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Abstract—A principled method for active contour (AC) param-
eterization remains a challenging issue in segmentation research,
with a potential impact on the quality, objectivity, and robust-
ness of the segmentation results. This paper introduces a
novel framework for automated adjustment of region-based AC
regularization and data fidelity parameters. Motivated by an iso-
morphism between the weighting factors of AC energy terms
and the eigenvalues of structure tensors, we encode local geom-
etry information by mining the orientation coherence in edge
regions. In this light, the AC is repelled from regions of ran-
domly oriented edges and guided toward structured edge regions.
Experiments are performed on four state-of-the-art AC models,
which are automatically adjusted and applied on benchmark
datasets of natural, textured and biomedical images and two
image restoration models. The experimental results demonstrate
that the obtained segmentation quality is comparable to the
one obtained by empirical parameter adjustment, without the
cumbersome and time-consuming process of trial and error.

Index Terms—Active contours, automated parameterization,
structure tensors.

I. INTRODUCTION

ACTIVE contours (ACs) are a rather mature image
segmentation paradigm, with several variations pro-

posed in literature [1]–[4]. However, their parameterization
remains a challenging, open issue, with strong implications
on the quality, objectivity, and robustness of the segmenta-
tion results. Very often, parameters are empirically adjusted
on a trial and error basis, a process which is laborious
and time-consuming, based on subjective as well as heuris-
tic considerations. On one hand, nonexpert users such as
medical doctors (MDs) and biologists require technical sup-
port since they are not familiar with the algorithmic inner
mechanisms. On the other hand, parameter configurations of
image analysis experts are usually suboptimal and applicable
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to specific datasets [5]. Moreover, the proliferation of AC
variations raises the need for a framework facilitating fair
comparisons.

Tracing the main line of progress in AC literature, one can
observe that the parameterization issue persists. The first AC
model, widely known as the snake model, has been proposed
in the seminal work of Kass et al. [6]. The snake model
employed physically-inspired terms for contour stiffness and
rigidity, as well as image-derived terms, all weighted by empir-
ically adjusted parameters. The snake model was succeeded
by the geodesic AC model (GAC) [7]–[11] which, unlike its
predecessor, is topologically adaptable and employs intrinsic
contour representations instead of 1-D parameterized curves.
However, GAC is still empirically parameterized. In the course
of the evolution of the AC paradigm in the following years,
which included edge-based [12]–[17], region-based [18]–[27]
and hybrid models [28]–[33], the need for empirical parameter
adjustment remained.

Numerous approaches have been proposed in order to
cope with the issue of parameterization. Pluempitiwiriyawej
et al. [34] and Tsai et al. [35] dynamically update AC param-
eters as contour evolves. This temporal dependency may lead
to the propagation of early errors in the later contour evo-
lution stages. In addition, in these approaches parameters
are not spatially-varying, failing to capture local image fea-
tures. Kokkinos et al. [36] proposed a statistical approach
employing the posterior probabilities of texture, edge and
intensity cues as contour weights in a locally adaptive manner.
Nevertheless, their approach still requires technical skills by
the domain user. Keuper et al. [37] and Liu et al. [38] pre-
sented a method for dynamic adjustment of AC parameters,
applicable on the detection of cell nuclei and lip boundaries,
respectively. Both methods require a priori knowledge con-
sidering the shape of the target region. Iakovidis et al. [39]
and Hsu et al. [40] introduced a framework for optimiza-
tion of AC parameters based on genetic algorithms. However,
these heuristic approaches converge slowly in locally optimal
solutions. Allili and Zhou [41] proposed an approach for esti-
mating hyper-parameters capable of balancing the contribution
of boundary and region-based terms. In their approach, empir-
ical parameter tuning is still involved. Yushkevich et al. [42]
developed an application for level-set segmentation of images
of anatomical structures. Although their GUI is friendly
to nonexpert users, parameter settings are still empirically
fixed.
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This paper introduces a novel framework for automated
adjustment of region-based AC regularization and data fidelity
parameters based on local image geometry information.
Starting from the observation that these parameters and the
eigenvalues of structure tensors are associated with the same
orthogonal directions, we encode local image geometry by
mining the orientation coherence in edge regions. The latter
can be encoded by means of orientation entropy (OE), a mea-
sure which is an increasing function of orientation variability
of edges, obtaining low values in structured regions containing
edges of similar orientations and high values in unstructured
regions containing edges of multiple orientations. As a result,
those forces that guide contour away from randomly ori-
ented, high-entropy edge regions are amplified and iterations
dedicated to erroneous local minima are avoided, speeding
up contour convergence. On the other hand, forces imposed
within the proximity of structured edges, naturally related to
target edge regions, are reduced, enhancing segmentation accu-
racy. Preliminary variations of this paper have appeared in [43]
and [44]. Even though these variations obtained promising seg-
mentation results, they were only applied on a limited number
of images.

It should be highlighted that the aim of this paper is to intro-
duce a framework for automatically adjusting region-based
AC parameters, rather than presenting yet another AC model.
Moreover, the convergence acceleration is a byproduct of the
proposed framework and not its main motivation, which is the
capability of AC self-parameterization.

The contribution of the proposed framework has several
aspects.

1) It is unsupervised and may be treated as a “black box”:
the regularization and data fidelity parameters are auto-
matically adjusted. Hence, technical skills are not a
prerequisite for the domain user and he/she is completely
released from the tedious and time-consuming process
of trial and error adjustment. In addition, the subjectivity
of the results is reduced.

2) It is applicable to several types of images: it can be
applied to natural, textured and biomedical images as
well as to real-world photographs.

3) It does not require any a priori knowledge or learning
considering the shape/size of the target region.

4) It guides contour away from high-entropy edge regions
in order to avoid iterations dedicated to erroneous local
minima, by selectively amplifying data fidelity forces.

To the best of our knowledge, this is the first paper for
automated region-based AC parameterization of regulariza-
tion and data fidelity energy terms combining the above
elements.

The remainder of this paper is organized as follows.
Section II presents the motivation behind the idea of the
proposed framework, as well as its details. Section III demon-
strates the results and comparisons obtained by experiments
with four state-of-the-art region-based AC models and two
image restoration models, which minimize an energy func-
tional consisting of regularization and data fidelity terms.
Conclusion and future research directions are summarized in
Section IV.

Fig. 1. (a) Structure tensor field of a test image. (b) Zoomed-in view of
region which corresponds to a target edge region. (c) Zoomed-in view of
region which corresponds to a nontarget edge region.

II. PROPOSED FRAMEWORK

A. Motivation

Overviews of the standard formalisms of the most prominent
AC variations can be found in [19] and [26]. The proposed
framework is motivated by the attractive properties of structure
tensor eigenvalues [45]. The latter are capable of describing
the orientation coherence in edge regions. An edge region
containing edges of similar orientations is characterized as
a structured edge region, whereas an edge region containing
multiple orientations is characterized as an unstructured one.

Structured edge regions correspond to target edges. This is
illustrated in Fig. 1, which shows: 1) the structure tensor field
of a test image; 2) a zoomed region which corresponds to a
target edge region; and 3) a zoomed region which corresponds
to a nontarget edge region. In the case of Fig. 1(b), the target
edge region is characterized by edges of similar orientations,
whereas in the case of Fig. 1(c), the nontarget edge region
is associated with multiple orientations. Based on the above
remark, structure tensor eigenvalues are capable of identifying
whether an edge region is target or nontarget, depending on
the variability of the orientations of its edges.

According to Weickert’s diffusion model [46], a structure
tensor D is defined as follows:

D = ∇I ⊗ ∇I = ∇I · ∇IT (1)

where I is an image. D has an orthonomal basis of eigenvectors
v1, v2 with v1||∇I, v2⊥∇I and λ1, λ2 are the corresponding
eigenvalues defined as follows:

λ1,2 = 1

2
(Ixx + Iyy ±

√
(Ixx − Iyy)2 + 4I2

xy (2)

where the + sign belongs to λ1. The principal eigenvalue λ1 is
longitudinal with respect to the principal axis of the elliptical
tensor, whereas the minor eigenvalue λ2 is vertical with respect
to the same principal axis.

Region-based ACs very often conform to Euler–Lagrange
equations which consist of regularization and data fidelity
terms [19]. Regularization terms are longitudinal to contour
direction whereas data fidelity terms are vertical, attracting
contours toward the boundaries of target edge regions. It is
tempting to notice that the regularization weight, denoted as
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Fig. 2. Schematic representation of (a) elliptical structure tensors (red
ellipses) consisting of regions of single and multiple orientations (black
arrows) and (b) OE behavior on each structure tensor.

wreg, corresponds to the same direction as the eigenvalue of
the horizontal eigenvector of a structure tensor. Similarly, the
data fidelity weight, denoted as wdf , corresponds to the same
direction as the eigenvalue of the vertical eigenvector. This
isomorphism indicates a link between the regularization and
data fidelity terms and the eigenvalues of structure tensors.

B. Orientation Coherence Estimation

Motivated by the above observations, the proposed frame-
work adjusts regularization and data fidelity parameters auto-
matically, in a similar fashion to Weickert’s diffusion model,
in order to describe the orientation coherence of edge regions.
The latter is calculated by orientation entropy (OE) defined as
follows:

OEjk = −
Njk∑
n=1

Mjk∑
m=1

pjk(m, n) · log pjk(m, n) (3)

pjk = |Ijk(m, n)|2√∑Njk
n=1

∑Mjk
m=1 [Ijk(m, n)]2

(4)

where Ijk is the subband image generated by a multidirectional
filtering method such as the contourlet transform (CT) [47],
OEjk is the OE of the subband image Ijk in the kth direction
and the jth level, Mjk is the row size and Njk the column size
of the subband image.

OE obtains high values in cases of unstructured edge
regions, which are associated with noise and artifacts and
low values in cases of structured edge regions, which are
associated with target edges. Fig. 2(a) depicts a schematic
representation of elliptical structure tensors (red ellipses) con-
sisting of regions of single and multiple orientations (black
arrows), whereas Fig. 2(b) depicts the respective OE behavior
on each structure tensor.

