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Fig. 13. DMI between inside and outside regions for the early stages of
evolution of automated versus empirical version presented in Fig. 12.

Fig. 14. TC for the early stages of evolution of automated versus empirical
version presented in Fig. 12.

D. Li et al. Model [17]

The proposed framework has also been applied on the model
of Li et al. so as to investigate its effectiveness on AC models
which are not purely region-based, with respect to data fidelity
and regularization parameters. In this sense, the two parame-
ters automatically fine-tuned were wfixed

df and wfixed
reg , since these

two parameters correspond to data fidelity and regularization
parameters, for which the proposed framework has been for-
mulated. Li et al. minimize an energy functional inspired by
the GAC energy functional [10], which is defined as

E(φ) = wfixed
reg

∫
�

p(|∇φ|dx

+ afixed
∫
�

gδε(φ)|∇φ|dx + wfixed
df

∫
�

gHε(−φ)dx
(12)

where φ is the level set function, p a potential function
p:[0,∞) → �, g an edge-indicator function, δ the Dirac func-
tion, H the Heaviside function, wfixed

reg the fixed regularization
parameter, afixed a fixed parameter that weights the second
energy term which can be expressed as a line integral of the
GAC model, and wfixed

df the fixed data fidelity parameter. The
level set evolution is determined as follows:

∂φ
∂t = wfixed

reg · div
(

dp
∇φ
|∇φ|

)

+ afixedδε(φ) · div
(

g ∇φ
|∇φ|

)
+ wfixed

df gδε(φ).
(13)

For the empirical case, the optimal fixed parameters are
set according to the original paper [17]. For the proposed
framework, the optimal fixed value of afixed is maintained,
whereas the regularization and data fidelity parameters are
automatically calculated according to (6). The value of afixed

remained empirically fixed and its adjustment is beyond the
scope of this paper. However, the presence of the extra term
in this model did not prevent the proposed framework to
automatically adjust wfixed

reg and wfixed
df .

In a similar fashion, the segmentation performance of both
empirical and automated versions of the model of Li et al. [17]
is evaluated on test images obtained by the author’s home-
page [52]. Fig. 15(a) and (b) illustrates a test image and
the initial level-set function, respectively, whereas the images
below present contours obtained in three different iterations,
as well as the final level-set functions. The latter exhibit the
shape of a signed distance function in the vicinity of the zero
level-set and a flat shape outside this vicinity. Red and green
colors correspond to empirical and automated parameteriza-
tion, respectively. It should be pointed out that the level-set
evolution is applied without reinitialization and is guided also
by edge-based forces. It is evident that the segmentation results
of the empirical and automated versions are comparable.

Fig. 16 depicts TC results of both empirical and automated
versions for the early stages of contour evolution presented
in Fig. 15. In the automated version, TC reaches slightly
higher values from early iterations. However, one should
take into account that with empirical parameterization it is
always possible to set “optimal” parameters after laborious,
time-consuming experimentation. Our framework is capable
of obtaining comparable results in an automated fashion.

E. Rudin–Osher–Fatima (ROF) Model [50]

The proposed framework is also integrated into the ROF
model for edge-preserving image restoration, so as to test
its effectiveness on other inverse minimization problems (TV
minimization). The aim of the ROF model is to remove noise
from a corrupted image without blurring the target edges. Let
f = K ∗ I + n denote the image plagued by noise, where K,
n are the convolution kernel and additive noise, respectively.
The “clean” image is recovered by minimizing the following
energy:

E(I) =
∫

�

|∇I| + wfixed
df

∫

�

(f − I)2dx. (14)

For the empirical case, the optimal fixed parameter is set
according to the original paper [50]. For the proposed frame-
work, the data fidelity parameter is automatically calculated
according to (6). Fig. 17 illustrates: (a) the original image
plagued by noise, (b) the recovered image of the ROF model
utilizing empirical parameterization, and (c) the recovered
image of the ROF model utilizing automated parameterization.
In [50], image restoration is visually assessed. Following this,
it can be observed that, the automated version maintains the
quality of image restoration, originally obtained with empirical
parameters.

