developing the AnatQuest system
followed by a discussion of its design. Basically, AnatQuest became
necessary because AnatLine was not suitable for the lay public. To begin
with, the principal users of AnatLine were expected to be scientists
interested in testing algorithms for image processing (e.g., registration,
segmentation, feature extraction) or constructing 3D anatomical objects. For
such expert users it was considered reasonable to have them download
software for disassembling the retrieved files and displaying them. However,
this approach posed significant barriers for the lay public. First, the
requirement to download and install VHParser and VHDisplay was neither
desired nor easily done by novice users. The second barrier was the lack of
immediate visual feedback, a consequence of the large size of the VHI files
and the difficulty of unbundling them quickly. Some files are on the order of
1 GB when segmented slice images and bitmap overlays for some of the
larger organs are packaged. But lossy compression, which would have
yielded significant file size reduction, was not considered in order to
preserve the complete content of these files. Furthermore, to transfer such
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large files to a user site in a reasonable time requires connections that not
only are high speed links, but need to be reliable to avoid resending because
of intermittent connections. Such robust high speed links are often not
available to the lay user.

As a consequence of these factors, AnatLine found relatively low use
overall and almost none at all by the general public. This led to our
development of the AnatQuest system.

3.2 AnatQuest: Design Considerations

The design of AnatQuest retained AnatLine’s database system, but its
goal was to provide widespread access to the VH images for lay users with
special attention to those with low speed connections as well. AnatQuest
offers users thumbnails of the cross-sectional, sagittal, and coronal images of
the Visible Male, from which detailed (full-resolution) views may be
accessed. Low bandwidth connections are accommodated by a combination
of user-adjustable viewing areas and image compression done on the fly as
images are requested. Users may zoom and navigate through the images. As
shown in Figure 11-3, the number of hits for AnatQuest far exceeds that for
AnatLine.

Website Hits (2003 - 2004)

VHI File Download

AnatLine

AnatQuest

Total Hits

Figure 11-3. Website hits, June 2003 - July 2004.
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In addition to its main purpose, AnatQuest serves as an entry point for
both the FTP server for bulk downloading of VH files as well as all the
functions of AnatLine. Through AnatQuest the user may also retrieve more
than 400 surface-rendered objects created at the Lister Hill Center as well as
a few samples from outside sources.

Since a key goal is to accommodate low bandwidth users, we had to
address the file size problem. The large size of the VH images, both in
totality and as individual files (7.5 MB for the CCD files; 33.2 MB for the
scanned 70mm photographs), motivated parallel in-house research in the
compression and transmission of these images (Thoma and Long, 1997
Meadows et al., 1997; Long, 1996; Mitra et al., 1996; Pemmaraju et al.,
1996; and Long et al., 1995). Studies were conducted in both lossy and
lossless compression techniques. Among the lossy techniques investigated
were JPEG and Digital Wavelet Transform (DWT) followed by scalar and
vector quantization. For equivalent compression ratios (CR), DWT was
found to yield better quality, artifact-free, decompressed images, but was
computationally too expensive for real-time operation. Moreover, DWT
would require client-side plug-ins, while JPEG is accommodated by most
Web browsers.

Lossless techniques (Unix compress and its variations) yield low CR, on
the order of 2 to 3. We combined background removal with a lossless
method (arithmetic coding) and achieved a CR of about 9. Though a
considerable improvement, this figure was deemed too low for practical use
in transmitting VH images to the AnatQuest user. Our final choice was to
remove the background (i.e., convert the blue background of all the slice
images to uniform black), followed by JPEG compression. Other details on
improving transmission rate are given later in this section.

The main effort in developing AnatQuest focused on creating suitable
image viewers and server-side image processing modules, each dictating
different sets of development tools.

Two image viewers are provided in the AnatQuest GUI: A Rendered
Image Viewer (RIV) to display rendered images in 2D projection, and a Cut-
away Viewer (CAV) to display thumbnail as well as detailed-view images of
two-dimensional slices of the front (coronal), side (sagittal), and top (axial)
views of the body. Both image viewers are viewed through a standard Web
browser and do not require the installation of any plug-ins.

The image viewers were designed to serve as the clients in a three-tier
client-server architecture (Figure 11-4), in which a tier is a logical
partitioning of an application across client and server. The image viewers
have only the graphical user interface, while the middle tier contains the
application logic, and the third tier consists of the image server.

The three-tier client-server architecture, also called “thin-client
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architecture,” was chosen over a two-tier approach for better scalability and
maintainability. The three-tier approach has the advantage that any changes
made to the application logic (middle tier) do not require changes to the
client (first tier). By contrast, in a two-tier architecture, the client typically
contains the application logic that sends requests to the server or database
and processes the returned results sent on to the user. This architecture is
commonly referred to as “fat-client” because most of the application logic
resides in the client. Although this is easier to build than the three-tier
architecture, the graphical user interface (here the image viewers) would be
closely tied to the application, and any changes to the application would
require modification of the client as well, thus making two-tier applications
less scalable and maintainable.

Coordi
Web | -Coordinates, Frame Sigg]  Image Frame Size
Processing
. . Server Module
Coordinates,Frame Size|
Mt age Data |[Compressed Image Framel | jysoge pata YSlice/Image
CAV Serviet Processor
Compressed Image Frame, VH
Mask Info, Labie] Table Mask Info Images
Mask Data Mask Data
Serviet Processor
A
Label Table Label Table Label Ldbe] Tabl
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Request - Request
RIV | Rendered
Rendered Image Image Rendered Image
< Servlet
Web Clieats (first tier) Application Logic (middle tler) Image Server (third tier)

Figure 11-4. AnatQuest's 3-tier client-server architecture.

We chose to write both image viewers as Java applets rather than servlets
(programs that reside in a Web server’s servlet engine), though either would
meet our objective of allowing user access to the system via a browser, such
as Microsoft’s Internet Explorer or Netscape Navigator, without having to
download and install plug-ins in the browser. In other words, since the
standard browsers have the built-in Java Virtual Machine (JVM) necessary
to run any Java program, the image viewers could be either applets or
servlets. Our choice was dictated by empirical testing that proved that
applets were superior to servlets in allowing users to scale and manipulate
the horizontal and vertical hairlines and field-of-view controls that float over
each of the three view ports in an intuitive and pleasing way.

At the middle tier of the system, however, the application logic was
written as servlets. These servlets transfer the burden of computing the size
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of, and retrieving, an image to the server side. They process the request for a
new image on the server, retrieve the image, compress it on the fly, and
return it to the applet for display. This interaction between applets at the first
tier and servlets at the middle tier provides the fast response necessary for a
wide user community equipped with low speed connections. (Running the
Web server and the servlet engine in this middle tier are Apache and Java
Jakarta-Tomcat, respectively.)

The Cut-away Viewer allows the user to dynamically navigate the
Visible Human body via a Web browser along three dimensions: along the x,
y, and z axes. As shown in Figure 11-5, the user sees three side-by-side view
ports that occupy the left part of the Web page, each view port containing a
thumbnail representation of a sagittal, coronal, or axial slice. A user-
movable hairline controls the location of the three axes (planes) in each view
port. To dynamically display a different cut-away view of the body in three
directions, the user moves a hairline vertically or horizontally across any one
of the view ports, resulting in updating the corresponding spatially-related
one. In this way, the first view port (control source) and the second view port
(control target) form a coordinated pair.

Two parameters determine the amount of data transferred to the client
interface, thereby accommodating users with varying bandwidth
connections: the size of the field-of-view which is user-adjustable, and the
degree of image compression, also selectable by the user.
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Figure 11-5. AnatQuest Cut-away Viewer.
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When the user clicks on the rectangular field-of-view box in any of the
view ports, a detailed view of the section of the image encompassed by the
box is displayed. The user may select the size of this detailed view (and
therefore the number of bytes received from the server) from a pull-down
menu in the GUI The three field-of-view sizes are: 448 x 320 pixels (for
low bandwidth connections), 640 x 448 pixels and 640 x 640 pixels, for
higher bandwidth connections. At the user’s click, the coordinates and size
of the selected field-of-view are sent to ImageDataServlet on the server.

This servlet validates the parameters and passes the information to
another server-side program, called ImageDataProcessor, which extracts the
cryosection image file that contains the requested detailed image frame
according to the specified position and dimensions. It then uses the JPEG
compression scheme in Java Advanced Imaging to compress the image data
at a user-specified compression ratio. The generated image data is then
returned to the ImageDataServlet, which sends the data to the applet at the
client to be displayed. Similarly, mask information is retrieved through
MaskDataServlet and MaskDataProcessor, and label table data (a table of
anatomical terms) through the LabelTableServlet and LabelTableProcessor.
The label table and mask information enable the detailed view window to
display the label (name) of an anatomic structure under the mouse cursor.