Each q × q image grid is fed into CT through an iterative
procedure. The size of the q × q image grid is experimen-
tally determined as the minimum of the negative power of
two of the original image size, which still maintains at least
an edge region. For instance, in the case of the thyroid ultra-
sound images used in the experiments presented in Section III,
it has been found that for an image of 320 × 320, an image
grid of 40 × 40 (40 = 320 × 2−3) is suitable. The image grid
is further decomposed into two pyramidal levels, which are
then transformed into four directional subbands: 0◦, 45◦, 90◦,
and 135◦ in order to investigate whether the edge region of
the grid is a target or a nontarget edge region.

Fig. 3. CT filter-bank. LP provides a down-sampled low-pass and a band-
pass version of the image. Consequently, a DFB is applied to each band-pass
image.

The band-pass directional subbands represent the local
image structure and apart from intensity, also hold textu-
ral information. CT provides an inherent multiscale filtering
mechanism, capable of filtering out randomly oriented edges
associated with noise, artifacts and/or background clutter.
Moreover, CT is directly implemented in the discrete domain
and is capable to selectively represent edges of various scales
and directions. Small scale edges are associated with noise or
artifacts.

C. Contourlet Transform (CT) [47]

Aiming at a sparse image representation, CT employs a dou-
ble iterated filter-bank, which captures point discontinuities
by means of the Laplacian pyramid (LP) and obtains linear
structures by linking these discontinuities with a directional
filter-bank (DFB). The final result is an image expansion that
uses basic contour segments. Fig. 3 illustrates a CT iterated
filter-bank.

The downsampled low-pass and band-pass versions of the
image contain lower and higher frequencies, respectively. It is
evident that, the band-pass image contains detailed informa-
tion of point discontinuities, which are associated with target
edge regions. Furthermore, DFB is implemented by an l-level
binary tree which leads to 2l subbands. In the first stage, a
two-channel quincunx filterbank [48] with fan filters divides
the 2-D spectrum into vertical and horizontal directions. In
the second stage, a shearing operator reorders the samples. As
a result, different directional frequencies are captured at each
decomposition level. The number of iterations depends mainly
on the size of the input image. The total number of directional
subbands Ktotal is calculated as

Ktotal =
J∑

j=1

Kj (5)

where Kj is a subband DFB applied at the jth level
(j = 1, 2, ..., J). Fig. 4 depicts the CT filter-bank of a sam-
pled image grid, decomposed to the finest and second finest
scales, which are partitioned into four directional subbands.

Among the OE values calculated for each subband, the max-
imum OE value of the most informative scale j and direction
k, which depends on N and M is calculated and assigned to all
pixels of each grid. The result is considered as an OE matrix
reflecting local structure information.
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Fig. 4. CT filter-bank of a sample grid decomposed to two levels of LP and
four band-pass directional subbands.

Fig. 5. Block diagram of the pipeline of the proposed framework.

D. Automated Parameterization

The regularization parameter wreg and the data fidelity
parameter wdf are matrices of the same dimensions as the
original image and are calculated according to the following
equations:

wreg = (1/wdf )× N × M, wdf = argIjk
max(OE(Ijk)). (6)

In cases of regions of randomly oriented edges, high val-
ues are assigned to wdf , amplifying data fidelity forces in the
early stages of contour evolution. In such cases, contour will be
repelled from the regions of randomly oriented, unstructured
edges and iterations dedicated to false local minima, associated
with such edges will be avoided. It should be highlighted that
both parameters are calculated only once. The aim is to nav-
igate the contour directly to structured edge regions, already
from the early stages of evolution and to hinder erroneous
behavior, by “constantly reminding” the locations of structured
edge regions. Moreover, apart from separately adjusting each
parameter, the proposed framework also achieves a balanced
trade-off between regularization and data fidelity parameters.
In cases of unstructured edge regions, as quantified by the
maximum value of OE over all sub-band images, data pro-
vide a less reliable clue than contour regularization. On the
other hand, in structured edge regions, data provide a more
reliable clue. Both cases of high and low maximum OE, as
well as cases with intermediate values of OE are addressed by
setting regularization terms as the reciprocal of data fidelity
terms.

The two spatially-varying matrices representing the auto-
matic regularization and data fidelity parameters are integrated
into the Euler–Lagrange equation, replacing the empirically
determined uniform parameters. The pipeline of the proposed
framework is portrayed in the block diagram of Fig. 5.

III. RESULTS

The proposed framework has been embedded into four
region-based AC models [17], [19], [26], [49] consisting of
regularization and data fidelity energy terms, in order to
evaluate the segmentation performance of automated versus
empirical parameterization. Additionally, the proposed frame-
work has been integrated into the Rudin–Osher–Fatima (ROF)
model [50] and the Nikolova et al. model [51] for image
restoration, so as to test its effectiveness on alternative inverse
problems irrespective of the application. The well-known
Chan–Vese model [19] and the model of Savelonas et al. [49]
have been implemented in MATLAB, whilst MATLAB codes
of the models of Li et al. [17], Bresson et al. [26], the
ROF model [50], and the Nikolova et al. model [51] can
be downloaded from the authors’ homepages [52], [53], [54],
and [55], respectively. The “9-7” biorthogonal filter for the
multiscale and multidirectional decomposition stage of CT is
applied [56].

The results of the original, empirically parameterized algo-
rithms were compared to those obtained by the automated
versions. Apart from the experiments on the Berkeley seg-
mentation dataset [57] and test images obtained by various
datasets [58], [59], additional experiments were conducted
on 20 images of the Amsterdam library of object images
(ALOI) database [60], 20 coronal scans of the lung image
database consortium and image database resource initiative
(LIDC-IDRI) [61], 20 thyroid ultrasound images contain-
ing hypoechoic nodules over a noisy background, provided
by the radiology department of Euromedica S.A., Greece
and 20 images of the labial teeth and gingiva photographic
image database (LTG-IDB) [62], in order to evaluate the pro-
posed framework on large benchmark datasets. All medical
images used were investigated by MDs who provided ground
truth images, whereas contour initialization was the same for
both the proposed framework and the empirically fine-tuned
version, in order to facilitate fair comparisons.

It should be stressed that, rather than comparing one AC
method with another, the experiments to follow aim to evalu-
ate the effectiveness of the proposed framework by examining
whether the segmentation performance of the unsupervised
version is at least comparable to the one obtained by the
empirically fine-tuned version.

Fig. 6 illustrates: (a) and (b) test images obtained by the
Berkeley dataset, (c) a thyroid ultrasound (US) test image
containing a nodule, (a1), (b1), and (c1) ground-truth images
and (a2), (b2), and (c2) segmentation results of the pro-
posed framework. Aiming to evaluate the obtained results, the
region overlap measure, known as the Tannimoto Coefficient
(TC) [63], is considered

TC = N(A
⋂

B)

N(A
⋃

B)
(7)

where A is the region delineated by the segmentation method
under evaluation, B is the ground truth region and N() indicates
the number of pixels of the enclosed region. The results of
Fig. 6(a2), (b2), and (c2) correspond to TC values of 90.3%,
88.7% and 91.4%, respectively.
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Fig. 6. Segmentation based on local image geometry. (a)–(c) Original test
images. (a1)–(c1) Ground-truth images. (a2)–(c2) Segmentation results of the
proposed framework.

Fig. 7. (a) Sample image. (b) Segmentation results obtained by the empiri-

cally fine-tuned version (wfixed
reg = 0.006 · 2552, wfixed

df = 1). (c) Segmentation

results obtained by the randomly-tuned version (wfixed
reg = 0.001 · 2552,

wfixed
df = 0.1). Size 256 × 256.

Aiming at highlighting the significance of the proposed
framework, we have investigated the sensitivity of the Chan–
Vese model to small alterations of parameters. Except of being
adjusted with parameters determined as optimal, the empirical
version of the Chan–Vese model is also adjusted with param-
eters which are randomly set and is tested on sample images
obtained by the utilized datasets. Accordingly, wfixed

reg and wfixed
df

were set to randomly selected values, which fluctuated up
to 10% from the optimal ones. Fig. 7 depicts: (a) a sample
image, (b) segmentation results obtained by the empirically
fine-tuned Chan–Vese model, and (c) segmentation results
obtained by randomly tuning the same model, where wfixed

reg

and wfixed
df were randomly set to 0.001·2552 and 0.1, respec-

tively. It is evident that, the segmentation results obtained by
the random tuning differ significantly from the ones obtained
by empirical fine-tuning. Random tuning leads to an aver-
age TC value of 58.3 ± 1.7%, whereas empirical fine-tuning
leads to an average TC value of 82.0 ± 1.5% with respect
to all images tested. A similar behavior has been observed
to the rest of the AC applications presented. Hence, ACs are
sensitive even to small alterations of parameters and the seg-
mentation results are highly dependent on the “optimality” of

the empirical fine-tuning thus, on the technical skill of the end-
user. On the contrary, the proposed framework achieves a high
segmentation quality, comparable to the segmentation qual-
ity obtained by empirically fine-tuning, but in an automated
fashion, endowing segmentation results with objectivity.

In the experiments to follow, evolution is stopped when the
overlap between all pairs of regions enclosed by AC instances
of the last five successive iterations, is more than 99.95%, as
quantified by TC.

A. Chan–Vese Model [19]

The Chan–Vese model determines the level set evolution by
solving the following equation

∂φ
∂t = wfixed

reg · δ(φ(x, y)) · div
( ∇φ

|∇φ|
)

−wfixed
df (I(x, y)− c1)

2 + wfixed
df (I(x, y)− c2)

2
(8)

where φ is the level set function, I the observed image, c1,
c2 the average intensities inside and outside of the contour,
respectively, wfixed

reg the fixed regularization parameter and wfixed
df

the fixed data fidelity parameter. The latter are assigned the
same value as suggested by Chan and Vese. For the empirical
case, the optimal parameters are set according to the original
paper [19]. For the proposed framework, the regularization and
data fidelity parameters are automatically calculated according
to (6).