F. Nikolova et al. Model [51]

The Nikolova et al. model solve the following nonconvex
nonsmooth minimization problem for image restoration and
reconstruction:

J(I, u) = ||HI − g||22 + β	(I)

+βαTV(u)+ wfixed
df ||I − u||22

(15)
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Fig. 15. Evolution of segmentation for the model of Li et al. Red and green contour corresponds to empirical (wfixed
reg = 0.2, wfixed

df = 5) and automated
parameterization, respectively. (a) Original test image. (b) Initial level-set function. Size 56 × 56.

Fig. 16. TC for the early stages of evolution of automated versus empirical
model presented in Fig. 15.

where H is a q × p matrix representing optical blurring,
	(I) = ∑

i∈I ψε(||DiI||2, where ψ is a smooth and con-
cave function and Di discrete gradients, g the image plagued
by noise, u ∈ � an auxiliary variable used to transfer the
nonsmooth TV term from image I and β, α the restora-
tion parameters, where β is a regularization parameter and
α a positive parameter. In the case of empirical fine-tuning,
the fixed parameter wfixed

df is set according to the original
paper [51]. In the case of the proposed framework, the data
fidelity parameter is automatically calculated according to (6).
Fig. 18 illustrates: (a) the original image, (b) the observed
image, (c) the result of empirically parameterized restoration,
and (d) the result of restoration parameterized by means of
(6). It is once more evident that, the proposed framework
maintains the quality of image restoration compared to the
one obtained by empirical parameterization. In more quanti-
tative terms, the point-to-signal-noise-ratio (PSNR) obtained
by empirical and automated parameterization is 18.65 and
18.59 dB, respectively.

Considering both the ROF model and the Nikolova et al.
model, it should be highlighted that, even though the proposed
framework has been designed for segmentation models, it can
also be effectively embedded in other energy minimization
models, with similar formulation, as is the case of these two
restoration models.

Fig. 17. (a) Original image plagued by noise, the recovered image of the ROF
model utilizing. (b) Empirical parameterization (wfixed

df = 12). (c) Automated
parameterization. Size 320 × 320.

G. Additional Experiments on Various Datasets

The proposed framework is also tested on 20 grayscale
images obtained by the ALOI database [60], 20 coronal
scans obtained by the LIDC-IDRI [61], 20 thyroid ultrasound
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Fig. 18. (a) Original image plagued by noise. (b) Observed image.
(c) Restored image utilizing empirical parameterization (wfixed

df = 0.05).
(d) Restored image utilizing automated parameterization. Size 64 × 64.

images containing hypoechoic nodules provided by the radi-
ology department of Euromedica S.A., Greece and 20 images
obtained by the LTG-IDB [62] in order to enable evaluation
on large benchmark datasets.

Fig. 19 illustrates segmentation results on sample images
obtained by the ALOI database for both empirical and auto-
mated parameterization. The first and second columns illus-
trate test images and their ground truth, respectively. The third
column provides the iteration number, for which the automated
version converges. The fourth and fifth columns illustrate seg-
mentation results of the empirical and automated case for that
iteration, respectively. The sixth and seventh columns illustrate
the iteration number for which the empirical version converges
and the segmentation results for that iteration, respectively. All
test images were recorded with varying viewing and illumina-
tion angles, resulting in challenging shades. Several images of
ALOI database, including the illustrated Teapot, Bear, Basket,
and Wire, contain intensity-based information whereas some
also contain textured regions, as is the case with Basket
and Wire. It is evident that after convergence, the segmen-
tation results of both empirical and automated versions are
comparable. However, in the empirical case, the contour is
delayed on erroneous local intensity minima associated with
shades and thus requires approximately 10–20 times more iter-
ations in order to converge. On the contrary, in the automated
case, forces which guide contour evolution are appropriately
amplified in nontarget, high-entropy edges, accelerating con-
vergence. The automated case achieves an average TC value
of 96.9 ± 1.6%, which is comparable to the TC value obtained
by the empirical case. However, the empirical case achieves
a TC value of 58.4 ± 14.3% in the same iteration that the
automated version has converged, with regards to all ALOI
images tested.