In order to have the region of interest efficiently encompass the detailed
image, i.e., at their boundaries, we picked view port sizes that are divisible
by 64. Also, since the files are stored as tiled TIFF images and the average
user’s screen resolution is expected to be 1024 x 768, we set the maximum
window size to 640 x 640 pixels to enable users to display an image portion
that is large enough to include a significant part of the image without taking
up the entire screen.

To increase the transmission speed of the detailed image portions from
the AnatQuest server to the user’s browser, the images are compressed on
the fly using the JPEG compression scheme, as mentioned earlier. The user
may select one of five compression levels from a pull-down menu in the
GUL: high (the default value), medium/high, medium, low/medium, or low.
The approximate compression ratios (sample averages) range from 60 at the
high level to 11 at the low. To achieve a reasonable response time for users
with low speed modems, we set the default window size to 448 x 320 pixels
and the default image compression option to high. For example, assuming an
average transfer speed of 33.2 kbps commonly available through such
modems, these default values allow a JPEG image of approximately 7,168
bytes to be retrieved and displayed in the user’s browser in 1.7 seconds.

The GUI of the Rendered Image Viewer applet consists of a user-
selectable list of anatomic structures in available rendered images. Selecting
an item in this list results in the display of its thumbnail image, together with
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an option to view the full image. When the user clicks on the thumbnail, the
full-size rendered image is displayed in a separate window. Figure 11-6
shows the components of the RIV.

As noted earlier and summarized in the following, several aspects of the
AnatQuest design exploited the functionality offered by Java Advanced
Imaging. First, we exploited JAI’s file handling capabilities to locally store
very large image files in the tiled TIFF format that would be too resource
intensive for most users to download. JAI was also used to extract only those
tiles required by the user (as defined by the coordinates of the selected
region of interest) and to compress the image data to a JPEG file, as
mentioned earlier.
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Figure 11-6. AnatQuest Rendered Image Viewer.

As a class library, JAI supports generalized image processing
functionality built as an extension to the Java programming language. In a
simple programming model, JAI provides a rich set of imaging capabilities
that can be readily used in applications without undue programming
overhead. JAI encapsulates image data formats and remote method
invocations within reusable image data objects, so that an image file would
be processed the same way, whether in local storage or across networks. JAI
also provides cross-platform imaging APIs, allows distributed imaging, and
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comes as an object-oriented API that is flexible and extensible. In addition, it
is device independent and provides high quality performance on various
platforms.

33 AnatQuest for Onsite Visitors

While reliable and rapid online access promotes the use of anatomic
images by the public, onsite displays in exhibits are further opportunities to
reach another public constituency: visitors to the library. One such exhibit
was Dream Anatomy (National Library of Medicine, 2002), installed at the
NLM for a year spanning 2002-2003. To serve as an onsite display in this
exhibit, AnatQuest was modified to take advantage of the particular
characteristics of this environment. Different issues come into play in the
design of this modified system we call AnatQuestKiosk.

First, as an onsite system, AnatQuestKiosk did not need to rely on a Web
browser and could therefore be designed as a standalone application.
Second, an exhibit visitor in close proximity to the screen is inclined to
navigate by touch; hence, a touch screen monitor is provided (Figure 11-7).
The design implications of these factors are discussed below.

Figure 11-7. AnatQuestKiosk: Touch screen version of AnatQuest.

Eliminating the need for a Web browser allowed both the Cut-away
Viewer and the Rendered Image Viewer in AnatQuestKiosk to be designed
as Java applications rather than as applets. Compared to applets, Java
applications allow the user interface to be built with a greater variety of Java
visual control class libraries (as in Java Swing), giving the interface a more
polished look than possible with the Abstract Windowing Toolkit (AWT)
libraries used in AnatQuest. Using AWT in the online AnatQuest system is
necessary since these libraries are built into Web browsers, while Swing
libraries are not. Swing libraries have to be downloaded into the Web
browser as plug-ins, adding to the download time for an online system. Since
this is not a problem with a standalone onsite system, the use of Swing in
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AnatQuestKiosk is an advantage.

While touch screen monitors are attractive for onsite applications, in
designing applications to run on them one must take into account the size of
the GUI controls. For example, buttons and sliders must be large enough to
respond to the touch of a finger. To support this, we replaced the thin
vertical and horizontal user-movable hairlines that control the thumbnail
images in AnatQuest with large sliders. This required the modification of the
Java library slider controls to achieve a tailor-made look-and-feel.

To ensure that AnatQuestKiosk runs continuously and covers the entire
screen, it is necessary to prevent users from inadvertently stopping or
starting the application, or from coming in contact with the operating
system. We met these requirements by using Java’s Fullscreen Exclusive
Mode API, a new feature in JDK 1.4. This API supports high-performance
graphics by suspending the operating system’s windowing function so that
the application takes full control of the contents of video memory and draws
directly to the screen.

Finally, as an exhibit display it is desirable for the AnatQuestKiosk
application to be unaffected by network outages. To guarantee uninterrupted
use, the image files are locally stored in the system to avoid continuous
fetching from a remote site. However, the application is designed to fetch
images remotely as well by enabling the parameters passed to its startup
script to specify the image site as a URL for the image database server. This
feature is useful in the event that new images, particularly newly rendered
3D structures, are added to the database.

4. NEXT STEPS

There are a number of interesting directions that the AnatQuest project is
taking to further serve the lay public. Among these are: (1) Increasing the
contents of the image database; and (2) Extending information systems
designed for the public, e.g., MedlinePlus, to provide anatomic images. The
full realization of the second goal depends on adequately addressing the first,
as discussed below.

4.1 Increasing Content

We believe the lay public would be well served with more image content
in the database, and in different forms, e.g., 3D volume and surface
renderings and animated sequences. To our knowledge, existing images
from third-party sources have been created from the CCD-captured cross-
sections and not from the high resolution version, thereby possibly
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precluding the most detailed structures.

To date, we have produced a limited number of 3D surface-rendered
structures, mainly as exemplar images to evaluate the design of the database
and the processing tools. These images were created from the segmented and
labeled high resolution cross-sections of the Visible Male thorax region,
with the assumption that this dataset would allow rendering of more detailed
structures than possible with the lower resolution CCD-captured data.
Currently, AnatQuest provides access to these images, numbering about 200
(showing about 400 anatomic structures), as well as some produced by other
organizations.

However, the fact remains that other regions of the high resolution
Visible Male, and all of the Visible Female, have neither been segmented
nor labeled. If one is to make structures in all regions of the human anatomy
available, this would be a necessary task.

User feedback suggests a demand for rendered images of structures in all
regions, but particularly in the head and abdomen. That these regions are of
highest interest is evident not only from anecdotal evidence, but also from
the cumulative demand statistics shown in Figure 11-8.

Demand Statistics by Body Region
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Figure 11-8. Demand statistics by body region.

Meeting this demand would require these regions to be segmented and
labeled. The approach taken in segmenting and labeling the high resolution
slice images of the thorax region, though computer-assisted, had a manual
component and was therefore labor intensive. Since there appears to be work
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done in segmenting the low resolution (CCD-captured) images (e.g., Gold
Standard), it is possible to conceive of more efficient techniques based on
pixel statistics and interpolation to use the low resolution data to segment the
high resolution images. The availability of a complete set of segmented and
labeled high resolution slice images for both the Visible Male and Female
would offer developers material for creating and testing tools for surface and
volume rendering, and would consequently supply the lay user with rendered
images of objects anywhere in the human body.

We additionally note that successful rendering requires the correct
registration (alignment) of adjacent slice images. The high resolution images
are found to be misaligned to some degree, whereas the low resolution slices
have been shown to be correctly aligned. It is possible to conceive of
techniques to use the low resolution set as a reference to correcting the
registration of the high resolution slices.

4.2 Linking Text Resources to Image Database

Here we come to one of our most important objectives. A long term goal
of the Visible Human Project is to transparently link the print library of
functional-physiological knowledge with the image library of structural-
anatomic knowledge into a single, unified resource for health information.
Indeed this has been echoed several times in the past, including the NLM’s
Board of Regents Planning Panel whose recommendations as far back as
1989 stated: "The NLM should encourage... research into methods for
representing and linking spatial and textual information..."

In this section we present our early research in this arca. We explore the
steps required to link text from a biomedical document to the relevant
images and apply the concepts to the design of a prototype linking a search
of MedlinePlus, a text-based document source popular with the lay public, to
anatomic images in our database (described in Section 4.3). We define the
following four functions to implement such a linkage:

1. Document Analyzer: Identifying biomedical terms in a document.
2. Term Mapper: Identifying the relevant anatomical terms.

3. Image Locator: Identifying the images in the image database.

4. Link Assembler: Linking the identified terms to the images.

Figure 11-9 shows the top level architecture of the system and its
components. Actual implementations might utilize the components
differently. For example, the document analyzer and the term mapper can be
provided as independent services for indexing documents outside of
AnatQuest. For simplicity, all the above text and image services can be made
available through a single API interface.