The segmentation performance of the Chan–Vese model for
both empirically and automatically parameterized versions is
evaluated on test images obtained by [58] and [59]. The test
images contain a foreground object of interest over an inho-
mogeneous background. The contour is initialized as a closed
circle with the same center and radius for all test images and
for both empirically and automatically parameterized versions,
so as to ensure consistency.

Fig. 8 illustrates the contour obtained on two test images,
for the second as well as for the final iteration. The first image
contains an object of interest of high average intensity over
a darker background, whereas the second image contains a
dark object of interest over a brighter background. Yellow
color is used for the initial contour in both versions whereas
blue and green colors are used for the contours obtained by
the empirical and automated version, on the second and final
iteration.

The dilation operator has been used to morphologically
reconstruct contours and enhance image appearance. In the
case of the first image, the automated version converges faster
to the object boundaries since the forces guiding contour evo-
lution are appropriately amplified in nontarget, high-entropy
edges. In the case of the second image, the empirical version
is delayed on the fine image details and converges to erroneous
boundaries. This can be explained by the gross nature of the
Chan–Vese model, which is guided by region-based forces and
thus, is delayed on erroneous local intensity minima associ-
ated with brighter background clutter. On the contrary, the
automated version is guided by region-based forces, as well
as by local geometry information, incorporated in the param-
eters matrices and is capable to identify the actual target edge
regions.
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Fig. 8. Examples of contour evolution of the Chan–Vese model. Yellow color is used for the initial contour in both versions; blue and green colors are used
for the contours obtained by the empirical (wfixed

reg = 0.006 · 2552, wfixed
df = 1) and automated version, respectively. Size 320 × 320.

Fig. 9. DMI calculated for the early stages of evolution of the automated
versus empirical version of the Chan–Vese model, presented in Fig. 8.

Aiming to evaluate the convergence rate of both versions,
we define the difference of mean intensity values (DMI)
between inside and outside region terms and implement the
following algorithm.

∀ iteration i
1. Calculate inside |I(x, y) − c1|2 and outside |I(x, y) − c2|2
region terms.
2. Normalize and quantize both terms in the range [0, 255].
3. Calculate mean values.
4. Calculate DMI.

Fig. 9 depicts DMI calculated for the early stages of evolu-
tion of the empirical and automated versions of the Chan–Vese
model presented in Fig. 8. It can be observed that DMI reaches
higher values in the automated case in the early stages of con-
tour evolution. Again, this is explained by the fact that the
forces guiding contour evolution are appropriately amplified
in nontarget edges. Fig. 10 compares the segmentation perfor-
mance of the empirical and automated version for the early
stages of evolution in terms of TC.

It should be mentioned that the proposed framework is
potentially applicable on similar methods which are capable
of solving two-phase segmentation problems, as is the case
with the model of Mory et al. [64].

Fig. 10. TC for the early stages of evolution of automated versus empirical
version presented in Fig. 8.

B. Bresson et al. Model [26]

Bresson et al. propose to minimize the following energy
functional based on the Chan–Vese model [19], in order to
carry out the global minimization of segmentation

E(u, c1, c2,wfixed
df ) = TVg(u)+ wfixed

df

∫

�

(c1 − I(x))2 (9)

−(c2 − I(x))2dx

where u is a characteristic function 1�C of a closed set where
C denotes the nonconnected boundaries of �C, g an edge-
indicator function, TVg(u) the weighted total variation (TV)
energy of the function u with the weight function g, i.e.,
TVg(u) = ∫

g(x)|∇u|dx, and wfixed
df the fixed data fidelity

parameter. For the empirical case, the latter is set according to
the original paper [26]. For the proposed framework, the data
fidelity parameter is automatically calculated according to (6).

The model of Bresson et al. [26] is evaluated on test images
obtained by the first author’s homepage. Fig. 11 presents seg-
mentation results for Cheetah and Zebra textured images. The
final contour satisfies

{
(x, y) ∈ �|Ifinal(x, y) > 0.5

}
. (10)

Magenta and green colors correspond to empirical and auto-
mated version, respectively. It is evident that both versions
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Fig. 11. Segmentation results of the model of Bresson et al. Magenta and green contours correspond to empirical (wfixed
reg = 0.7, wfixed

df = 0.4) and automated
parameterization, respectively. Size 320 × 320.

Fig. 12. Segmentation results of the model of Savelonas et al. Yellow is used for the initial contour in both versions, purple and green contours correspond
to empirical (wfixed

reg = 0.006 · 2552, wfixed
df = 1) and automated parameterization, respectively. Size 320 × 320.

converge to the actual object boundaries, resulting in compa-
rable segmentation accuracy. It should be pointed out that the
empirical version of the model of Bresson et al. convexifies
energy in order to compute a global minimizer. The auto-
mated version captures local geometry information correctly
and converges to the actual target edge regions.

C. Savelonas et al. Model [49]

The region-based AC in Savelonas et al. model converges
based on the Chan–Vese model [19] according to the following
equation:

∂φ
∂t = wfixed

reg · δ(φ(x, y)) · div
( ∇φ

|∇φ|
)

−wfixed
df1

(I1(x, y)− c1)
2 + wfixed

df1
(I1(x, y)− c2)

2

−wfixed
df2

(I2(x, y)− c3)
2 + wfixed

df2
(I2(x, y)− c4)

2

(11)

where φ is the level set function, I1, I2 the observed image and
the binarized image which is the output of morphological pro-
cessing, respectively, c1, c2 and c3, c4 the average intensities
inside and outside of the contour of I1 and I2, respectively,
wfixed

reg the fixed regularization parameter, wfixed
df1

and wfixed
df2

the

fixed data fidelity parameters of I1 and I2, respectively. For
the empirical case, the optimal parameters are set according

to the original paper [49]. For the proposed framework, the
regularization and data fidelity parameters are automatically
calculated according to (6). The segmentation performance of
the recent model of Savelonas et al. for both empirical and
automated versions is evaluated on real 2-D gel electrophore-
sis (2D-GE) images, obtained by the Biomedical Research
Foundation of the Academy of Athens.

Fig. 12 illustrates contours obtained on the second as well
as on the final iteration, for 2D-GE sub-images. Yellow color
is used for the initial contour in both versions, whereas purple
and green colors correspond to empirical and automated ver-
sion, respectively. It is evident that the segmentation results
of the empirical and automated versions are comparable.
Nonetheless, as already pointed out, empirical parameteriza-
tion requires tedious, time-consuming experimentation. Our
framework is capable of obtaining comparable results in an
automated fashion. Fig. 13 depicts DMI for both versions, for
the early stages of contour evolution presented in Fig. 12.
Again in the case of the automated version, DMI is slightly
higher in early iterations.

In Fig. 14, the comparison is performed in terms of TC,
providing a quantification of the actual segmentation perfor-
mance for the early stages of evolution. So far, the proposed
framework has been applied on region-based AC models.
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Fig. 13. DMI between inside and outside regions for the early stages of
evolution of automated versus empirical version presented in Fig. 12.

Fig. 14. TC for the early stages of evolution of automated versus empirical
version presented in Fig. 12.

D. Li et al. Model [17]

The proposed framework has also been applied on the model
of Li et al. so as to investigate its effectiveness on AC models
which are not purely region-based, with respect to data fidelity
and regularization parameters. In this sense, the two parame-
ters automatically fine-tuned were wfixed

df and wfixed
reg , since these

two parameters correspond to data fidelity and regularization
parameters, for which the proposed framework has been for-
mulated. Li et al. minimize an energy functional inspired by
the GAC energy functional [10], which is defined as

E(φ) = wfixed
reg

∫
�

p(|∇φ|dx

+ afixed
∫
�

gδε(φ)|∇φ|dx + wfixed
df

∫
�

gHε(−φ)dx
(12)

where φ is the level set function, p a potential function
p:[0,∞) → �, g an edge-indicator function, δ the Dirac func-
tion, H the Heaviside function, wfixed

reg the fixed regularization
parameter, afixed a fixed parameter that weights the second
energy term which can be expressed as a line integral of the
GAC model, and wfixed

df the fixed data fidelity parameter. The
level set evolution is determined as follows:

∂φ
∂t = wfixed

reg · div
(

dp
∇φ
|∇φ|

)

+ afixedδε(φ) · div
(

g ∇φ
|∇φ|

)
+ wfixed

df gδε(φ).
(13)

For the empirical case, the optimal fixed parameters are
set according to the original paper [17]. For the proposed
framework, the optimal fixed value of afixed is maintained,
whereas the regularization and data fidelity parameters are
automatically calculated according to (6). The value of afixed

remained empirically fixed and its adjustment is beyond the
scope of this paper. However, the presence of the extra term
in this model did not prevent the proposed framework to
automatically adjust wfixed

reg and wfixed
df .

In a similar fashion, the segmentation performance of both
empirical and automated versions of the model of Li et al. [17]
is evaluated on test images obtained by the author’s home-
page [52]. Fig. 15(a) and (b) illustrates a test image and
the initial level-set function, respectively, whereas the images
below present contours obtained in three different iterations,
as well as the final level-set functions. The latter exhibit the
shape of a signed distance function in the vicinity of the zero
level-set and a flat shape outside this vicinity. Red and green
colors correspond to empirical and automated parameteriza-
tion, respectively. It should be pointed out that the level-set
evolution is applied without reinitialization and is guided also
by edge-based forces. It is evident that the segmentation results
of the empirical and automated versions are comparable.

Fig. 16 depicts TC results of both empirical and automated
versions for the early stages of contour evolution presented
in Fig. 15. In the automated version, TC reaches slightly
higher values from early iterations. However, one should
take into account that with empirical parameterization it is
always possible to set “optimal” parameters after laborious,
time-consuming experimentation. Our framework is capable
of obtaining comparable results in an automated fashion.