Fig. 20 illustrates: (a)–(c) sample coronal computed-
tomography scans of lung parenchyma, (a1)–(c1) ground truth
images, (a2)–(c2) segmentation results of the empirical ver-
sion, (a3)–(c3) segmentation results of the automated version.
The aim of segmentation on this database (LIDC-IDRI) is to
separate the lung parenchyma from the surrounding anatomy,

which is typically impeded by airways or other “airway-
like” structures in the right and left lung. The segmentation
result is used for the computation of emphysema measures.
Such images contain an inhomogeneous background and mul-
tiple features, such as the trachea and thoracic spine (pale
areas), as well as the left and right lung (dark areas). It is
notable that both versions achieve comparable segmentation
results. The automated version achieves an average TC value
of 83.8 ± 1.3%, over all computed-tomography scans of the
database, which is comparable to the TC value of 82.5 ± 1.8%
obtained by the empirical version.

Fig. 21 illustrates: (a)–(c) sample thyroid ultrasound
images containing hypoechoic nodules, (a1)–(c1) ground truth
images, (a2)–(c2) segmentation results of the empirical ver-
sion, (a3)–(c3) segmentation results of the automated version.
Hypoechoic nodules may be associated with medium or high
risk for malignancy, depending on the irregularity of their
boundary. These images are very challenging with respect to
segmentation, since they are plagued by speckle noise and arti-
facts. Moreover, thyroid nodules are characterized by blurred
and irregular boundaries. It can be observed that the segmen-
tation result of the automated version is comparable to the
one obtained by the empirical version. The automated version
achieves an average TC value of 83.7 ± 0.8%, over all thy-
roid ultrasound images of the database, which is comparable
to the TC value of 82.8 ± 1.2% obtained by the empirical
version.

Fig. 22 illustrates: (a)–(c) labial teeth and gingiva pho-
tographic images, (a1)–(c1) ground truth images, (a2)–(c2)
segmentation results of the empirical version, (a3)–(c3) seg-
mentation results of the automated version. The scope of
this database (LTG-IDB) is the task of teeth/nonteeth seg-
mentation. Such images are characterized by intensity vari-
ations from saturated to faint areas, over an inhomogeneous
background (gingiva). It can be observed that the segmen-
tation results obtained by the automated version approxi-
mate the corresponding ground truth images. The automated
version achieves an average TC value of 84.2 ± 1.8%,
over all images of the database, which is comparable to
the TC value of 82.9 ± 1.6% obtained by the empirical
version.

IV. CONCLUSION AND FUTURE DIRECTIONS

This paper introduces a novel framework for automated reg-
ularization and data fidelity parameterization of region-based
ACs, which is motivated by the observation that the weight-
ing factors of regularization and data fidelity terms and the
eigenvalues of structure tensors are associated with the same
orthogonal directions. The proposed framework is unsuper-
vised and does not require technical skills from the domain
user. In addition, it is applicable to several image modalities
and does not require prior knowledge on the target regions.
Moreover, it avoids iterations dedicated to erroneous local min-
ima, resulting in convergence rate comparable to or higher than
the one obtained with empirical parameterization.

The proposed framework has been experimentally evaluated
on various datasets of natural, textured, and biomedical images
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Fig. 19. Segmentation results of the proposed framework. The first and second columns illustrate test images obtained by ALOI database [60] and their
ground truth images, respectively. The third column shows the final iteration of contour convergence in the automated case. The fourth and fifth column
illustrates segmentation results of the empirical (wfixed

reg = 0.006 · 2552, wfixed
df = 1) and automated case for that iteration, respectively. The sixth and seventh

column illustrates the final iteration of contour convergence in the empirical case as well as the segmentation results for that iteration, respectively. Size
320 × 320.