Public Access to Anatomic Images

319

The AnatQuest API is a URL-based parametric API in which a desired
image can be described in terms of its metadata in the URL statement. In
addition, the user can specify: (a) whether mapping the terms through a
vocabulary (e.g., UMLS) should be utilized, and (b) the form of the output
desired (e.g., XML file, image file). The following is an example of the API
for the metadata in XML for a heart image:

http://imagel.nlm.nih.gov/pm/servliet/Imagelogic?name=
heart&resultFormat=xml
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Figure 11-9. Architectural components for linking text and images.

Document Analyzer: Identifying Biomedical Terms in a
Document

The document analyzer (parser) creates a representation of document
content in the form of a list of keywords or, in a more complex way, as a

semantic network representation of the contents.

Alternative approaches to implementing this function are:
Word frequency vector
Pre-assigned vocabulary terms

Vocabulary-based term identification
Vocabulary-based term and relation identification
Text understanding
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These alternatives range from the relatively simple (a word-based
analyzer) to the most sophisticated (a full fledged text understanding
system). The latter would be able to infer from the context, for example,
whether the term "brain" should point to a male or female brain.

We focus on an approach that is reasonably practical at present:
vocabulary-based term identification. This approach processes the text to
identify the occurrences of the vocabulary terms in it. As implemented in the
in-house MetaMap program (Aronson, 2001), this takes into account such
factors as lexical variances, word order variances, and synonymy. The
accuracy of this approach would depend on the level of sophistication of the
analyzer. An alternative would be to use domain-specific semantic
processing to identify the relationships as well as the anatomical terms in the
document, thereby generating a richer representation of content (Rindflesch
and Aronson, 2000).

The parsing of documents can be initiated either by the Web-based
document servers (e.g., MedlinePlus) or provided as a service by AnatQuest.
Note that parsing may not be necessary if the documents already possess
vocabulary-based indexing terms (e.g., MeSH terms assigned by an indexer)
as part of their metadata.

4.2.2 Term Mapper: Identifying the Relevant Anatomical Terms

Since our objective is to link text resources to anatomic images, the
question is whether the biomedical terms identified in a document are
anatomical. In fact, the chances are that they are not explicitly anatomical
terms. However, using the concept relationships in NLM’s Unified Medical
Language System (UMLS) Metathesaurus we can map a biomedical term in
the document to a related anatomical one. For example, the term pneumonia
(a disease) could be mapped to /ung, the underlying organ with the disease.
Other mappings are also possible, e.g., mapping a particular anatomical
term, for which there is no image in the AnatQuest image database, to a
more general anatomical term for which there is an image in the database.
But to demonstrate the concept we focus on the location-of relationship in
our prototype system linking a search of MedlinePlus to images. Figure 11-
10 shows the functions that are part of the term mapper.

The following steps are taken by the term mapper:

1. Biomedical terms are mapped to UMLS concepts through the
Knowledge Source Server, UMLS-KSS, resulting in their concept
unique identifiers (CUI) and semantic types (STY). The mapping
takes into consideration lexical variants and synonymy.

2. A term identified as anatomic by its semantic type is returned by the
mapper as is.
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3. For terms that are not anatomical (e.g., a disease name), the server
uses the UMLS Metathesaurus concept relations to obtain the related
anatomical term. As shown, a disease term would be mapped via the
location-of relationship to the corresponding anatomical terms. This
mapping appears to suit MedlinePlus since most health topic pages to
which it points possess MeSH designators that are disease terms.

l Biomedical Term

Term Mapper

UMLS-KSS

h
v

Map term to UMLS : CUI + STY

Anatomic Terms Disease Terms

Map to the Anatomy
via UMLS location-of

»
»

v Anatomic Terms

Figure 11-10. Term Mapper components.

While our current prototype implementation of the mapper uses the
location-of relationship in the UMLS for mapping mostly disease terms to
their underlying anatomical structure, we note that this relationship is only
one among 88 available in the Metathesaurus. Of these we have identified 22
that could potentially lead to relevant anatomical structures and hence
images. Some of these relationships are: Is-a, part-of, has-part, branch-of,
has-branch, has-tributary, tributary-of, manifestation-of, has-manifestation,
broader, diagnosed-by.

While a chain of such relationships can link a biomedical term to a
possible underlying anatomic structure, some types of relationship chains
will not be successful, as shown in examples below. [Note that since in the
UMLS Metathesaurus concept relation table the relation names are from the
second concept to the first, we are displaying the relation names in the
chains in reverse order.] The following are some findings and suggested
heuristics for the selection of chains and their ranking:
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+ Combination of mapped-to and mapped-from creates a sibling
relationship which might map to unrelated concepts (“nose”) in the
following path generated for heart attack (“myocardial infarction™):

Nose location-of --> Necrosis of nose mapped-to --> Necrosis
mapped-from --> Myocardial Infarction

« Combining part-of and has-location relations provide substructures
which might not be quite relevant, so they should be ranked lower, or
deleted. Example:

Mitral Valve part-of --> Heart location-of --> Heart Diseases
mapped-from --> Myocardial Infarction

+ The mapped-from relation provides a broader concept than mapped-
to, suggesting that mapped-from should be ranked higher. Example:

Necrosis of ovary mapped-to --> Necrosis mapped-from -->
Myocardial Infarction

Other heuristics suggested in the course of our investigation are:

» Shorter chains should be ranked higher than longer ones.

+ The combination of is-a and broader should be avoided. They create a
sibling relationship that may yield unrelated concepts.

» The mapped-from relation should be ranked higher than the broader
relation, because the former is more specific and the latter too
general.

On evaluating a number of sample paths for a given input term we have
identified some relations and their combinations which generate the most
promising mapping of biomedical terms to their related anatomical structure.
The following are relations which result in successful identification of
anatomic terms (in descending order of effectiveness): location-of, mapped-
from, is-a, broader, has-part, has-branch, has-tributary.

Our implementation of the relation-based term mapper consists of a look
up of a mapped-table in which each entry contains a biomedical concept and
its related anatomical structure. This is followed by ranking the entries and
inserting the highest ranked ones into the document content.

While we have focused on the relation-based mapping strategy as
outlined above, we are also exploring two other methods: image-based and
model-based. The image-based strategy, like the relation-based method, uses
the Metathesaurus to map biomedical terms to anatomical structures, but
employs a different ranking approach. To rank the related anatomical
concepts and their images, this method relies on the number of mapped
concepts which are labeled on an image. For example, a heart image labeled
with four mapped concepts of Right-atrium, Left-atrium, Right-ventricle, and
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Left-ventricle would be assigned a ranking of 4, whereas an isolated mapped
concept labeled on an image would be given a lower rank of 1.

The third strategy, model-based mapping, is based on clustering the
mapped anatomical concepts using the Metathesaurus concept relation table.
The mapped concepts in the most concentrated clusters will be assigned
higher rankings. These techniques will be examined in research to follow.

4.2.3 Image Locator: Identifying the Images in the Image Database

There are three possible approaches to identifying and accessing the
images, each influenced by the design of the image database:

+ Database-brokered access via a URL-based parametric API

« XML file-based access with searchable metadata

+ Integrated image and metadata file format

The first approach is based on a private database system which brokers
access to the images within a controlled environment and custom-made
interfaces designed for particular systems. The AnatQuest Web browser falls
in this category. Here users can access the images through the GUI menus,
the database is local to the system, and the database query language is not
accessible to the users. In order to relax this constraint, as mentioned earlier,
we have defined a URL-based parametric API in which a desired image can
be described in terms of its metadata in the URL expression.

The second approach is to eliminate the database and store the metadata
for each image in separate files that are made public for search engines to
crawl and index. These metadata files, in addition to the information about
the image, contain the URL to the actual image file. The metadata encoding
can be as simple as unstructured text included in the ALT text of the IMG
tag of an HTML document. Alternatively, the metadata can be represented in
a more formal XML structure with data elements that can be searched
individually. Search engines can index specific XML data elements, in order
to provide results with high precision and recall. Alternatively, search
engines may ignore the XML structure of the data and index all the metadata
page contents. We have defined a detailed XML schema describing the
structure of the image files which may be crawled and indexed by search
engines. Figure 11-11 shows a fragment of the XML structure for the image
metadata file.

In this example the web crawlers may be instructed by their owners to
index the contents of the VHI-image.term.name nested field when it comes
across an XML file with the root element <VHI-image>. Here the value of
the name field is Heart, allowing the crawler to add the URL of this example
XML file to its list of index entries for the term Heart. Thereafter, when the
search engine is queried for Heart the URL for this XML file will be
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the name and the thumbnail for the image.

The third alternative solution for the image locator is to combine an
image with its metadata in a single file. This has the advantage of preventing
dangling links between the image and its metadata when they are stored in
separate files and moved individually. This approach requires a standard file
format that encompasses both pieces, as well as a standard set of metadata.
A number of groups are attempting this. For example, the PNG2000 (W3C,
2003) and extensions to the Dublin Core-based metadata activities (Dublin
Core Metadata Initiative) seem to be moving towards this objective.