E. Rudin–Osher–Fatima (ROF) Model [50]

The proposed framework is also integrated into the ROF
model for edge-preserving image restoration, so as to test
its effectiveness on other inverse minimization problems (TV
minimization). The aim of the ROF model is to remove noise
from a corrupted image without blurring the target edges. Let
f = K ∗ I + n denote the image plagued by noise, where K,
n are the convolution kernel and additive noise, respectively.
The “clean” image is recovered by minimizing the following
energy:

E(I) =
∫

�

|∇I| + wfixed
df

∫

�

(f − I)2dx. (14)

For the empirical case, the optimal fixed parameter is set
according to the original paper [50]. For the proposed frame-
work, the data fidelity parameter is automatically calculated
according to (6). Fig. 17 illustrates: (a) the original image
plagued by noise, (b) the recovered image of the ROF model
utilizing empirical parameterization, and (c) the recovered
image of the ROF model utilizing automated parameterization.
In [50], image restoration is visually assessed. Following this,
it can be observed that, the automated version maintains the
quality of image restoration, originally obtained with empirical
parameters.

F. Nikolova et al. Model [51]

The Nikolova et al. model solve the following nonconvex
nonsmooth minimization problem for image restoration and
reconstruction:

J(I, u) = ||HI − g||22 + β	(I)

+βαTV(u)+ wfixed
df ||I − u||22

(15)
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Fig. 15. Evolution of segmentation for the model of Li et al. Red and green contour corresponds to empirical (wfixed
reg = 0.2, wfixed

df = 5) and automated
parameterization, respectively. (a) Original test image. (b) Initial level-set function. Size 56 × 56.

Fig. 16. TC for the early stages of evolution of automated versus empirical
model presented in Fig. 15.

where H is a q × p matrix representing optical blurring,
	(I) = ∑

i∈I ψε(||DiI||2, where ψ is a smooth and con-
cave function and Di discrete gradients, g the image plagued
by noise, u ∈ � an auxiliary variable used to transfer the
nonsmooth TV term from image I and β, α the restora-
tion parameters, where β is a regularization parameter and
α a positive parameter. In the case of empirical fine-tuning,
the fixed parameter wfixed

df is set according to the original
paper [51]. In the case of the proposed framework, the data
fidelity parameter is automatically calculated according to (6).
Fig. 18 illustrates: (a) the original image, (b) the observed
image, (c) the result of empirically parameterized restoration,
and (d) the result of restoration parameterized by means of
(6). It is once more evident that, the proposed framework
maintains the quality of image restoration compared to the
one obtained by empirical parameterization. In more quanti-
tative terms, the point-to-signal-noise-ratio (PSNR) obtained
by empirical and automated parameterization is 18.65 and
18.59 dB, respectively.

Considering both the ROF model and the Nikolova et al.
model, it should be highlighted that, even though the proposed
framework has been designed for segmentation models, it can
also be effectively embedded in other energy minimization
models, with similar formulation, as is the case of these two
restoration models.

Fig. 17. (a) Original image plagued by noise, the recovered image of the ROF
model utilizing. (b) Empirical parameterization (wfixed

df = 12). (c) Automated
parameterization. Size 320 × 320.

G. Additional Experiments on Various Datasets

The proposed framework is also tested on 20 grayscale
images obtained by the ALOI database [60], 20 coronal
scans obtained by the LIDC-IDRI [61], 20 thyroid ultrasound



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON CYBERNETICS

Fig. 18. (a) Original image plagued by noise. (b) Observed image.
(c) Restored image utilizing empirical parameterization (wfixed

df = 0.05).
(d) Restored image utilizing automated parameterization. Size 64 × 64.

images containing hypoechoic nodules provided by the radi-
ology department of Euromedica S.A., Greece and 20 images
obtained by the LTG-IDB [62] in order to enable evaluation
on large benchmark datasets.

Fig. 19 illustrates segmentation results on sample images
obtained by the ALOI database for both empirical and auto-
mated parameterization. The first and second columns illus-
trate test images and their ground truth, respectively. The third
column provides the iteration number, for which the automated
version converges. The fourth and fifth columns illustrate seg-
mentation results of the empirical and automated case for that
iteration, respectively. The sixth and seventh columns illustrate
the iteration number for which the empirical version converges
and the segmentation results for that iteration, respectively. All
test images were recorded with varying viewing and illumina-
tion angles, resulting in challenging shades. Several images of
ALOI database, including the illustrated Teapot, Bear, Basket,
and Wire, contain intensity-based information whereas some
also contain textured regions, as is the case with Basket
and Wire. It is evident that after convergence, the segmen-
tation results of both empirical and automated versions are
comparable. However, in the empirical case, the contour is
delayed on erroneous local intensity minima associated with
shades and thus requires approximately 10–20 times more iter-
ations in order to converge. On the contrary, in the automated
case, forces which guide contour evolution are appropriately
amplified in nontarget, high-entropy edges, accelerating con-
vergence. The automated case achieves an average TC value
of 96.9 ± 1.6%, which is comparable to the TC value obtained
by the empirical case. However, the empirical case achieves
a TC value of 58.4 ± 14.3% in the same iteration that the
automated version has converged, with regards to all ALOI
images tested.

Fig. 20 illustrates: (a)–(c) sample coronal computed-
tomography scans of lung parenchyma, (a1)–(c1) ground truth
images, (a2)–(c2) segmentation results of the empirical ver-
sion, (a3)–(c3) segmentation results of the automated version.
The aim of segmentation on this database (LIDC-IDRI) is to
separate the lung parenchyma from the surrounding anatomy,

which is typically impeded by airways or other “airway-
like” structures in the right and left lung. The segmentation
result is used for the computation of emphysema measures.
Such images contain an inhomogeneous background and mul-
tiple features, such as the trachea and thoracic spine (pale
areas), as well as the left and right lung (dark areas). It is
notable that both versions achieve comparable segmentation
results. The automated version achieves an average TC value
of 83.8 ± 1.3%, over all computed-tomography scans of the
database, which is comparable to the TC value of 82.5 ± 1.8%
obtained by the empirical version.

Fig. 21 illustrates: (a)–(c) sample thyroid ultrasound
images containing hypoechoic nodules, (a1)–(c1) ground truth
images, (a2)–(c2) segmentation results of the empirical ver-
sion, (a3)–(c3) segmentation results of the automated version.
Hypoechoic nodules may be associated with medium or high
risk for malignancy, depending on the irregularity of their
boundary. These images are very challenging with respect to
segmentation, since they are plagued by speckle noise and arti-
facts. Moreover, thyroid nodules are characterized by blurred
and irregular boundaries. It can be observed that the segmen-
tation result of the automated version is comparable to the
one obtained by the empirical version. The automated version
achieves an average TC value of 83.7 ± 0.8%, over all thy-
roid ultrasound images of the database, which is comparable
to the TC value of 82.8 ± 1.2% obtained by the empirical
version.

Fig. 22 illustrates: (a)–(c) labial teeth and gingiva pho-
tographic images, (a1)–(c1) ground truth images, (a2)–(c2)
segmentation results of the empirical version, (a3)–(c3) seg-
mentation results of the automated version. The scope of
this database (LTG-IDB) is the task of teeth/nonteeth seg-
mentation. Such images are characterized by intensity vari-
ations from saturated to faint areas, over an inhomogeneous
background (gingiva). It can be observed that the segmen-
tation results obtained by the automated version approxi-
mate the corresponding ground truth images. The automated
version achieves an average TC value of 84.2 ± 1.8%,
over all images of the database, which is comparable to
the TC value of 82.9 ± 1.6% obtained by the empirical
version.

IV. CONCLUSION AND FUTURE DIRECTIONS

This paper introduces a novel framework for automated reg-
ularization and data fidelity parameterization of region-based
ACs, which is motivated by the observation that the weight-
ing factors of regularization and data fidelity terms and the
eigenvalues of structure tensors are associated with the same
orthogonal directions. The proposed framework is unsuper-
vised and does not require technical skills from the domain
user. In addition, it is applicable to several image modalities
and does not require prior knowledge on the target regions.
Moreover, it avoids iterations dedicated to erroneous local min-
ima, resulting in convergence rate comparable to or higher than
the one obtained with empirical parameterization.

The proposed framework has been experimentally evaluated
on various datasets of natural, textured, and biomedical images
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Fig. 19. Segmentation results of the proposed framework. The first and second columns illustrate test images obtained by ALOI database [60] and their
ground truth images, respectively. The third column shows the final iteration of contour convergence in the automated case. The fourth and fifth column
illustrates segmentation results of the empirical (wfixed

reg = 0.006 · 2552, wfixed
df = 1) and automated case for that iteration, respectively. The sixth and seventh

column illustrates the final iteration of contour convergence in the empirical case as well as the segmentation results for that iteration, respectively. Size
320 × 320.

Fig. 20. (a)–(c) Coronal computed-tomography scans of lung parenchyma.
(a1)–(c1) Ground truth images. (a2)–(c2) Segmentation results of the empirical
version (wfixed

reg = 0.006 · 2552, wfixed
df = 1). (a3)–(c3) Segmentation results of

the automated version. Size 320 × 320.

by comparing the segmentation performance obtained by
empirical versus automated parameterization of four state-of-
the-art region-based AC variations and two image restoration
models. The experimental results show that it is capable of

Fig. 21. (a)–(c) Thyroid ultrasound images containing nodules. (a1)–(c1)
Ground truth images. (a2)–(c2) segmentation results of the empirical version
(wfixed

reg = 0.006 · 2552, wfixed
df = 1). (a3)–(c3) Segmentation results of the

automated version. Size 256 × 256.

maintaining a segmentation quality comparable to the one
obtained with empirical parameterization, yet in an automated
fashion. Future directions of this paper include investigation
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Fig. 22. (a)–(c) Labial teeth and gingiva photographic images. (a1)–(c1)
Ground truth images. (a2)–(c2) Segmentation results of the empirical version
(wfixed

reg = 0.006 · 2552, wfixed
df = 1). (a3)–(c3) Segmentation results of the

automated version. Size 320 × 320.

of the potential of alternative instances of the proposed
framework on several biomedical application domains.
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Automated Adjustment of Region-Based
Active Contour Parameters Using

Local Image Geometry
Eleftheria A. Mylona, Michalis A. Savelonas, Member, IEEE, and Dimitris Maroulis, Member, IEEE

Abstract—A principled method for active contour (AC) param-
eterization remains a challenging issue in segmentation research,
with a potential impact on the quality, objectivity, and robust-
ness of the segmentation results. This paper introduces a
novel framework for automated adjustment of region-based AC
regularization and data fidelity parameters. Motivated by an iso-
morphism between the weighting factors of AC energy terms
and the eigenvalues of structure tensors, we encode local geom-
etry information by mining the orientation coherence in edge
regions. In this light, the AC is repelled from regions of ran-
domly oriented edges and guided toward structured edge regions.
Experiments are performed on four state-of-the-art AC models,
which are automatically adjusted and applied on benchmark
datasets of natural, textured and biomedical images and two
image restoration models. The experimental results demonstrate
that the obtained segmentation quality is comparable to the
one obtained by empirical parameter adjustment, without the
cumbersome and time-consuming process of trial and error.