Fig. 20. (a)–(c) Coronal computed-tomography scans of lung parenchyma.
(a1)–(c1) Ground truth images. (a2)–(c2) Segmentation results of the empirical
version (wfixed

reg = 0.006 · 2552, wfixed
df = 1). (a3)–(c3) Segmentation results of

the automated version. Size 320 × 320.

by comparing the segmentation performance obtained by
empirical versus automated parameterization of four state-of-
the-art region-based AC variations and two image restoration
models. The experimental results show that it is capable of

Fig. 21. (a)–(c) Thyroid ultrasound images containing nodules. (a1)–(c1)
Ground truth images. (a2)–(c2) segmentation results of the empirical version
(wfixed

reg = 0.006 · 2552, wfixed
df = 1). (a3)–(c3) Segmentation results of the

automated version. Size 256 × 256.

maintaining a segmentation quality comparable to the one
obtained with empirical parameterization, yet in an automated
fashion. Future directions of this paper include investigation
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Fig. 22. (a)–(c) Labial teeth and gingiva photographic images. (a1)–(c1)
Ground truth images. (a2)–(c2) Segmentation results of the empirical version
(wfixed

reg = 0.006 · 2552, wfixed
df = 1). (a3)–(c3) Segmentation results of the

automated version. Size 320 × 320.

of the potential of alternative instances of the proposed
framework on several biomedical application domains.

ACKNOWLEDGMENT

The authors would like to thank Prof. R. Deriche for
his fruitful comments during his visit to the Department
of Informatics and Telecommunications of the National and
Kapodistrian University of Athens. They would also like to
thank the Biomedical Research Foundation of the Academy
of Athens for the provision of real 2D-GE images, and Dr.
N. Dimitropoulos, MD Radiologist, EUROMEDICA S.A.,
Greece, for providing the thyroid ultrasound images. They are
grateful to the reviewers for their constructive comments and
suggestions.

REFERENCES

[1] Y. Rathi, N. Vaswani, A. Tannenbaum, and A. Yezzi, “Tracking
deformable objects using particle filtering for geometric active contours,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 8, pp. 1470–1475,
Aug. 2007.

[2] G. Sundaramoorthi, A. Yezzi, and A. Mennucci, “Coarse-to-fine segmen-
tation and tracking using Sobolev active contours,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 30, no. 5, pp. 851–864, May 2008.

[3] A. Mishra, P. W. Fieguth, and D. A. Clausi, “From active contours
to active surfaces,” in Proc. IEEE CVPR, Providence, RI, USA, 2011,
pp. 2121–2128.

[4] V. Appia and A. Yezzi, “Active geodesics: Region-based active contour
segmentation with a global edge-based constraint,” in Proc. IEEE ICCV,
Barcelona, Spain, 2011, pp. 1975–1980.

[5] H. Xiao, Y. Li, J. Du, and A. Mosig, “Ct3d: Tracking microglia motility
in 3D using a novel cosegmentation approach,” Bioinformatics, vol. 28,
no. 4, pp. 564–571, 2011.

[6] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour
models,” Int. J. Comput. Vis., vol. 1, no. 4, pp. 321–331, 1988.

[7] V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic active contours,” in
Proc. IEEE ICCV, Cambridge, MA, USA, 1995, pp. 694–699.

[8] S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, and A. Yezzi,
“Gradient flows and geometric active contour models,” in Proc. IEEE
ICCV, Cambridge, MA, USA, 1995, pp. 810–815.

[9] R. Malladi, J. A. Sethian, and B. C. Vemuri, “Shape modeling with front
propagation: A level set approach,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 17, no. 2, pp. 158–175, Feb. 1995.