<?xml version="1.0"7>
<VHI-image xmlns:xlink="http://www.w3.0rg/1999/xlink"
xmlns: VHI="http://anatquest.nlm.nih.gov/vhi">
<term anatomical Type="Structure">
<cui>C0018787</cui>
<name>Heart</name>
</term>
<specimen>
<id>1</id>
<name>Visible Human Male</name>
<owner>National Library of Medicine (NLM)</owner>
<sex>Male</sex>
<race>Caucasian</race>
<age>38</age>
</specimen>
<image size="59008" format="jpg" modality="70mm" capturedBy="NLM">
<rendered segmentedBy="EAI" renderedBy="NLM">
<url>...</url>
<title>Anterior View of Heart</title>
<modifier>1</modifier>
<thumbnail size="5073" format="jpg" dimensions="">
<url>...<furl>
</thumbnail>
</rendered>
</image>
</VHI-image>

Figure 11-11. XML structure of image data.

This approach also requires modifications to search engine crawlers to open
a compressed image for retrieving and indexing its metadata.

A PNG-enabled search engine should be able to decompress a PNG file
format, as well as know about the metadata in order to extract and index the
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data elements. An example of such an implementation is the PNG-enabled
version of HotMeta (Distributed Systems Technology Centre, 1999).

4.2.4 Link Assembler: Linking the Identified Terms to the Images

This function is intended to incorporate into the document links that point
to the images associated with the biomedical terms found in the document.
Ways to present the links depend on the design of the GUI of the Web-based
document server. Possible approaches are:

+ Hot linking anatomical terms in a document

« Related-Images button or menu option, based on document similarity

criteria

+ Portal approach

In the hot-linking approach, each term identified in the parsing phase is
converted to a hot link that indirectly points to a relevant image in the
Visible Human Image database through the AnatQuest API. The degree to
which such a link points to a specific image correctly depends on the ability
of the document analysis system (parser) to resolve ambiguities. For
example, by default the links would point to images of the Visible Male
unless the parser can understand from the document's context that the topic
is about the female. Needless to say, this is a difficult task with a high
probability of error. Figure 11-12 provides the flow diagram for the hot-
linking approach, with numbers representing the sequence of actions
following a user query.

As shown in the diagram, steps Cl and C2 require the Web-based
document server (e.g., MedlinePlus) to compute and save the offsets of the
anatomical terms within the documents at the indexing phase so that hot
links may be inserted in the third-party documents at the time of retrieval.
The Web-based document server would not store these documents but would
act as a proxy server for them in order to insert the hot links.

An advantage of this approach is that the anatomical terms are turned
into hot links which the user can easily click on while reading the document.
A drawback is the possibility of mismatch between the text and the image
due to parsing inaccuracies. Further, the server needs to maintain the offsets
to all the anatomical terms within the document, requiring additional storage
and processing to include the hyperlinks for each retrieved document.

In the Related-Images approach to displaying the links the original text of
the document is displayed for viewing by the user. The GUI provides a
"related anatomical images" button in proximity to the text. This button,
when clicked, will send the set of vocabulary terms, identified earlier in the
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Figure 11-12. Link Assembler — hot linking anatomical terms.

parsing phase and already associated and stored with the document
metadata, as query terms to the image database. Thumbnails of the returning
(matched) images will then be displayed on a sidebar next to the main
document for the user to view. Selection of each thumbnail will open up a
detailed view of the image. Alternatively, the thumbnails of related images
may be shown on a sidebar when the document is first displayed instead of
providing the Related-Images button.

An advantage of this approach is that it reduces possible confusion
caused by a mismatch between terms and images, since the links or
thumbnails are offered as "related images" rather than "exact images"
suggested by hot linked terms in the text (as in the previous approach).

In the portal approach to displaying the links, the documents need not be
analyzed at all, nor are changes made to them. We simply make the Visible
Human image database Website open to the Web crawlers of the Web-based
document servers (e.g., MedlinePlus). These crawlers can then build an
index to the images in the database and simply treat the images as individual
documents. Through metadata, the image database would provide the
anatomical terms and possibly their synonyms to be indexed by the crawlers.
Advantages of this approach are that: (a) no changes need be made to
existing Web-based document servers; and (b) since the documents do not
need to be parsed, parser accuracy would not be an issue. The flow diagram
for the portal approach is given in Figure 11-13. The interaction consists of:

1. The user enters a term at the query prompt of the document server.
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2. When the document server is MedlinePlus, the browser displays a list
of (third party) documents grouped under a number of categories. For
each document, a one-line summary is displayed together with the hot
linked URL to access the full document. One of the categories is
"Images," under which appears a list of anatomical terms the crawler
has found to be relevant to the user query.

A document URL points directly to a third party document server.

A returned document from this server is displayed for the user.

An image URL points to the AnatQuest Image server.

An image or its metadata file is returned from this server.

o kW

3 Party Document Server

3-Doc URL y
4-Doc C1- Documents
Web-based Document Server
User ‘
1-Query
~2- Doc/Image Link Assembler: | | Crawler/Parser:
" URLs Image URL Index Documents
Document URL Index Images

5-Image URL
C2-1
6-Image mages

AnatQuest Image Server

Figure 11-13. Link Assembler - portal approach.

As shown in the diagram, steps C1 and C2 consist of crawling documents
in the third party document server as well as the image files and generating
indexes for both images and documents. These indexes are used by the link
assembler component.

The advantage of this approach is that it requires no changes to Web-
based document servers such as MedlinePlus. A drawback is that only
images related to the user query are provided, and not those related to the
contents (or “meaning”) of the documents.

A comparison of the three alternatives for linking terms to images
suggests that the best approach might be to combine the portal and the
Related-Images methods. This approach not only provides the images
matching the user queries (portal approach) but also allows the user to view
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the images related to the contents of the selected documents. Further, when
the metadata in the relevant documents include MeSH headings, this
approach avoids the parsing requirement of the hot linking approach.

4.3 Implemented Prototype: MedlinePlus Proxy Server

We have implemented a prototype of a text-to-image linking system
based on the MedlinePlus health information Web server. As shown in
Figure 11-14, a proxy server has been developed to intercept the user request
to MedlinePlus. The proxy server first retrieves the MedlinePlus page that
satisfies the user query, and in parallel sends the user query to the AnatQuest
image server which uses the UMLS Knowledge Source Server and a term
mapper module to map the query terms (mostly disease names) to the
corresponding anatomical structures. The links to these images are then
inserted by the proxy server as hot links in the image section of the
MedlinePlus page, which is then returned to the user.

User
Query l T
N Query
> MedlinePlus Server
MedlinePlus Proxy Server
Documents
Term
Query Mapper | oncent UMLS-KSS
. . Biomedical i
Edlt Image URLS into Qucr 1omedical terms Anatomical terms
MedlinePlus topic page o
"1 AnatQuest Image Server
- /  Imagcs

Figure 11-14. Prototype implementation.

In a variation of the prototype, instead of parsing the text we could use
the MeSH terms attached to the document, if these exist, since these terms
may be assumed to represent the focus or topic of the document. The
document is then linked to the images through the MeSH terms.

Our initial prototype serves to demonstrate the feasibility of three of the
four functions necessary for text-to-image linkage: viz., the term mapper,
image locator, and link assembler. It does not address the document analyzer
stage. Instead, the user query, rather than the contents of the returned
document, is mapped to the anatomic term which then is linked to the image.
Even the functions included are not addressed comprehensively, as for
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example, the term mapper uses only the location-of relationship.
Nevertheless, this prototype provides a platform on which a more extensive
testbed may be designed to address research issues related to the larger
problem of linking text in documents to images. Some of these issues are:

1.

Relevance of images to the topics in a document. This is influenced
by the types of mappings used by the term mapper. For example,
would the location-of relationship used in this prototype result in the
display of appropriate images (of a diseased lung rather than those of
a healthy lung) for a document about pneumonia? This measure is
subjective, but may be quantifiable by user studies.

Precision and recall of images. These well-defined and quantifiable
measures reflect the performance of the image retriever searching the
metadata in order to locate desired images.

Accuracy and precision of the links. This is of particular importance
to the hot linking approach for the display of links where document
terms are hot linked to the images. This approach might raise user
expectations for an "exact image" rather than a "relevant image." An
image may be seen as relevant but not necessarily “accurate.”

Term mapper performance. Considering other promising relationship
mappings (e.g., is-a, part-of, etc.) should increase recall. In addition, a
ranking of the individual mappings should provide a measure for
judging the relevance of the resulting anatomical terms.

Parser performance. In addition to extracting the anatomical terms,
identifying the explicit anatomical relationships in the document
enables formulation of more refined search queries against the image
database, which should increase relevancy.

System performance. Some approaches require more resources than
others, which could translate into higher turnaround time. For
example, the hot linking approach requires modifying each document
before it is sent to the user. Turnaround time, excluding the network
delay, should provide a measure of system performance.