Index Terms—Active contours, automated parameterization,
structure tensors.

I. INTRODUCTION

ACTIVE contours (ACs) are a rather mature image
segmentation paradigm, with several variations pro-

posed in literature [1]–[4]. However, their parameterization
remains a challenging, open issue, with strong implications
on the quality, objectivity, and robustness of the segmenta-
tion results. Very often, parameters are empirically adjusted
on a trial and error basis, a process which is laborious
and time-consuming, based on subjective as well as heuris-
tic considerations. On one hand, nonexpert users such as
medical doctors (MDs) and biologists require technical sup-
port since they are not familiar with the algorithmic inner
mechanisms. On the other hand, parameter configurations of
image analysis experts are usually suboptimal and applicable
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to specific datasets [5]. Moreover, the proliferation of AC
variations raises the need for a framework facilitating fair
comparisons.

Tracing the main line of progress in AC literature, one can
observe that the parameterization issue persists. The first AC
model, widely known as the snake model, has been proposed
in the seminal work of Kass et al. [6]. The snake model
employed physically-inspired terms for contour stiffness and
rigidity, as well as image-derived terms, all weighted by empir-
ically adjusted parameters. The snake model was succeeded
by the geodesic AC model (GAC) [7]–[11] which, unlike its
predecessor, is topologically adaptable and employs intrinsic
contour representations instead of 1-D parameterized curves.
However, GAC is still empirically parameterized. In the course
of the evolution of the AC paradigm in the following years,
which included edge-based [12]–[17], region-based [18]–[27]
and hybrid models [28]–[33], the need for empirical parameter
adjustment remained.

Numerous approaches have been proposed in order to
cope with the issue of parameterization. Pluempitiwiriyawej
et al. [34] and Tsai et al. [35] dynamically update AC param-
eters as contour evolves. This temporal dependency may lead
to the propagation of early errors in the later contour evo-
lution stages. In addition, in these approaches parameters
are not spatially-varying, failing to capture local image fea-
tures. Kokkinos et al. [36] proposed a statistical approach
employing the posterior probabilities of texture, edge and
intensity cues as contour weights in a locally adaptive manner.
Nevertheless, their approach still requires technical skills by
the domain user. Keuper et al. [37] and Liu et al. [38] pre-
sented a method for dynamic adjustment of AC parameters,
applicable on the detection of cell nuclei and lip boundaries,
respectively. Both methods require a priori knowledge con-
sidering the shape of the target region. Iakovidis et al. [39]
and Hsu et al. [40] introduced a framework for optimiza-
tion of AC parameters based on genetic algorithms. However,
these heuristic approaches converge slowly in locally optimal
solutions. Allili and Zhou [41] proposed an approach for esti-
mating hyper-parameters capable of balancing the contribution
of boundary and region-based terms. In their approach, empir-
ical parameter tuning is still involved. Yushkevich et al. [42]
developed an application for level-set segmentation of images
of anatomical structures. Although their GUI is friendly
to nonexpert users, parameter settings are still empirically
fixed.

2168-2267 c© 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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This paper introduces a novel framework for automated
adjustment of region-based AC regularization and data fidelity
parameters based on local image geometry information.
Starting from the observation that these parameters and the
eigenvalues of structure tensors are associated with the same
orthogonal directions, we encode local image geometry by
mining the orientation coherence in edge regions. The latter
can be encoded by means of orientation entropy (OE), a mea-
sure which is an increasing function of orientation variability
of edges, obtaining low values in structured regions containing
edges of similar orientations and high values in unstructured
regions containing edges of multiple orientations. As a result,
those forces that guide contour away from randomly ori-
ented, high-entropy edge regions are amplified and iterations
dedicated to erroneous local minima are avoided, speeding
up contour convergence. On the other hand, forces imposed
within the proximity of structured edges, naturally related to
target edge regions, are reduced, enhancing segmentation accu-
racy. Preliminary variations of this paper have appeared in [43]
and [44]. Even though these variations obtained promising seg-
mentation results, they were only applied on a limited number
of images.

It should be highlighted that the aim of this paper is to intro-
duce a framework for automatically adjusting region-based
AC parameters, rather than presenting yet another AC model.
Moreover, the convergence acceleration is a byproduct of the
proposed framework and not its main motivation, which is the
capability of AC self-parameterization.

The contribution of the proposed framework has several
aspects.

1) It is unsupervised and may be treated as a “black box”:
the regularization and data fidelity parameters are auto-
matically adjusted. Hence, technical skills are not a
prerequisite for the domain user and he/she is completely
released from the tedious and time-consuming process
of trial and error adjustment. In addition, the subjectivity
of the results is reduced.

2) It is applicable to several types of images: it can be
applied to natural, textured and biomedical images as
well as to real-world photographs.

3) It does not require any a priori knowledge or learning
considering the shape/size of the target region.

4) It guides contour away from high-entropy edge regions
in order to avoid iterations dedicated to erroneous local
minima, by selectively amplifying data fidelity forces.

To the best of our knowledge, this is the first paper for
automated region-based AC parameterization of regulariza-
tion and data fidelity energy terms combining the above
elements.

The remainder of this paper is organized as follows.
Section II presents the motivation behind the idea of the
proposed framework, as well as its details. Section III demon-
strates the results and comparisons obtained by experiments
with four state-of-the-art region-based AC models and two
image restoration models, which minimize an energy func-
tional consisting of regularization and data fidelity terms.
Conclusion and future research directions are summarized in
Section IV.

Fig. 1. (a) Structure tensor field of a test image. (b) Zoomed-in view of
region which corresponds to a target edge region. (c) Zoomed-in view of
region which corresponds to a nontarget edge region.

II. PROPOSED FRAMEWORK

A. Motivation

Overviews of the standard formalisms of the most prominent
AC variations can be found in [19] and [26]. The proposed
framework is motivated by the attractive properties of structure
tensor eigenvalues [45]. The latter are capable of describing
the orientation coherence in edge regions. An edge region
containing edges of similar orientations is characterized as
a structured edge region, whereas an edge region containing
multiple orientations is characterized as an unstructured one.

Structured edge regions correspond to target edges. This is
illustrated in Fig. 1, which shows: 1) the structure tensor field
of a test image; 2) a zoomed region which corresponds to a
target edge region; and 3) a zoomed region which corresponds
to a nontarget edge region. In the case of Fig. 1(b), the target
edge region is characterized by edges of similar orientations,
whereas in the case of Fig. 1(c), the nontarget edge region
is associated with multiple orientations. Based on the above
remark, structure tensor eigenvalues are capable of identifying
whether an edge region is target or nontarget, depending on
the variability of the orientations of its edges.

According to Weickert’s diffusion model [46], a structure
tensor D is defined as follows:

D = ∇I ⊗ ∇I = ∇I · ∇IT (1)

where I is an image. D has an orthonomal basis of eigenvectors
v1, v2 with v1||∇I, v2⊥∇I and λ1, λ2 are the corresponding
eigenvalues defined as follows:

λ1,2 = 1

2
(Ixx + Iyy ±

√
(Ixx − Iyy)2 + 4I2

xy (2)

where the + sign belongs to λ1. The principal eigenvalue λ1 is
longitudinal with respect to the principal axis of the elliptical
tensor, whereas the minor eigenvalue λ2 is vertical with respect
to the same principal axis.

Region-based ACs very often conform to Euler–Lagrange
equations which consist of regularization and data fidelity
terms [19]. Regularization terms are longitudinal to contour
direction whereas data fidelity terms are vertical, attracting
contours toward the boundaries of target edge regions. It is
tempting to notice that the regularization weight, denoted as
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Fig. 2. Schematic representation of (a) elliptical structure tensors (red
ellipses) consisting of regions of single and multiple orientations (black
arrows) and (b) OE behavior on each structure tensor.

wreg, corresponds to the same direction as the eigenvalue of
the horizontal eigenvector of a structure tensor. Similarly, the
data fidelity weight, denoted as wdf , corresponds to the same
direction as the eigenvalue of the vertical eigenvector. This
isomorphism indicates a link between the regularization and
data fidelity terms and the eigenvalues of structure tensors.

B. Orientation Coherence Estimation

Motivated by the above observations, the proposed frame-
work adjusts regularization and data fidelity parameters auto-
matically, in a similar fashion to Weickert’s diffusion model,
in order to describe the orientation coherence of edge regions.
The latter is calculated by orientation entropy (OE) defined as
follows:

OEjk = −
Njk∑
n=1

Mjk∑
m=1

pjk(m, n) · log pjk(m, n) (3)

pjk = |Ijk(m, n)|2√∑Njk
n=1

∑Mjk
m=1 [Ijk(m, n)]2

(4)

where Ijk is the subband image generated by a multidirectional
filtering method such as the contourlet transform (CT) [47],
OEjk is the OE of the subband image Ijk in the kth direction
and the jth level, Mjk is the row size and Njk the column size
of the subband image.