[10] N. Paragios and R. Deriche, “Geodesic active contours and level sets
for the detection and tracking of moving objects,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 22, no. 3, pp. 266–280, Mar. 2000.

[11] S. Osher and J. Sethian, “Fronts propagating with curvature-dependent
speed: Algorithms based on the Hamilton–Jacobi formulation,” J.
Comput. Phys., vol. 79, no. 1, pp. 12–49, 1988.

[12] M. Leventon, W. Grimson, and O. Faugeras, “Statistical shape influence
in geodesic active contours,” in Proc. IEEE Conf. CVPR, vol. 1. Hilton
Head Island, SC, USA, 2000, pp. 316–323.

[13] J. Daugman, “New methods in iris recognition,” IEEE Trans. Syst., Man,
Cybern. B, Cybern., vol. 37, no. 5, pp. 1167–1175, Oct. 2007.

[14] N. Paragios, O. Mellina-Gottardo, and V. Ramesh, “Gradient vector flow
fast geometric active contours,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 26, no. 3, pp. 402–407, Mar. 2004.

[15] C. Li, C. Xu, C. Gui, and M. D. Fox, “Level set evolution without
reinitialization: A new variational formulation,” in Proc. IEEE Conf.
CVPR, vol. 1. 2005, pp. 430–436.

[16] X. Xie and M. Mirmehdi, “MAC: Magnetostatic active contour model,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 4, pp. 632–646,
Apr. 2008.

[17] C. Li, C. Xu, C. Gui, and M. D. Fox, “Distance regularized level set
evolution and its application to image segmentation,” IEEE Trans. Image
Process., vol. 19, no. 12, pp. 3243–3254, Dec. 2010.

[18] D. Mumford and J. Shah, “Boundary detection by minimizing function-
als,” in Proc. IEEE Conf. CVPR, 1985, pp. 22–26.

[19] T. F. Chan and L. A. Vese, “Active contours without edges,” IEEE Trans.
Image Process., vol. 10, no. 2, pp. 266–277, Feb. 2001.

[20] A. Tsai, A. Yezzi, and A. S. Willsky, “Curve evolution implementation
of the Mumford–Shah functional for image segmentation, denoising,
interpolation and magnification,” IEEE Trans. Image Process., vol. 10,
no. 8, pp. 1169–1186, Aug. 2001.

[21] L. A. Vese and T. F. Chan, “A multiphase level set framework for image
segmentation using the Mumford and Shah model,” Int. J. Comput. Vis.,
vol. 50, no. 3, pp. 271–293, 2002.

[22] D. Freedman and T. Zhang, “Active contours for tracking distributions,”
IEEE Trans. Image Process., vol. 13, no. 4, pp. 518–526, Apr. 2004.

[23] P. Li, “Tensor-SIFT based earth mover’s distance for contour tracking,”
J. Math. Imaging Vis., vol. 46, no. 1, pp. 44–65, 2013.

[24] S. Jehan-Besson, M. Barlaud, G. Aubert, and O. Faugeras, “Shape gra-
dients for histogram segmentation using active contours,” in Proc. IEEE
ICCV, Nice, France, 2003, pp. 408–415.

[25] T. Brox and D. Cremers, “On local region models and a statistical inter-
pretation of the piecewise smooth Mumford-Shah functional,” Int. J.
Comput. Vis., vol. 84, no. 2, pp. 184–193, Aug. 2009.

[26] X. Bresson, S. Esedoglu, P. Vandergheynst, J. Thiran, and S. Osher,
“Fast global minimization of the active contour/snake model,” J. Math.
Imaging Vis., vol. 28, no. 2, pp. 151–167, 2007.

[27] E. Strekalovskiy, A. Chambolle, and D. Cremers, “A convex represen-
tation for the vectorial Mumford-Shah functional,” in Proc. IEEE Conf.
CVPR, Providence, RI, USA, 2012.