Addressing these research issues should allow us to identify the best
combination of the alternative solutions in each of the four functions
described here for an optimum solution for linking document text to images.
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S. SUMMARY

The goal of providing the public ready access to anatomic images, in
particular, “real” human anatomy from the Visible Human Project, is one
aspect of universalizing access to biomedical information. This goal is being
implemented in the AnatQuest project in which a system has been developed
that provides Internet accessibility to high resolution Visible Human images
via browsers, labels for anatomic structures in each cryosection slice as well
as 3D rendered images, and acceptable user interaction in a low bandwidth
environment. Besides the AnatQuest system for Web access by resource-
limited end users, we have also developed the AnatQuestKiosk system for
onsite visitors to the National Library of Medicine, and a prototype system
demonstrating the linking of queries by MedlinePlus users to anatomic
images. We have also defined an architecture and functional components to
further investigate the linking of the text content of documents retrieved by
MedlinePlus and other document sources to anatomic images in our
database.
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QUESTIONS FOR DISCUSSION

1. What descriptive metadata are most useful for comprehensively
describing anatomic images for search and retrieval?

2. What technical metadata are most useful for describing anatomic image
file characteristics for future migration and display in a long-term
preservation (archiving) system?

3. Are content-based image retrieval (CBIR) techniques useful for
extracting metadata based on shape, color, or texture for anatomic
images?

4. What would be an effective technique to segment and label high
resolution anatomic images, given a fully segmented and labeled low
resolution set?

5. What are the most effective strategies to link biomedical terms found in a
textual document to the most relevant anatomic images?
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Chapter Overview

This chapter describes the emerging discipline of 3D Medical Informatics.
While text-based informatics has a distinguished history and accepted
fundamental linguistic principles, the use of 2D and 3D data in informatics
has emerged relatively recently as computing capabilities have rapidly
advanced, imaging and modeling standards have been established, and as
high performance networking has made possible the sharing of the large and
complex data that images, volumes, and models represent. This chapter
outlines the early developments of this discipline, presents some examples of
how image data is managed and presented, and suggests some of the leading
research challenges in this young field.

Keywords
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1. INTRODUCTION

What is 3D informatics? Simply, this term applies to the study of
informatics or information sciences associated with images, volume data,
and other dimensional data in addition to the text-based metadata that
surrounds such information. Libraries and other archival institutions are fast
becoming repositories for complex information, non-print materials
including audio recordings, film and video collections, and sophisticated
scientific data. Tools to index these collections are rudimentary today,
relying solely on textual descriptions of their contents and routine indexing
of the annotated bibliographic information. Today’s advanced computing
and networking environments enable the distribution and display of high
dimensional data beyond simple text. 3D informatics is the study of how to
manipulate and manage these complex data.

3D Informatics: the science concerned with the gathering, manipulation,
classification, storage, retrieval, representation, navigation, and display
of complex, high-dimensional data. This data may include more than
three independent dimensions, including position, time, and scale. The
data may also represent many more than one dependent dimensions,
including multichannel data (e.g., the RGB values of the Visible Human
Project color cryosection data).

There are strong analogs between text-based informatics and the concepts
of visual and 3D informatics. For example, in 1992, the U.S. National
Science Foundation held a workshop to “identify major research areas that
should be addressed by researchers for visual information management
systems that would be useful in scientific, industrial, medical,
environmental, educational, entertainment, and other applications.”
Participants helped to shape research positions in the many disciplines
involved in framing the overall field (Smeulders, 2000). These disciplines
include shape segmentation, object recognition, feature extraction, indexing,
similarity metric development, display and feedback.  These elements,
while very different in their implementations and founding scientific
principles, fill similar roles as their counterparts in text information
management systems. Figure 12-1 shows the basic algorithmic components
for information retrieval from text-based data collections. Compare and
contrast this view of data flow in text-based informatics with a similar
structure in Figure 12-2 showing the data flow of query by pictorial example
in a visual information management system.
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Figure 12-1. A simplified informatics view of the data flow in text information retrieval.
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Figure 12-2. Basic algorithmic components of query by pictorial example. This data-flow
diagram has many features in common with the data retrieval methodology described in
Figure 12-1. (Adapted from (Smeulders, 2000)).

In the area of high-dimensional data management systems, developing
and understanding the processes of deriving syntactic and semantic
knowledge from the complex data are active areas of research. Where
images are involved, deriving local visual properties, detecting shapes and
deriving their features, and exploiting those features as indexing tools are
problems at the forefront of 3D informatics research (Castelli, 2002). Shape
features derived from objects identified in the images or data often require
complex analyses arising from the topology or geometry of the object under
study. Hilaga, et al., describe the use of topological abstractions known as
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Reeb graphs to index collections of 3D graphical models. Given a
representative shape, their methods permit the retrieval of comparable
shapes from the collection (Hilaga, 2001). Funkhouser, et al., have been
using mathematical methods such as spherical harmonics and automatic
symmetry detection on 3D graphical models to index large collections
aggregated from the World Wide Web (Funkhouser, 2003). Their sketch-
based retrieval system permits query-by-sketch, attempting to match
primitive 2D sketches of objects to collections of complex 3D models; it has
been online since 2001.

The areas of informatics that are based on textual data are far ahead of
their visual analogs. Linguistics and computer science in the form of
artificial intelligence and natural language processing are driven to
understand text, investigating techniques in lexical analysis, parsing, and
semantic discovery. Two-dimensional or volume image informatics have
not had similar intensive explorations. What has been achieved are a series
of early models for extracting features from images using transfer functions
and low-level image processing, partitioning datasets into cohesive,
contiguous regions using segmentation, studying the shape properties and
generating digital models of objects, and presenting these objects to expert
users for study and knowledge integration. Developing these early separate
methods into knowledge discovery systems is the current challenge.

Despite the emphasis on image processing, shape recognition, and
automated indexing, 3D informatics is not a simple outgrowth of fields of
computer graphics or image processing. 3D informatics incorporates
additional research areas including content-based retrieval, image
understanding, indexing, data mining, and data management. When such
methods of high dimensional data analysis are applied to problems involving
2D images and 3D volume data in medicine, the result is 3D medical
informatics.

The remaining sections of this chapter concentrate on this specific area.
The next section begins with an overview of 3D medical informatics,
including the roots of the discipline as well as some examples of motivating
applications for why it is an important area of exploration. Two subsequent
sections are in-depth descriptions of examples of 3D medical informatics.
The last two sections are a statement of some of the grand challenges in this
rescarch area as well as a summary and conclusions for this chapter.

2. OVERVIEW - 3D MEDICAL INFORMATICS

Consider a possible scenario in 3D medical informatics. Some time in
the not-too-distant future, a pathologist looks through his stereo microscope
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at a tissue sample, taken in a biopsy of a patient. There is something
distinctive about the architecture of the tissue that he is viewing, but what he
is seeing is beyond his experience. He calls a colleague and she places the
sample in a 3D confocal microscope to acquire a digital volume image of the
sample. Together, they perform some simple computer operations on the
resulting data to derive some fundamental image metrics, and then use the
sample 3D image and the derived metrics to search a distributed public data
repository for comparable data. The request can be paraphrased as, “I’'m
sending you a picture. Send back pictures like this one along with clinical
information, diagnosis, treatment, and prognosis of similar patients.”

Within minutes, five comparable cases have been found. The pathologist
reviews the images and decides that only four of the five are relevant, and
the pathologist proceeds to download and read the case histories of the
comparable patients. In three of the remaining cases, a diagnosis of
“Disease A” was made, and the condition was resolved through medical
treatment with the patients making full recoveries. The fourth case could not
be controlled with medical treatment, so additional CT scans were taken, 3D
reconstructions of the affected tissue were made and interventions planned
with computer assistance, and subsequently, surgery and other therapies
were attempted. Ultimately, the diagnosis was modified to a completely
different disease, “Disease B,” the treatment switched, and the patient made
a full recovery. The pathologist reviews the five cases and their histories
complete with accompanying volumetric image data.

Armed with this information, the pathologist recommends to his patient
and the original referring physician that the prognosis is likely to be good,
that a most likely diagnosis would be “Disease A,” but the primary care
physician should take special care to order additional tests to rule out a
diagnosis of “Disease B.”

This hypothetical example is a scenario that utilizes query by pictorial
example to solve a medical problem. Both automated and visual
comparisons are used to ascertain the relevance of the retrieved cases. An
initial prognosis is given based on the number of comparable cases returned
and the general consensus among the related cases that the condition is
treatable and all five had full recoveries. Secondary findings are also
indicated, and the referring physician is warned to rule out other causes.
Also assumed in this discussion are facilities to acquire high dimensional
data at multiple resolutions, the existence of methods to display and
manipulate multidimensional data to develop surgical plans, and multiple
means of indexing and retrieving complex image and text data using both
images and text as sources of query information. While not routine today,
the time is not far off where such capabilities and facilities are
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commonplace; the algorithms, methods, and technologies are currently being
developed.
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Figure 12-3. An idealized view of the medical visualization pipeline. This part of 3D
Informatics encompasses the study the process of medical visualization by research in the
four core areas of Volume Image Archives, Low-level Image Processing, Geometry and
Shape Analysis, and Digital Modeling and Simulation. Note that the results of many of the
subfields can be directly rendered, revealing the information that is hidden within the dataset
at different levels of abstraction. One attribute of any informatics program is the progressive
abstraction of volume information from image to model.