OE obtains high values in cases of unstructured edge
regions, which are associated with noise and artifacts and
low values in cases of structured edge regions, which are
associated with target edges. Fig. 2(a) depicts a schematic
representation of elliptical structure tensors (red ellipses) con-
sisting of regions of single and multiple orientations (black
arrows), whereas Fig. 2(b) depicts the respective OE behavior
on each structure tensor.

Each q × q image grid is fed into CT through an iterative
procedure. The size of the q × q image grid is experimen-
tally determined as the minimum of the negative power of
two of the original image size, which still maintains at least
an edge region. For instance, in the case of the thyroid ultra-
sound images used in the experiments presented in Section III,
it has been found that for an image of 320 × 320, an image
grid of 40 × 40 (40 = 320 × 2−3) is suitable. The image grid
is further decomposed into two pyramidal levels, which are
then transformed into four directional subbands: 0◦, 45◦, 90◦,
and 135◦ in order to investigate whether the edge region of
the grid is a target or a nontarget edge region.

Fig. 3. CT filter-bank. LP provides a down-sampled low-pass and a band-
pass version of the image. Consequently, a DFB is applied to each band-pass
image.

The band-pass directional subbands represent the local
image structure and apart from intensity, also hold textu-
ral information. CT provides an inherent multiscale filtering
mechanism, capable of filtering out randomly oriented edges
associated with noise, artifacts and/or background clutter.
Moreover, CT is directly implemented in the discrete domain
and is capable to selectively represent edges of various scales
and directions. Small scale edges are associated with noise or
artifacts.

C. Contourlet Transform (CT) [47]

Aiming at a sparse image representation, CT employs a dou-
ble iterated filter-bank, which captures point discontinuities
by means of the Laplacian pyramid (LP) and obtains linear
structures by linking these discontinuities with a directional
filter-bank (DFB). The final result is an image expansion that
uses basic contour segments. Fig. 3 illustrates a CT iterated
filter-bank.

The downsampled low-pass and band-pass versions of the
image contain lower and higher frequencies, respectively. It is
evident that, the band-pass image contains detailed informa-
tion of point discontinuities, which are associated with target
edge regions. Furthermore, DFB is implemented by an l-level
binary tree which leads to 2l subbands. In the first stage, a
two-channel quincunx filterbank [48] with fan filters divides
the 2-D spectrum into vertical and horizontal directions. In
the second stage, a shearing operator reorders the samples. As
a result, different directional frequencies are captured at each
decomposition level. The number of iterations depends mainly
on the size of the input image. The total number of directional
subbands Ktotal is calculated as

Ktotal =
J∑

j=1

Kj (5)

where Kj is a subband DFB applied at the jth level
(j = 1, 2, ..., J). Fig. 4 depicts the CT filter-bank of a sam-
pled image grid, decomposed to the finest and second finest
scales, which are partitioned into four directional subbands.

Among the OE values calculated for each subband, the max-
imum OE value of the most informative scale j and direction
k, which depends on N and M is calculated and assigned to all
pixels of each grid. The result is considered as an OE matrix
reflecting local structure information.
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Fig. 4. CT filter-bank of a sample grid decomposed to two levels of LP and
four band-pass directional subbands.

Fig. 5. Block diagram of the pipeline of the proposed framework.

D. Automated Parameterization

The regularization parameter wreg and the data fidelity
parameter wdf are matrices of the same dimensions as the
original image and are calculated according to the following
equations:

wreg = (1/wdf )× N × M, wdf = argIjk
max(OE(Ijk)). (6)

In cases of regions of randomly oriented edges, high val-
ues are assigned to wdf , amplifying data fidelity forces in the
early stages of contour evolution. In such cases, contour will be
repelled from the regions of randomly oriented, unstructured
edges and iterations dedicated to false local minima, associated
with such edges will be avoided. It should be highlighted that
both parameters are calculated only once. The aim is to nav-
igate the contour directly to structured edge regions, already
from the early stages of evolution and to hinder erroneous
behavior, by “constantly reminding” the locations of structured
edge regions. Moreover, apart from separately adjusting each
parameter, the proposed framework also achieves a balanced
trade-off between regularization and data fidelity parameters.
In cases of unstructured edge regions, as quantified by the
maximum value of OE over all sub-band images, data pro-
vide a less reliable clue than contour regularization. On the
other hand, in structured edge regions, data provide a more
reliable clue. Both cases of high and low maximum OE, as
well as cases with intermediate values of OE are addressed by
setting regularization terms as the reciprocal of data fidelity
terms.

The two spatially-varying matrices representing the auto-
matic regularization and data fidelity parameters are integrated
into the Euler–Lagrange equation, replacing the empirically
determined uniform parameters. The pipeline of the proposed
framework is portrayed in the block diagram of Fig. 5.

III. RESULTS

The proposed framework has been embedded into four
region-based AC models [17], [19], [26], [49] consisting of
regularization and data fidelity energy terms, in order to
evaluate the segmentation performance of automated versus
empirical parameterization. Additionally, the proposed frame-
work has been integrated into the Rudin–Osher–Fatima (ROF)
model [50] and the Nikolova et al. model [51] for image
restoration, so as to test its effectiveness on alternative inverse
problems irrespective of the application. The well-known
Chan–Vese model [19] and the model of Savelonas et al. [49]
have been implemented in MATLAB, whilst MATLAB codes
of the models of Li et al. [17], Bresson et al. [26], the
ROF model [50], and the Nikolova et al. model [51] can
be downloaded from the authors’ homepages [52], [53], [54],
and [55], respectively. The “9-7” biorthogonal filter for the
multiscale and multidirectional decomposition stage of CT is
applied [56].

The results of the original, empirically parameterized algo-
rithms were compared to those obtained by the automated
versions. Apart from the experiments on the Berkeley seg-
mentation dataset [57] and test images obtained by various
datasets [58], [59], additional experiments were conducted
on 20 images of the Amsterdam library of object images
(ALOI) database [60], 20 coronal scans of the lung image
database consortium and image database resource initiative
(LIDC-IDRI) [61], 20 thyroid ultrasound images contain-
ing hypoechoic nodules over a noisy background, provided
by the radiology department of Euromedica S.A., Greece
and 20 images of the labial teeth and gingiva photographic
image database (LTG-IDB) [62], in order to evaluate the pro-
posed framework on large benchmark datasets. All medical
images used were investigated by MDs who provided ground
truth images, whereas contour initialization was the same for
both the proposed framework and the empirically fine-tuned
version, in order to facilitate fair comparisons.

It should be stressed that, rather than comparing one AC
method with another, the experiments to follow aim to evalu-
ate the effectiveness of the proposed framework by examining
whether the segmentation performance of the unsupervised
version is at least comparable to the one obtained by the
empirically fine-tuned version.

Fig. 6 illustrates: (a) and (b) test images obtained by the
Berkeley dataset, (c) a thyroid ultrasound (US) test image
containing a nodule, (a1), (b1), and (c1) ground-truth images
and (a2), (b2), and (c2) segmentation results of the pro-
posed framework. Aiming to evaluate the obtained results, the
region overlap measure, known as the Tannimoto Coefficient
(TC) [63], is considered

TC = N(A
⋂

B)

N(A
⋃

B)
(7)

where A is the region delineated by the segmentation method
under evaluation, B is the ground truth region and N() indicates
the number of pixels of the enclosed region. The results of
Fig. 6(a2), (b2), and (c2) correspond to TC values of 90.3%,
88.7% and 91.4%, respectively.
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Fig. 6. Segmentation based on local image geometry. (a)–(c) Original test
images. (a1)–(c1) Ground-truth images. (a2)–(c2) Segmentation results of the
proposed framework.

Fig. 7. (a) Sample image. (b) Segmentation results obtained by the empiri-

cally fine-tuned version (wfixed
reg = 0.006 · 2552, wfixed

df = 1). (c) Segmentation

results obtained by the randomly-tuned version (wfixed
reg = 0.001 · 2552,

wfixed
df = 0.1). Size 256 × 256.

Aiming at highlighting the significance of the proposed
framework, we have investigated the sensitivity of the Chan–
Vese model to small alterations of parameters. Except of being
adjusted with parameters determined as optimal, the empirical
version of the Chan–Vese model is also adjusted with param-
eters which are randomly set and is tested on sample images
obtained by the utilized datasets. Accordingly, wfixed

reg and wfixed
df

were set to randomly selected values, which fluctuated up
to 10% from the optimal ones. Fig. 7 depicts: (a) a sample
image, (b) segmentation results obtained by the empirically
fine-tuned Chan–Vese model, and (c) segmentation results
obtained by randomly tuning the same model, where wfixed

reg

and wfixed
df were randomly set to 0.001·2552 and 0.1, respec-

tively. It is evident that, the segmentation results obtained by
the random tuning differ significantly from the ones obtained
by empirical fine-tuning. Random tuning leads to an aver-
age TC value of 58.3 ± 1.7%, whereas empirical fine-tuning
leads to an average TC value of 82.0 ± 1.5% with respect
to all images tested. A similar behavior has been observed
to the rest of the AC applications presented. Hence, ACs are
sensitive even to small alterations of parameters and the seg-
mentation results are highly dependent on the “optimality” of

the empirical fine-tuning thus, on the technical skill of the end-
user. On the contrary, the proposed framework achieves a high
segmentation quality, comparable to the segmentation qual-
ity obtained by empirically fine-tuning, but in an automated
fashion, endowing segmentation results with objectivity.

In the experiments to follow, evolution is stopped when the
overlap between all pairs of regions enclosed by AC instances
of the last five successive iterations, is more than 99.95%, as
quantified by TC.

A. Chan–Vese Model [19]

The Chan–Vese model determines the level set evolution by
solving the following equation

∂φ
∂t = wfixed

reg · δ(φ(x, y)) · div
( ∇φ

|∇φ|
)

−wfixed
df (I(x, y)− c1)

2 + wfixed
df (I(x, y)− c2)

2
(8)

where φ is the level set function, I the observed image, c1,
c2 the average intensities inside and outside of the contour,
respectively, wfixed

reg the fixed regularization parameter and wfixed
df

the fixed data fidelity parameter. The latter are assigned the
same value as suggested by Chan and Vese. For the empirical
case, the optimal parameters are set according to the original
paper [19]. For the proposed framework, the regularization and
data fidelity parameters are automatically calculated according
to (6).