[28] N. Paragios and R. Deriche, “Geodesic active regions and level set meth-
ods for supervised texture segmentation,” Int. J. Comput. Vis., vol. 46,
no. 3, pp. 223–247, 2002.

[29] C. Li, C. Kao, J. Gore, and Z. Ding, “Implicit active contours driven by
local binary fitting energy,” in Proc. IEEE Conf. CVPR, Minneapolis,
MN, USA, 2007, pp. 1–7.

[30] S. Lankton and A. Tannenbaum, “Localizing region-based active con-
tours,” IEEE Trans. Image Process., vol. 17, no. 11, pp. 2029–2039,
Nov. 2008.

[31] R. S. T. Lee and J. N. K. Lin, “An elastic contour matching model for
tropical cyclone pattern recognition,” IEEE Trans. Syst., Man, Cybern.
B, Cybern., vol. 31, no. 3, pp. 413–417, Jun. 2001.

[32] L. Wang, C. Li, Q. Sun, D. Xia, and C. Kao, “Active contours driven by
local and global intensity fitting energy with application to brain MR
image segmentation,” Comput. Med. Imaging Graph., vol. 33, no. 7,
pp. 520–531, 2009.

[33] B. Wu and Y. Yang, “Local- and global-statistics-based active contour
model for image segmentation,” Math. Probl. Eng., vol. 64, Article
791958, Jan. 2012.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MYLONA et al.: AUTOMATED ADJUSTMENT OF REGION-BASED ACTIVE CONTOUR PARAMETERS USING LOCAL IMAGE GEOMETRY 13

[34] C. Pluempitiwiriyawej, J. M. F. Moura, Y. J. L. Wu, and C. Ho,
“STACS: New active contour scheme for cardiac MR image seg-
mentation,” IEEE Trans. Med. Imag., vol. 24, no. 5, pp. 593–603,
May 2005.

[35] A. Tsai et al., “A shape-based approach to the segmentation of medi-
cal imagery using level sets,” IEEE Trans. Med. Imag., vol. 22, no. 2,
pp. 137–154, Feb. 2003.

[36] I. Kokkinos, G. Evangelopoulos, and P. Maragos, “Texture analysis and
segmentation using modulation features, generative models and weighted
curve evolution,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 1,
pp. 142–157, Jan. 2009.

[37] M. Keuper et al., “3D deformable surfaces with locally self-adjusting
parameters—A robust method to determine cell nucleus shapes,” in Proc.
IEEE ICPR, Washington, DC, USA, 2010, pp. 2254–2257.

[38] X. Liu, Y. M. Cheung, M. Li, and H. Liu, “A lip extraction method using
localized active contour model with automatic parameter selection,” in
Proc. IEEE ICPR, Istanbul, Turkey, 2010, pp. 4332–4335.

[39] D. Iakovidis, M. Savelonas, S. Karkanis, and D. Maroulis, “A
genetically optimized level set approach to segmentation of thy-
roid ultrasound images,” Appl. Intell., vol. 27, no. 3, pp. 193–203,
Dec. 2007.

[40] C. Y. Hsu, C. Y. Liu, and C. M. Chen, “Automatic segmentation of
liver PET images,” Comput. Med. Imaging Graph., vol. 32, no. 7,
pp. 601–610, 2008.

[41] M. Allili and D. Ziou, “An approach for dynamic combination of
region and boundary information in segmentation,” in Proc. IEEE ICPR,
Tampa, FL, USA, 2008, pp. 1–4.

[42] P. A. Yushkevich et al., “User-guided level set segmentation of anatom-
ical structures with ITK–SNAP,” in Proc. Insight J., Special Issue
ISC/NA-MIC/MICCAI Workshop Open-Source Software, 2005.

[43] E. A. Mylona, M. A. Savelonas, and D. Maroulis, “Entropy-based
spatially-varying adjustment of active contour parameters,” in Proc.
IEEE ICIP, Orlando, FL, USA, 2012, pp. 2565–2568.