2.1 From Data to Knowledge

The greater part of this chapter will consider the enterprise of medical
visualization from data storage and retrieval to the rendering of the final
visual presentation; conceived as a pipeline, the process is seen to be
connected and yet divisible into separate subfields that can be studied and
improved (See Figure 12-3). Every process in a 3D medical informatics
pipeline has the potential for interactive feedback and display. This
treatment will not ignore the problems of data retrieval, but rather
concentrate more heavily on those elements not shared with text informatics.

Informatics is often a building of abstractions from which knowledge can
be synthesized. For instance, a taxonomy of life forms builds from the
characteristics of individuals sharing traits, to species, to genus, eventually
to the basic abstraction of kingdoms such as plant or animal.

A similar progression is seen in 3D medical informatics. Consider the
simplified pipeline in Figure 12-3. As information is passed from left to
right, it is refined and higher-level abstractions are created to describe the
concepts contained in the volume data files. The progressive refinement of
volume data and other multi-dimensional information from raw image, to
embedded shapes, to recognized objects, to anatomical models is the focus
of this treatment of 3D medical informatics.
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2.2 History

3D medical informatics is a very young discipline. As with all
information science, technology is the key driving force that accelerates its
development. However, while the study of semantic knowledge in
linguistics and text-based information had been studied for decades prior to
the development of computer technology, 3D medical informatics was
essentially created with the advent of the computer.

At the turn of the 20™ century, Roentgen discovered x-rays and applied
them to imaging the human body, creating a revolution in both physics and
medicine, earning him the Nobel prize. This revolution did not extend to a
comparable development in imaging informatics. While publishers of
textual information had centuries of developed experience in printing,
publishing, and distribution, imaging sciences had no comparable experience
in these endeavors. Moreover, the media for storing the resulting medical
images and data were fragile, flammable, difficult to copy, and impossible to
distribute widely. Thus, while there was intense development in using
medical images, there was little advance in indexing, cataloging, and
understanding the information captured in early radiographs.

CAT scans, or more precisely X-ray computed tomography only arrived
much later in the century. The mathematical principles for tomographic
reconstruction were first published by Johann Radon in 1917. More than
fifty years transpired before the technology and engineering of x-ray
detectors and computers matured sufficiently to enable the creation of
medical scanners. For this engineering feat, Allan Cormack and Geoffrey
Hounsfield were independently awarded the Nobel Prize in 1979. The
resulting systems are routine tools in medicine today and constitute a multi-
billion dollar industry. Practical Magnetic Resonance Imaging (MRI)
awaited affordable superconducting magnets, but now is an essential tool in
many hospitals and radiology practices. The development of practical high-
resolution 3-dimensional scanning set the cornerstone for modern imaging in
medicine.

Simultaneously, emerging computer and network technologies facilitated
the storage, reproduction and distribution of complex medical image data.
An industry of Picture Archiving and Communications Systems (PACS)
technologies rapidly established itself, requiring that more and more
sophisticated data indexing and retrieval methods be applied to medical
image collections. The creation of standards for DIgital COmmunications in
Medicine (DICOM) have helped to make these areas more interoperable.
Computers and their associated technologies have enabled all of these
developments. Although the revolution in imaging sciences was started by
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Roentgen, imaging informatics was finally enabled by the advent of
widespread, interconnected, digital computing.

In 1986, the National Science Foundation (NSF) held a workshop on
Visualization in Scientific Computing (McCormick, 1987). In their report,
the panelists outlined a programmatic need for new developments in image
understanding, networking, standards, visualization algorithm design,
computer graphics hardware, and other related technologies. In the years
following the NSF report on visualization, commercial and university
interests have applied themselves to many of the tasks foreshadowed by the
panelists. Since that time, the academic and industrial research communities
have achieved some dramatic successes.

For example, while the domain of illuminating 3D data in medicine
remains a conceptually difficult problem, the technical aspects for rendering
multidimensional scalar data have been largely overcome. The human
visual system is not accustomed to seeing both the surfaces of things as well
as their interiors, so new metaphors for transparent and textured surfaces
were needed and the methods and algorithms to generate them from volume
data. In 1987, Lorensen and Kline published the Marching Cubes algorithm,
setting the standard for extraction of surfaces from volume data (Lorensen,
1987). Shortly afterward in 1988, Drebin, etal., and Levoy independently

Figure 12-4. Volume rendering: A chronological progression of interactive volume rendering
techniques: (a) Splatting [Westover, 1989]; (b) parallel raycasting with interactive
segmentation [Yoo, 1992]; (c) texture-based volume rendering (Circa, 1997) [Cabral, 1994];
(d) interactive multidimensional transfer functions on PC hardware [Kniss, 2001]. The
progression shows a trend from software to hardware, from special to general purpose, and
from interactive speeds of 0.25 to 20 frames per second.

developed raycasting methods for directly rendering shaded views of volume
data (Levoy and Drebin, 1988). Alternate approaches to raycasting volume
rendering were soon proposed (Westover, 1989) and accelerated parallel
methods also introduced (Yoo, 1992). Volume rendering techniques were
merged with computer graphics texturing hardware in 1994, enabling truly
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interactive visualization of volume data (Cabral, 1994). Navigation and
exploration of volume data is now possible at rates of 20 frames per second
on PC hardware with dynamic user control over viewpoint, transparency,
and illumination (Kniss, 2001). This progression shows a successful
transition over more than a decade from the development of new methods,
through their engineering refinement, to product development, and finally
the release of these methods as commodity tools for a broad medical
audience.

Algorithmic developments are not the only successes for 3D medical
informatics. Pilot studies in data collection, distribution, indexing, and
content-based retrieval have advanced significantly in the last decade, and
are partnered with the emergence of accepted public sources of information,
common conventions, and shared tools. The Visible Human Project™
provided one of the most advanced studies in human gross anatomy to be
shared widely among the 3D medical informatics research community. The
availability of common data helped to accelerate the growth of visualization
systems in medical settings (Ackerman, 1998). However, two datasets are
not sufficient to study the nature of collections, and work on large volume
medical data collections has grown in recent years (e.g., Tagare, 1997,
Leiman, 2003).

In the areas of segmentation, object recognition, and image
understanding, new efforts in consolidation and interoperability are helping
to unify research in disparate areas. Public tools for analyzing complex
imaging data have recently emerged to assist in developing common
conventions for processing, indexing, and understanding volumes. For
example, the National Library of Medicine has sponsored the Insight Toolkit
(ITK) as a common API for the segmentation and registration of 3D and
higher dimensional data (Yoo, 2004). Common tools and conventions for
image understanding are as essential in 3D medical informatics as shared
ontologies are to conventional text-based informatics as well as cataloging
systems are to the library sciences.

23 Why study 3D Medical Informatics?

3D Medical Informatics has compelling and innately satisfying
motivations. From its early introductions, the value of X-ray CT scanning as
immediately and intuitively recognized, and hospitals worldwide began
investing in CT scanners. Medical visualization and 3D informatics
similarly generate an immediate resonance with surgeons, developmental
biologists, and other disciplines requiring navigation of the human condition
where knowledge of spatial relationships is required.
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Anatomy instruction is one area where 3D medical informatics has strong
justification and sound foundations. The Visible Human Project™ data
fostered a range of publications and educational products targeting all
instructional levels from secondary school to graduate medical education.
Beyond books and dissection software, there have been significant attempts
to integrate 3D interactive file formats with multiple imaging modalities and
existing anatomy ontologies. K.H. Hohne and the Voxel-Man software
development team at the University of Hamburg have been using advanced
rendering techniques to display and navigate complex information and have
released digital products through a commercial publisher at a cost
comparable to traditional textbooks (Hohne, 2000). Multimedia products
such as these may represent the future of anatomy instruction.

Beyond instruction, 3D medical informatics has direct applications in
surgical planning and intervention, transforming information into
knowledge, providing clarity for critical decisions. Advanced instrumen-
tation and rapid 3D analysis of surgical situations are becoming routine,
integrating acquisition technology with interactive analysis and dynamic
feedback during surgery (Jolesz, 1997). Operating rooms with integrated
scanning devices and computer displays are now commonplace.