The segmentation performance of the Chan–Vese model for
both empirically and automatically parameterized versions is
evaluated on test images obtained by [58] and [59]. The test
images contain a foreground object of interest over an inho-
mogeneous background. The contour is initialized as a closed
circle with the same center and radius for all test images and
for both empirically and automatically parameterized versions,
so as to ensure consistency.

Fig. 8 illustrates the contour obtained on two test images,
for the second as well as for the final iteration. The first image
contains an object of interest of high average intensity over
a darker background, whereas the second image contains a
dark object of interest over a brighter background. Yellow
color is used for the initial contour in both versions whereas
blue and green colors are used for the contours obtained by
the empirical and automated version, on the second and final
iteration.

The dilation operator has been used to morphologically
reconstruct contours and enhance image appearance. In the
case of the first image, the automated version converges faster
to the object boundaries since the forces guiding contour evo-
lution are appropriately amplified in nontarget, high-entropy
edges. In the case of the second image, the empirical version
is delayed on the fine image details and converges to erroneous
boundaries. This can be explained by the gross nature of the
Chan–Vese model, which is guided by region-based forces and
thus, is delayed on erroneous local intensity minima associ-
ated with brighter background clutter. On the contrary, the
automated version is guided by region-based forces, as well
as by local geometry information, incorporated in the param-
eters matrices and is capable to identify the actual target edge
regions.
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Fig. 8. Examples of contour evolution of the Chan–Vese model. Yellow color is used for the initial contour in both versions; blue and green colors are used
for the contours obtained by the empirical (wfixed

reg = 0.006 · 2552, wfixed
df = 1) and automated version, respectively. Size 320 × 320.

Fig. 9. DMI calculated for the early stages of evolution of the automated
versus empirical version of the Chan–Vese model, presented in Fig. 8.

Aiming to evaluate the convergence rate of both versions,
we define the difference of mean intensity values (DMI)
between inside and outside region terms and implement the
following algorithm.

∀ iteration i
1. Calculate inside |I(x, y) − c1|2 and outside |I(x, y) − c2|2
region terms.
2. Normalize and quantize both terms in the range [0, 255].
3. Calculate mean values.
4. Calculate DMI.

Fig. 9 depicts DMI calculated for the early stages of evolu-
tion of the empirical and automated versions of the Chan–Vese
model presented in Fig. 8. It can be observed that DMI reaches
higher values in the automated case in the early stages of con-
tour evolution. Again, this is explained by the fact that the
forces guiding contour evolution are appropriately amplified
in nontarget edges. Fig. 10 compares the segmentation perfor-
mance of the empirical and automated version for the early
stages of evolution in terms of TC.

It should be mentioned that the proposed framework is
potentially applicable on similar methods which are capable
of solving two-phase segmentation problems, as is the case
with the model of Mory et al. [64].

Fig. 10. TC for the early stages of evolution of automated versus empirical
version presented in Fig. 8.

B. Bresson et al. Model [26]

Bresson et al. propose to minimize the following energy
functional based on the Chan–Vese model [19], in order to
carry out the global minimization of segmentation

E(u, c1, c2,wfixed
df ) = TVg(u)+ wfixed

df

∫

�

(c1 − I(x))2 (9)

−(c2 − I(x))2dx

where u is a characteristic function 1�C of a closed set where
C denotes the nonconnected boundaries of �C, g an edge-
indicator function, TVg(u) the weighted total variation (TV)
energy of the function u with the weight function g, i.e.,
TVg(u) = ∫

g(x)|∇u|dx, and wfixed
df the fixed data fidelity

parameter. For the empirical case, the latter is set according to
the original paper [26]. For the proposed framework, the data
fidelity parameter is automatically calculated according to (6).

The model of Bresson et al. [26] is evaluated on test images
obtained by the first author’s homepage. Fig. 11 presents seg-
mentation results for Cheetah and Zebra textured images. The
final contour satisfies

{
(x, y) ∈ �|Ifinal(x, y) > 0.5

}
. (10)

Magenta and green colors correspond to empirical and auto-
mated version, respectively. It is evident that both versions
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Fig. 11. Segmentation results of the model of Bresson et al. Magenta and green contours correspond to empirical (wfixed
reg = 0.7, wfixed

df = 0.4) and automated
parameterization, respectively. Size 320 × 320.

Fig. 12. Segmentation results of the model of Savelonas et al. Yellow is used for the initial contour in both versions, purple and green contours correspond
to empirical (wfixed

reg = 0.006 · 2552, wfixed
df = 1) and automated parameterization, respectively. Size 320 × 320.

converge to the actual object boundaries, resulting in compa-
rable segmentation accuracy. It should be pointed out that the
empirical version of the model of Bresson et al. convexifies
energy in order to compute a global minimizer. The auto-
mated version captures local geometry information correctly
and converges to the actual target edge regions.

C. Savelonas et al. Model [49]

The region-based AC in Savelonas et al. model converges
based on the Chan–Vese model [19] according to the following
equation:

∂φ
∂t = wfixed

reg · δ(φ(x, y)) · div
( ∇φ

|∇φ|
)

−wfixed
df1

(I1(x, y)− c1)
2 + wfixed

df1
(I1(x, y)− c2)

2

−wfixed
df2

(I2(x, y)− c3)
2 + wfixed

df2
(I2(x, y)− c4)

2

(11)

where φ is the level set function, I1, I2 the observed image and
the binarized image which is the output of morphological pro-
cessing, respectively, c1, c2 and c3, c4 the average intensities
inside and outside of the contour of I1 and I2, respectively,
wfixed

reg the fixed regularization parameter, wfixed
df1

and wfixed
df2

the

fixed data fidelity parameters of I1 and I2, respectively. For
the empirical case, the optimal parameters are set according

to the original paper [49]. For the proposed framework, the
regularization and data fidelity parameters are automatically
calculated according to (6). The segmentation performance of
the recent model of Savelonas et al. for both empirical and
automated versions is evaluated on real 2-D gel electrophore-
sis (2D-GE) images, obtained by the Biomedical Research
Foundation of the Academy of Athens.

Fig. 12 illustrates contours obtained on the second as well
as on the final iteration, for 2D-GE sub-images. Yellow color
is used for the initial contour in both versions, whereas purple
and green colors correspond to empirical and automated ver-
sion, respectively. It is evident that the segmentation results
of the empirical and automated versions are comparable.
Nonetheless, as already pointed out, empirical parameteriza-
tion requires tedious, time-consuming experimentation. Our
framework is capable of obtaining comparable results in an
automated fashion. Fig. 13 depicts DMI for both versions, for
the early stages of contour evolution presented in Fig. 12.
Again in the case of the automated version, DMI is slightly
higher in early iterations.

In Fig. 14, the comparison is performed in terms of TC,
providing a quantification of the actual segmentation perfor-
mance for the early stages of evolution. So far, the proposed
framework has been applied on region-based AC models.
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Fig. 13. DMI between inside and outside regions for the early stages of
evolution of automated versus empirical version presented in Fig. 12.

Fig. 14. TC for the early stages of evolution of automated versus empirical
version presented in Fig. 12.

D. Li et al. Model [17]

The proposed framework has also been applied on the model
of Li et al. so as to investigate its effectiveness on AC models
which are not purely region-based, with respect to data fidelity
and regularization parameters. In this sense, the two parame-
ters automatically fine-tuned were wfixed

df and wfixed
reg , since these

two parameters correspond to data fidelity and regularization
parameters, for which the proposed framework has been for-
mulated. Li et al. minimize an energy functional inspired by
the GAC energy functional [10], which is defined as

E(φ) = wfixed
reg

∫
�

p(|∇φ|dx

+ afixed
∫
�

gδε(φ)|∇φ|dx + wfixed
df

∫
�

gHε(−φ)dx
(12)

where φ is the level set function, p a potential function
p:[0,∞) → �, g an edge-indicator function, δ the Dirac func-
tion, H the Heaviside function, wfixed

reg the fixed regularization
parameter, afixed a fixed parameter that weights the second
energy term which can be expressed as a line integral of the
GAC model, and wfixed

df the fixed data fidelity parameter. The
level set evolution is determined as follows:

∂φ
∂t = wfixed

reg · div
(

dp
∇φ
|∇φ|

)

+ afixedδε(φ) · div
(

g ∇φ
|∇φ|

)
+ wfixed

df gδε(φ).
(13)

For the empirical case, the optimal fixed parameters are
set according to the original paper [17]. For the proposed
framework, the optimal fixed value of afixed is maintained,
whereas the regularization and data fidelity parameters are
automatically calculated according to (6). The value of afixed

remained empirically fixed and its adjustment is beyond the
scope of this paper. However, the presence of the extra term
in this model did not prevent the proposed framework to
automatically adjust wfixed

reg and wfixed
df .

In a similar fashion, the segmentation performance of both
empirical and automated versions of the model of Li et al. [17]
is evaluated on test images obtained by the author’s home-
page [52]. Fig. 15(a) and (b) illustrates a test image and
the initial level-set function, respectively, whereas the images
below present contours obtained in three different iterations,
as well as the final level-set functions. The latter exhibit the
shape of a signed distance function in the vicinity of the zero
level-set and a flat shape outside this vicinity. Red and green
colors correspond to empirical and automated parameteriza-
tion, respectively. It should be pointed out that the level-set
evolution is applied without reinitialization and is guided also
by edge-based forces. It is evident that the segmentation results
of the empirical and automated versions are comparable.

Fig. 16 depicts TC results of both empirical and automated
versions for the early stages of contour evolution presented
in Fig. 15. In the automated version, TC reaches slightly
higher values from early iterations. However, one should
take into account that with empirical parameterization it is
always possible to set “optimal” parameters after laborious,
time-consuming experimentation. Our framework is capable
of obtaining comparable results in an automated fashion.