[44] E. A. Mylona, M. A. Savelonas, D. Maroulis, and A. N. Skodras,
“Autopilot spatially-adaptive active contour parameterization for medical
image segmentation,” in Proc. IEEE Int. Symp. CBMS, Porto, Portugal,
2013.

[45] D. Tschumperlé and R. Deriche, “Vector-valued image regulariza-
tion with PDEs: A common framework for different applications,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 4, pp. 506–517,
Apr. 2005.

[46] J. Weickert and H. Scharr, “A scheme for coherence-enhancing diffusion
filtering with optimized rotation invariance,” J. Visual Commun. Image
Rep., vol. 13, no. 1–2, pp. 103–118, Mar. 2002.

[47] M. N. Do and M. Vetterli, “The contourlet transform: An efficient
directional multiresolution image representation,” IEEE Trans. Image
Process., vol. 14, no. 12, pp. 2091–2106, Dec. 2005.

[48] M. Vetterli, “Multidimensional subband coding: Some theory and
algorithms,” IEEE Trans. Signal Process., vol. 6, no. 2, pp. 97–112,
Apr. 1984.

[49] M. A. Savelonas, E. A. Mylona, and D. Maroulis, “Unsupervised 2D gel
electrophoresis image segmentation based on active contours,” Pattern
Recognit., vol. 45, no. 2, pp. 720–731, Feb. 2012.

[50] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based
noise removal algorithms,” Physica D, vol. 60, no. 1–4, pp. 259–268,
1992.

[51] M. Nikolova, M. K. Ng, and C. P. Tam, “Fast nonconvex nonsmooth
minimization methods for image restoration and reconstruction,” IEEE
Trans. Med. Imag., vol. 19, no. 12, pp. 3073–3088, Dec. 2010.

[52] C. Li. (2011). University of Connecticut [Online]. Available:
http://www.engr.uconn.edu/˜cmli/

[53] X. Bresson. (2010). City University of Hong Kong [Online]. Available:
http://www.cs.cityu.edu.hk/˜xbresson/

[54] [Online]. Available: http://www.mathworks.com/matlabcentral/
fileexchange/22410-rof-denoising-algorithm

[55] [Online]. Available: http://www.math.hkbu.edu.hk/˜mng/
[56] D. D.-Y. Po and M. N. Do, “Directional multiscale modeling of images

using the contourlet transform,” IEEE Trans. Image Process., vol. 15,
no. 6, pp. 1610–1620, Jun. 2006.

[57] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection
and hierarchical image segmentation,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 33, no. 5, pp. 898–916, May 2011.

[58] A. K. Mishra, P. W. Fieguth, and D. A. Clausi, “Decoupled active con-
tour (DAC) for boundary detection,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 33, no. 2, pp. 310–324, Feb. 2011.

[59] L. Bertelli, B. Sumengen, B. S. Manjunath, and F. Gibou, “A varia-
tional framework for multiregion pairwise-similarity-based image seg-
mentation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 8,
pp. 1400–1414, Mar. 2008.

[60] J. M. Geusebroek, G. J. Burghouts, and A. W. M. Smeulders, “The
Amsterdam library of object images,” Int. J. Comput. Vis., vol. 61, no. 1,
pp. 103–112, 2005.

[61] [Online]. Available: http://www.cancerimagingarchive.net
[62] T. Eckhard, E. M. Valero, and J. L. Nieves, “Labial teeth and gingiva

color image segmentation for gingival health-state assessment,” in Proc.
Eur. Conf. CGIV, 2012, pp. 102–107.

[63] W. R. Crum, O. Camara, and D. L. G. Hill, “Generalized overlap mea-
sures for evaluation and validation in medical image analysis,” IEEE
Trans. Med. Imag., vol. 25, no. 11, pp. 1451–1461, Nov. 2006.