This effort is not limited to just three dimensions, and researchers
routinely invoke time varying data and multimodal, multiscale radiological
information in their investigations. @ Many diseases involve chronic,
degenerative conditions that must be tracked over time. It is the progression
of the condition as much as the immediate situation that is of concern to
patient and physician alike. Critical areas of 3D medical informatics
research include the recall of previous relevant examinations, the fusion of
previous studies of the same patient with current cases, comparing the
progress or the contraction of the disease. One example of the tracking of
time-varying chronic diseases, is the study of multiple sclerosis, a condition
involving repeated scarring of the insulating layers of nerve cells. These
inflammatory attacks flare up and subside over time, and tracking the
condition using spatial references to show where new lesions are appearing
as opposed to older scar tissue using modern imaging allows clinicians to
study the physical aspects of the disease as well as the neurological effects.
These studies require the comparison of multiple images of the same patient,
taken over the course of years, and align and compare the results (Kikinis,
1999). Such studies are giving new hope to patients and clinical scientists
that some means may be found for controlling the disease.

In addition, the processes of 3D medical informatics can be applied in
other domains. A study of topological image metrics based on juxtaposition
and arrangement was published as a means of indexing medical image
collections (Tagare, 1995). These metrics are invariant with respect to size
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and color, making them suitable for comparing images of arbitrary
resolution, for instance, permitting the comparison of pediatric with adult
cases. The study of such size and illumination invariant metrics has been
now successfully applied to tracking marine mammal migrations where
cetaceans are tracked by photographs taken of their fins. Identifying an
animal from a photo of its dorsal fin by comparing the image with a veritable
mug-shot catalog of dorsal fins is tedious and error-prone work. Adapting
the work of Tagare, et al., this process has been streamlined from hours of
visual canvassing to seconds of automated searching. Size and illumination
invariant content-based retrieval techniques are changing the way marine
biologists conduct their research (Hillman, 1998).

3. EXAMPLE: 3D MODELS AND MEASUREMENT
OF NEUROANATOMY ACROSS SUBJECTS

Recall from Figure 12-3 that 3D medical informatics can be considered
as a progression of processes applied to datasets. What are these stages?
What are the input data and output data for each of these processes?

a. b. c. d. e.

Figure 12-5. A progressive view of modeling the corpus callosum across multiple subjects.
5a: mid-saggital MR image of a human brain cropped to show the corpus callosum; 5b: Low-
level image processing — cropped image from (5a) after a simple gradient magnitude edge
detector has been applied; Sc: Segmentation: shape segmented using the edge strength image
in (5b); 5d: Registration: outlines of the same structure registered across 30 subjects showing
the normal (expected) variation in shape within a sample population; Se: the average or mean
shape of a corpus callosum. (Adapted with permission from Szekely, et al. (Szekely, 1996)).
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The answers depend on the particular application and the methods being
applied. In this section, we will explore these questions through the
processes of modeling and measurement of deep brain structures across
multiple subjects.

This example is largely described in terms of 2D models and has been
drawn with permission from the work of Szekely, et al. (Szekely, 1996).
Derivative work has been applied to full 3D models and has been used to
study structural trends in schizophrenic patients across multiple subjects
(Shenton, 2002). While this work concentrates on relatively familiar
frequency-based Fourier shape descriptors, later related work has explored
deformations of medial shape descriptions as well as statistical moments of
point distribution models.

3.1 Indexing Images with 3D Medical Informatics

Following the progression in Figure 12-5, consider the corpus callosum,
the dense white matter of connecting nerve fibers in the center of the brain
that bridges the two hemispheres. If only the middle plane of the brain is
considered, the vertical saggital plane that denotes the bilateral symmetry of
the human body, the resulting image of the corpus callosum is an elongated
arcing shape (see Figure 12-5a). Architectural defects in this structure are
often linked to mental health disorders, and tumors in this region are difficult
to treat unless detected early. Finding this structure in a brain scan and
comparing it with “healthy” examples requires first detecting the edges in
the image (low-level image processing) (see Figure 12-5b), then partitioning
of the image into shapes and the matching or registration of shapes across
multiple samples (segmentation and registration) (see Figure 12-5¢,d). Once
a shape is found, an analysis of the shape extracts features of the object
(geometry and shape analysis). Based on this analysis of object features
(usually across multiple samples), an object similarity metric can be created
and dynamic models or templates of the structure can be formed for object
detection and comparison (digital modeling and simulation).

Once segmented and aligned, the 30 cases in the training set are further
analyzed for the normal or expected variation between these healthy
subjects. A decomposition of the 2D shapes is performed, ordering the
primary forms (eigenmodes) of deformation needed to match one shape to
another. An average shape can be extracted from the set, and similarity or
differences among the shapes can be derived (see Figure 12-6).
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Figure 12-6. The first four eigenmodes of the deformations of the 30 objects in the training
set. The calculations are based on contours represented by Fourier descriptors, which are
normalized only with respect to the choice of the starting point. The deformation range
amounts to eigenvalues. (Adapted with permission from Szekely, et al. (Szekely, 1996)).

The resulting metrics can be used to improve the automated segmentation of
new subject data, and they can also be used as indexing tools for collections
of MR scans of human brain structures.

3.2 Generalizing Elastic Deformable Models to 3D

This work has been generalized to 3 dimensions, permitting the analysis
of solid shapes rather than simple 2D figures. Figure 12-7 shows the same
strategy applied using active surfaces (as opposed to active contours) and
spherical harmonics (as opposed to circular harmonics) to the caudate
nucleus, another deep brain organ. The resulting digital models and the
deformation metrics provide shape indices that can be used to provide
quantitative comparisons of human anatomy and to catalog collections of
volume data of human subjects.

An in-depth description of the work of Szekely, Kelemen, Brechbiiler
and Gerig is beyond the scope of the lay introduction intended here in this
chapter. Their process includes a sophisticated automatic segmentation
technique that uses both a frequency-based Fourier decomposition as well as
an energy-minimizing elastically-deformable active-contour approach for
reliably finding the corpus callosum. For a full description, see their
comprehensive paper (Szekely, 1996) or their later work (Kelemen, 1999).
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Figure 12-7. An example of this technique in 3D dimensions showing a parameterized
description by spherical harmonics of the caudate nucleus, a deep brain organ. 7a: model of
up to degree 8 showing the original voxel object overlaid as a wire-frame structure of the
voxel edges; 7b: a segmented caudate nucleus using the elastically deformed model from (7a)
using spherical harmonics up to degree 5 (108 parameters). (Adapted with permission from
Szekely, et al. (Szekely, 1996)).
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Figure 12-8. A 3D medical informatics pipeline using elastic deformable models of the
corpus callosum as a case study. The data transforms left to right from raw image
information to image features (edges), to segmented shapes (outlines), to controlled shapes, to
similarity measures that can be used to improve segmentation, to capture normal (expected)
human variation, or to index image collections.

Using this example as a case study, we can revisit the view in Figure 12-
3 and map some of these methods to the stages of the processing pipeline.
The resulting view is show in Figure 12-8. These or related processes are
required elements of any 3D informatics application.
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4. SURGICAL TEMPLATES: A CASE STUDY IN 3D
INFORMATICS

3D medical informatics can have a direct influence on intervention and
treating humans. Some of the most interesting rendering technologies today
are appearing as 3D printing devices capable of directly creating tangible
objects as “rapid prototypes” of instruments or devices. In this example, a
team at the NLM’s Office of High Performance Computing and
Communications has combined surgical planning techniques with computer
aided manufacturing systems to create custom surgical aids for orthopedic
surgery. Our application area is planning and controlling the trajectories of
pedicle screws for spine surgery. The goal is to manufacture a physical jig
that conforms to the contours of the patient’s vertebrae. The jig is
constructed with holes that correspond to the trajectories of the pedicle
screws. These holes guide the drill placement and depth, increasing the
accuracy and precision of screw placement (Figure 12-9). These devices are
created for each individual patient, one per segment, and improve accuracy
without the introduction of navigation tools or increased fluoroscopic
radiation dose. The intent is to use a jig to transfer the surgical plan directly
to the operating room without introducing additional technology. The
complexities of computer-assisted surgery remain in the laboratory without
intruding into the operating room.

This section addresses the design issues for the surgical planning and
template design workstation. Our prototype is an interactive modified
texture-based volume rendering program (Cabral, 1994) augmented with
physical user interface devices, 3D stereo viewing, polygonal primitives, and
tools for constructive solid geometry (CSG) to serve as the computer aided
design foundation for modeling templates.

4.1 Background and Related work

Figure 12-9a shows the basic problem faced in spine procedures.
Appliances such as plates and rods require fixation through narrow channels
called pedicles. Trajectories through these narrow isthmuses of bone have
optimal placement and limited tolerances. Complications can arise when the
screws accidentally enter epidural or spinal spaces and transect the spinal
cord, constrict the emerging nerve roots arising from the ganglion, drift
through a disc, or emerge through the anterior surface and cut the aorta.

Figure 12-9b shows the goal of our project, the creation of custom drill
guides designed to mate closely with individual vertebrae that limit depth
and provide for precise control of the screw path. Other groups have also
pursued templates for pedicle screw placement. Radermacher and Birnbaum
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have reported favorable results using numerically controlled (NC) machine
tools to create plastic templates (Birnbaum, 2001).