E. Rudin–Osher–Fatima (ROF) Model [50]

The proposed framework is also integrated into the ROF
model for edge-preserving image restoration, so as to test
its effectiveness on other inverse minimization problems (TV
minimization). The aim of the ROF model is to remove noise
from a corrupted image without blurring the target edges. Let
f = K ∗ I + n denote the image plagued by noise, where K,
n are the convolution kernel and additive noise, respectively.
The “clean” image is recovered by minimizing the following
energy:

E(I) =
∫

�

|∇I| + wfixed
df

∫

�

(f − I)2dx. (14)

For the empirical case, the optimal fixed parameter is set
according to the original paper [50]. For the proposed frame-
work, the data fidelity parameter is automatically calculated
according to (6). Fig. 17 illustrates: (a) the original image
plagued by noise, (b) the recovered image of the ROF model
utilizing empirical parameterization, and (c) the recovered
image of the ROF model utilizing automated parameterization.
In [50], image restoration is visually assessed. Following this,
it can be observed that, the automated version maintains the
quality of image restoration, originally obtained with empirical
parameters.

F. Nikolova et al. Model [51]

The Nikolova et al. model solve the following nonconvex
nonsmooth minimization problem for image restoration and
reconstruction:

J(I, u) = ||HI − g||22 + β	(I)

+βαTV(u)+ wfixed
df ||I − u||22

(15)
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Fig. 15. Evolution of segmentation for the model of Li et al. Red and green contour corresponds to empirical (wfixed
reg = 0.2, wfixed

df = 5) and automated
parameterization, respectively. (a) Original test image. (b) Initial level-set function. Size 56 × 56.

Fig. 16. TC for the early stages of evolution of automated versus empirical
model presented in Fig. 15.

where H is a q × p matrix representing optical blurring,
	(I) = ∑

i∈I ψε(||DiI||2, where ψ is a smooth and con-
cave function and Di discrete gradients, g the image plagued
by noise, u ∈ � an auxiliary variable used to transfer the
nonsmooth TV term from image I and β, α the restora-
tion parameters, where β is a regularization parameter and
α a positive parameter. In the case of empirical fine-tuning,
the fixed parameter wfixed

df is set according to the original
paper [51]. In the case of the proposed framework, the data
fidelity parameter is automatically calculated according to (6).
Fig. 18 illustrates: (a) the original image, (b) the observed
image, (c) the result of empirically parameterized restoration,
and (d) the result of restoration parameterized by means of
(6). It is once more evident that, the proposed framework
maintains the quality of image restoration compared to the
one obtained by empirical parameterization. In more quanti-
tative terms, the point-to-signal-noise-ratio (PSNR) obtained
by empirical and automated parameterization is 18.65 and
18.59 dB, respectively.

Considering both the ROF model and the Nikolova et al.
model, it should be highlighted that, even though the proposed
framework has been designed for segmentation models, it can
also be effectively embedded in other energy minimization
models, with similar formulation, as is the case of these two
restoration models.

Fig. 17. (a) Original image plagued by noise, the recovered image of the ROF
model utilizing. (b) Empirical parameterization (wfixed

df = 12). (c) Automated
parameterization. Size 320 × 320.

G. Additional Experiments on Various Datasets

The proposed framework is also tested on 20 grayscale
images obtained by the ALOI database [60], 20 coronal
scans obtained by the LIDC-IDRI [61], 20 thyroid ultrasound
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Fig. 18. (a) Original image plagued by noise. (b) Observed image.
(c) Restored image utilizing empirical parameterization (wfixed

df = 0.05).
(d) Restored image utilizing automated parameterization. Size 64 × 64.

images containing hypoechoic nodules provided by the radi-
ology department of Euromedica S.A., Greece and 20 images
obtained by the LTG-IDB [62] in order to enable evaluation
on large benchmark datasets.

Fig. 19 illustrates segmentation results on sample images
obtained by the ALOI database for both empirical and auto-
mated parameterization. The first and second columns illus-
trate test images and their ground truth, respectively. The third
column provides the iteration number, for which the automated
version converges. The fourth and fifth columns illustrate seg-
mentation results of the empirical and automated case for that
iteration, respectively. The sixth and seventh columns illustrate
the iteration number for which the empirical version converges
and the segmentation results for that iteration, respectively. All
test images were recorded with varying viewing and illumina-
tion angles, resulting in challenging shades. Several images of
ALOI database, including the illustrated Teapot, Bear, Basket,
and Wire, contain intensity-based information whereas some
also contain textured regions, as is the case with Basket
and Wire. It is evident that after convergence, the segmen-
tation results of both empirical and automated versions are
comparable. However, in the empirical case, the contour is
delayed on erroneous local intensity minima associated with
shades and thus requires approximately 10–20 times more iter-
ations in order to converge. On the contrary, in the automated
case, forces which guide contour evolution are appropriately
amplified in nontarget, high-entropy edges, accelerating con-
vergence. The automated case achieves an average TC value
of 96.9 ± 1.6%, which is comparable to the TC value obtained
by the empirical case. However, the empirical case achieves
a TC value of 58.4 ± 14.3% in the same iteration that the
automated version has converged, with regards to all ALOI
images tested.

Fig. 20 illustrates: (a)–(c) sample coronal computed-
tomography scans of lung parenchyma, (a1)–(c1) ground truth
images, (a2)–(c2) segmentation results of the empirical ver-
sion, (a3)–(c3) segmentation results of the automated version.
The aim of segmentation on this database (LIDC-IDRI) is to
separate the lung parenchyma from the surrounding anatomy,

which is typically impeded by airways or other “airway-
like” structures in the right and left lung. The segmentation
result is used for the computation of emphysema measures.
Such images contain an inhomogeneous background and mul-
tiple features, such as the trachea and thoracic spine (pale
areas), as well as the left and right lung (dark areas). It is
notable that both versions achieve comparable segmentation
results. The automated version achieves an average TC value
of 83.8 ± 1.3%, over all computed-tomography scans of the
database, which is comparable to the TC value of 82.5 ± 1.8%
obtained by the empirical version.

Fig. 21 illustrates: (a)–(c) sample thyroid ultrasound
images containing hypoechoic nodules, (a1)–(c1) ground truth
images, (a2)–(c2) segmentation results of the empirical ver-
sion, (a3)–(c3) segmentation results of the automated version.
Hypoechoic nodules may be associated with medium or high
risk for malignancy, depending on the irregularity of their
boundary. These images are very challenging with respect to
segmentation, since they are plagued by speckle noise and arti-
facts. Moreover, thyroid nodules are characterized by blurred
and irregular boundaries. It can be observed that the segmen-
tation result of the automated version is comparable to the
one obtained by the empirical version. The automated version
achieves an average TC value of 83.7 ± 0.8%, over all thy-
roid ultrasound images of the database, which is comparable
to the TC value of 82.8 ± 1.2% obtained by the empirical
version.

Fig. 22 illustrates: (a)–(c) labial teeth and gingiva pho-
tographic images, (a1)–(c1) ground truth images, (a2)–(c2)
segmentation results of the empirical version, (a3)–(c3) seg-
mentation results of the automated version. The scope of
this database (LTG-IDB) is the task of teeth/nonteeth seg-
mentation. Such images are characterized by intensity vari-
ations from saturated to faint areas, over an inhomogeneous
background (gingiva). It can be observed that the segmen-
tation results obtained by the automated version approxi-
mate the corresponding ground truth images. The automated
version achieves an average TC value of 84.2 ± 1.8%,
over all images of the database, which is comparable to
the TC value of 82.9 ± 1.6% obtained by the empirical
version.

IV. CONCLUSION AND FUTURE DIRECTIONS

This paper introduces a novel framework for automated reg-
ularization and data fidelity parameterization of region-based
ACs, which is motivated by the observation that the weight-
ing factors of regularization and data fidelity terms and the
eigenvalues of structure tensors are associated with the same
orthogonal directions. The proposed framework is unsuper-
vised and does not require technical skills from the domain
user. In addition, it is applicable to several image modalities
and does not require prior knowledge on the target regions.
Moreover, it avoids iterations dedicated to erroneous local min-
ima, resulting in convergence rate comparable to or higher than
the one obtained with empirical parameterization.

The proposed framework has been experimentally evaluated
on various datasets of natural, textured, and biomedical images
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Fig. 19. Segmentation results of the proposed framework. The first and second columns illustrate test images obtained by ALOI database [60] and their
ground truth images, respectively. The third column shows the final iteration of contour convergence in the automated case. The fourth and fifth column
illustrates segmentation results of the empirical (wfixed

reg = 0.006 · 2552, wfixed
df = 1) and automated case for that iteration, respectively. The sixth and seventh

column illustrates the final iteration of contour convergence in the empirical case as well as the segmentation results for that iteration, respectively. Size
320 × 320.

Fig. 20. (a)–(c) Coronal computed-tomography scans of lung parenchyma.
(a1)–(c1) Ground truth images. (a2)–(c2) Segmentation results of the empirical
version (wfixed

reg = 0.006 · 2552, wfixed
df = 1). (a3)–(c3) Segmentation results of

the automated version. Size 320 × 320.

by comparing the segmentation performance obtained by
empirical versus automated parameterization of four state-of-
the-art region-based AC variations and two image restoration
models. The experimental results show that it is capable of

Fig. 21. (a)–(c) Thyroid ultrasound images containing nodules. (a1)–(c1)
Ground truth images. (a2)–(c2) segmentation results of the empirical version
(wfixed

reg = 0.006 · 2552, wfixed
df = 1). (a3)–(c3) Segmentation results of the

automated version. Size 256 × 256.

maintaining a segmentation quality comparable to the one
obtained with empirical parameterization, yet in an automated
fashion. Future directions of this paper include investigation
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Fig. 22. (a)–(c) Labial teeth and gingiva photographic images. (a1)–(c1)
Ground truth images. (a2)–(c2) Segmentation results of the empirical version
(wfixed

reg = 0.006 · 2552, wfixed
df = 1). (a3)–(c3) Segmentation results of the

automated version. Size 320 × 320.

of the potential of alternative instances of the proposed
framework on several biomedical application domains.
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