[64] B. Mory and R. Ardon, “Fuzzy region competition: A convex two-
phase segmentation framework,” in Scale Space and Variational Methods
in Computer Vision, vol. 4485. Berlin, Germany: Springer, 2007,
pp. 214–226.

Eleftheria A. Mylona received the B.Sc. degree in
applied mathematical and physical sciences from the
National Technical University of Athens, Athens,
Greece, the M.Sc. degree in physics from the
University of Edinburgh, Scotland, U.K., and the
Ph.D. degree in image analysis from the University
of Athens, Athens, Greece, in 2006, 2007, and 2014,
respectively.

Currently, she is affiliated with the Institute for
Astronomy, Astrophysics, Space Applications and
Remote Sensing, National Observatory of Athens,

Athens, Greece. She has co-authored 16 research articles on biomedical image
analysis. Her current research interests include pattern recognition and image
analysis.

Ms. Mylona received a scholarship co-financed by the European Union and
Greek National funds during the Ph.D. research.

Michalis A. Savelonas (M’08) received the B.Sc.
degree in physics, the M.Sc. (Hons.) degree in cyber-
netics, and the Ph.D. (Hons.) degree in the area
of image analysis from the University of Athens,
Athens, Greece, in 1998, 2001, and 2008, respec-
tively.

Among positions in various academic institu-
tions, including University of Athens, University of
Houston, TX, USA, Hellenic Air Force Academy
and Technological and Educational Institute of
Lamia, he is currently a Research Fellow with

Athena Research and Innovation Center, Xanthi, Greece. He has co-authored
over 50 research articles and book chapters, and has been actively involved in
several EU, US and Greek Research and Development projects. From 2002 to
2004, he was with software industry for the development of real-time systems.
His current research interests include image analysis, segmentation, pattern
recognition, bioinformatics, and watermarking.

Dr. Savelonas received a scholarship from the Greek General Secretariat
of Research and Technology and the European Social Fund for the
Ph.D. research. He is a Reviewer in prestigious international journals
including IEEE TRANSACTIONS ON IMAGE PROCESSING and PATTERN

RECOGNITION.

http://www.engr.uconn.edu/~cmli/
http://www.cs.cityu.edu.hk/~xbresson/
http://www.mathworks.com/matlabcentral/fileexchange/22410-rof-denoising-algorithm
http://www.mathworks.com/matlabcentral/fileexchange/22410-rof-denoising-algorithm
http://www.math.hkbu.edu.hk/~mng/
http://www.cancerimagingarchive.net


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON CYBERNETICS

Dimitris Maroulis (M’02) received the B.Sc. degree
in physics, the M.Sc. degree in Radioelectricity
(Hons.), the M.Sc. degree in Cybernetics, and the
Ph.D. (Hons.) degree in computer science, all from
the University of Athens, Athens, Greece.

He served as a Research Fellow for 3 years at the
Space Research Department of Meudon Observatory,
Paris, France, and afterwards, he collaborated for
over 10 years with the same Department. He was
with the Hellenic Telecommunications Organization
(PTT, Department of Statistics) for 2 years. He

served as Lecturer, Assistant and Associate Professor at the Departments
of Physics and Informatics of the University of Athens. Currently, he is
a Professor at the same University and leader of the Real-Time Systems and

Image Analysis Lab (RTS-image). He has over 20 years of experience in the
areas of data acquisition and real-time systems, and over 15 years of expe-
rience in the area of image/signal analysis and processing. He has also been
collaborating with many Greek and European hospitals and health centers for
over 15 years in the field of biomedical informatics. He has been actively
involved in over 12 European and National Research and Development
projects and has been the Project Leader of five of them, all in the areas
of image/signal analysis and real-time systems. He has published over 150
research papers and book chapters, and currently, there are over 1400 citations
that refer to his published work. He has made peer reviews for over 12 inter-
national journals, as well as for an equal number of international conferences.
His current research interests include data acquisition and real-time systems,
pattern recognition, image analysis, with applications on biomedical systems,
and bioinformatics.