Figure 12-9. Patient Specific Surgical Instrumentation (PSSI) for the precise placement of
pedicle screws required for many spine procedures. Figure 9a: lumbar plate secured with
pedicle screws. Figure 9b: Our goal — a proposed template, guiding the drill path and depth.
Structures such as the spinal cord, nerve roots, and the aorta must be avoided.

Our approach differs from theirs in our use of Fused Deposition
Modeling (FDM), an alternate technology for creating the templates. Many
affordable NC machines are limited to three axes of control. This prevents
many NC machines from supporting the complex geometries required to
create custom templates. By contrast, FDM is the successor to
stereolithography in rapid prototyping technology. It is flexible and
accurate, capable of creating a wide variety of geometries, well beyond those
needed in pedicle screw placement procedures. Stratasys, a manufacturer of
these rapid prototyping devices, has secured U.S. FDA approval for the
generation of 3D models for diagnostic purposes. The requirements of high
fidelity reproduction necessary for diagnosis are equally important in
intervention. They also supply a production material that can be sterilized
for use in medical procedures.

4.2 Design and Software Tools for Template Planning
Workstation

We built our surgical planning workstation around an interactive volume
rendering system. Recent trends in graphics workstations have led to the
emergence of 3D transparent textures, enabling interactive volume rendering
using conventional graphics primitives (Cabral, 1994). Figure 12-10 shows
the process and the console.
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Figure 12-10. Patient Specific Surgical Instrumentation procedure and console. 10a: The
pipeline from pre-operative exam to template. 10b: This section describes the template design
workstation: Joysticks, stereo viewing glasses, pushbuttons, and physical sliders provide
more natural human interfaces than overloaded mouse controls.

To augment the interactive visualization of the vertebrae and the
placement of tool paths, the workstation has recently been augmented with
physical I/O devices including a 3D joystick, supplementing the overloaded
mouse controls. A mouse is by definition a 2D input device, limiting its use
for viewpoint control. Tactile coherence can be improved by the use of
physical input devices.

Volren 6.1, a texture-based volume rendering system running on a dual
250 MHz CPU Onyx2 with dual Reality Graphics™ raster managers was
modified into a surgical planning workstation enabling the modeling of
objects through constructive solid geometry (CSG). Texture based volume
rendering naturally combines clipping planes and polygonal objects in a
simplified volume rendering pipeline. The hardware-accelerated graphics
systems necessary to support these methods are available in PC cards today.
Clip planes, polygonal models, and volume rendering combine to make a
natural graphical interface for planning screw placement.

4.3 Results and Discussion

As a test of the technology and its precision, we selected a dry, dissected
lumbar vertebrae and created a surgical plan for pedicle screw placement.
Thin section CT scans (Imm apart and Imm thick) of 5 individual dry
lumbar vertebrae were obtained on a GE Genesis High Speed RP Scanner.
A block was modeled to fit tightly to the posterior surface of the vertebrae.
Cylinders, that would ultimately be the drill guides, were then modeled
through the block. The positioning of the cylinders, or trajectory planning,
was accomplished with the aid of clipping planes and interactive control of
the volume rendering transfer functions. This assured the authors that the
planned trajectory was through the isthmus and along the axis of the pedicle,
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as shown in Figure 12-11. The 3-D drill guide block with trajectories was
then divided into 2-D slices and converted to DICOM files. The 2-D slices
were imported into Mimics v.6.3 (Materialise) and converted to STL files.
The STL files were then used to generate the tool paths for the Fused
Deposition Modeler (FDM) 2000 (Stratasys).

a. b.

Figure 12-11. The template design, taken from the texture-based volume rendering based
surgical planning workstation. Clipping planes, polygonal primitives, and volume data are
easily combined using advanced graphics.

We have achieved frame rates on the order of 10 frames per second for

interactive template design including rendering the medical volume.
Drawing from experience with molecular modeling systems, physical I/O
tools such as joysticks were added improving the intuitive feel of the
workstation. Some overloading of the input devices still occurs, leading to
occasional confusion. Sterco viewing does not appear to speed template
design. The use of Open GL as a programming base significantly reduced
software development costs and permitted the fast integration of CSG.
A drill guide was produced by the FDM 2000 with approximately 125.06
cm’ of non-medical ABS plastic at a slice interval of 0.2540 cm. The block,
as designed, had an intricate area reserved for the posterior elements of the
chosen lumbar vertebra. This first attempt was flipped in the x-axis due to
an image format discrepancy. A second template was produced, correcting
the defect, and pedicle pilot holes were drilled into the dry vertebrae. A CT
scan was conducted to verify the placement of the pilot holes (Figure 12-12).
Physical templates transfer the power of surgical planning workstations to
the operating room without the need for complex technology. Confidence in
the path planning will increase accuracy, speed procedures and reduce
patient radiation dose by decreasing fluoroscopic verification (Yoo, 2001b).
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Figure 12-12. The prototype template and the dry spine test with a validating CT exam. (The
pinholes in the top of the vertebrae are incidental, and leftover from the string connecting
multiple vertebrae for its former use as an anatomy teaching tool.).
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Figure 12-13. A 3D medical informatics pipeline using patient specific surgical
instrumentation as a case study. The data transforms from raw image images to segmented
objects (bitmasks), to designed shapes (embedded trajectories in mold bitmasks), to digital
models (computer graphics models in STL format) to physical plastic parts manufactured
with a rapid prototyping system. As the data is transformed, it is modified from raw images
to physical instruments, encapsulating information in progressively higher-level abstractions.

The problems associated with designing and executing patient specific
surgical instrumentation are easily cast as part of a 3D medical informatics
data flow. Essentially, the idea of patient-specific surgical instrumentation
in this example is the communication of information from a complex digital
setting to precision surgical environment through a physical device.
Intuitively, this means acquiring specific information about the patient’s
anatomy, planning the trajectories of the pedicle screws, developing spatial
relationships between the plan and the patient, and embedding that
information in an instrument. Like other problems in 3D medical
informatics, this can be seen to be a series of processes that refines
information from raw data through abstractions such as positive and negative
images of the spine to digital models of solid geometry and eventually to a
device (See Figure 12-13). Beyond information retrieval, 3D medical
informatics can play a vital and direct role in medical intervention.
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S. GRAND CHALLENGES IN 3D MEDICAL
INFORMATICS

What are the grand challenges in 3D medical informatics? Whenever
asking such questions, it is useful to phrase the notion using three
interrogatives: What? How? If? Taking these points in order, “What areas
of medical practice and public health can we affect through 3D medical
informatics?” 3D medical informatics can provide new frontiers in medical
education in anatomy, physiology, molecular biology, and other disciplines.
In addition, research in this area has already had a profound impact on
emerging technologies in computer assisted surgical planning and image-
guided interventions. The areas where 3D medical informatics may have its
greatest influence is in the areas of computer-aided diagnosis in early
detection and progressive tracking of chronic, degenerative diseases where
the pathology has important expressions in time and spatial domains.

How can we influence these public health concerns? We can open entire
search strategies for finding information based on visual data. New
databases based on volumetric data collections may permit rapid disease
identification and provide indices to other sources of textual and digital
information. Many diseases are not characterized by their expression in a
single point in time, but rather by the chronology of the changes in their
shape or function. Spiral chest CT exams and MRI breast imaging are
currently being considered as alternatives to traditional 2D chest X-rays and
2D mammography as screening tools for early cancer detection. 3D imaging
will become commonplace in medical diagnosis and intervention. Detection
and dynamic modeling of anatomy and physiology represents new medicine.

We can make this leap to 3D informatics only if new techniques and
mathematics emerge to describe, index, and characterize complex, high-
dimensional data. We do not yet have the visual linguistic tools to
decompose image information into subject, object, predicate, modifier, or
prepositional phrase. Even the visual alphabets of pixels and polygons are
not sufficiently rich to support the power of images, much less 3D scans.
What is required is the formation of a comprehensive foundation in image
linguistics built upon reproducible object detection, computable shape
descriptors, and common indexing metrics for organizing human thought
represented in visual and volumetric data. Some of the specific challenges
include:

e The development of new mathematical foundations for data
representation, not based on polygons, voxels, or patches of curved
surfaces. Shapes are not local collections of such atomic data elements,
but rather the overall complex composition of them. Aggregating pixels
or patches into shapes is akin to parsing language in a text-based system.
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Mathematical formulations using implicit methods are emerging to
describe anatomical structures through equations, but they lack sufficient
maturity yet to influence the field (Yoo, 2001a).

e A scientifically grounded foundation in data decomposition, perceptual
analysis, and ontology generation of complex multidimensional
information built upon computable, reproducible image metrics. This
challenge includes broad fundamental investigations into data
segmentation and registration, image statistics, and image understanding
to answer the need for repeatable, comparable methods for decomposing,
parsing, and extracting semantic knowledge from images.

e Establishment of public repositories of medical volume data. Libraries
and museum collections have been some of the greatest incubators for the
taxonomies and ontologies necessary to index and catalog human
knowledge. Photographs are less th