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Abstract—Gridding microarray images remains, at present, a 

major bottleneck. It requires human intervention which causes 
variations of the gene expression results. In this paper, an original 
and fully-automatic approach for accurately locating a distorted 
grid structure in a microarray image is presented. The gridding 
process is expressed as an optimization problem which is solved 
by using a Genetic Algorithm. The Genetic Algorithm determines 
the line-segments constituting the grid structure. The proposed 
method has been compared with existing software tools as well as 
with a recently published technique. For this purpose, several real 
and artificial microarray images containing more than one million 
spots have been used. The outcome has shown that the accuracy 
of the proposed method achieves the high value of 94% and it 
outperforms the existing approaches. It is also noise-resistant and 
yields excellent results even under adverse conditions such as 
arbitrary grid rotations, and the appearance of various spot sizes. 
 

Index Terms—Genetic algorithm, Image analysis, Microarrays, 
Spot gridding. 
 

I. INTRODUCTION 
DNA microarrays is a fundamental and powerful 
biotechnology tool which enables scientists to 

simultaneously monitor the expression levels of thousands of 
genes over different samples [1]. It has been utilized in a wide 
variety of different biomedical application areas, such as: (i) 
cancer research (i.e. determination of molecular differences 
between normal and abnormal cells, classification of tumors), 
(ii) infectious disease diagnosis and treatments (i.e. 
determination of risk factors, monitoring treatment during 
different disease stages), and (iii) pharmacology research (i.e. 
determination of correlations between the genetic profiles of 
patients and their therapeutic responses to drugs) [2]. 

In cDNA microarrays [3], a set of DNA probes that are of 
particular interest are placed on a glass slide, creating an 
invisible array of DNA dots. Two distinct populations of  
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mRNA, are reversely transcribed into cDNAs, which in turn 
are colored with fluorescent dyes. The cDNA populations are 
then hybridized with the slide’s DNA dots. The hybridized 
glass slides are fluorescently scanned, and two digital images 
are produced, one for each population of mRNA. Each digital 
image contains a number of spots (corresponding to the DNA-
cDNA dots) of various fluorescence intensities. Given that the 
intensity of each spot is proportional to the hybridization level 
of the cDNAs and the DNA dots, the gene expression 
information is obtained by analyzing the digital images. 

An important first stage in microarray image analysis is 
gridding, which is the process of segmenting a microarray 
image into numerous compartments, each containing one 
individual spot and the background. Although this process may 
seem relatively straightforward, it is in fact rather complicated 
since the quality of images suffers from the existence of noise 
(i.e. dust on the slide), artifacts (i.e. inner holes and scratches) 
and uneven background, while some spots are poorly 
contrasted and ill-defined [4]. In addition, given that spots 
vary in size and position due to the presence of noise during 
the sample preparation and hybridization processes, there may 
be rotations, misalignments and local deformations of the ideal 
rectangular grid [5].  

As a result, the available gridding software programs (i.e. 
ScanAlyze [6], Dapple [7], ImageGene [8], and SpotFinder 
[9]) require human intervention in order to specify input 
parameters as well as to adjust properly the location of the grid 
structure. Automating this part of the process is essential 
because: (i) it will allow rapid high throughput analysis of the 
expression levels of thousands of genes, and also (ii) it will 
prevent variations in the results of gene expression levels. 
Indeed, the experiment reported in [10] shows that for the 
same microarray slide, human intervention in the gridding 
procedure leads to significant discrepancies in the gene 
expression levels. 

Other well-known approaches to gridding microarray 
images are based on axis projections [11], or on morphological 
filtering [12]. Both of them require user intervention in order 
to manually adjust the grid location. The Hill-Climbing 
approach for automatic gridding [13] can perform gridding 
properly only if misalignments and rotations of the ideal grid 
are not present. Markov random field (MRF) [14] and graph-
based grid approaches [15] have been also applied to gridding. 
A drawback of these approaches is that they require input 
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parameters.  
A variety of different methodologies have been proposed 

with the intension to solve rotation and misalignment 
problems. Bajcsy [16] suggested an exhaustive search of all 
the expected rotation angles. Steinfath [17] proceeded by 
estimating the rotation angle. A drawback of the latter is that it 
introduces pixel distortions when the rotation angle is small. 
Brandle et al. [18] utilized the discrete Radon transformation 
to estimate the angle rotation. As it is computationally 
expensive, the process is accelerated by constraining the range 
of rotation angles. Ho et al. [19] expressed the gridding 
process as an optimization problem based on the Jacobi 
iteration. However, this method is efficient only when the grids 
are smoothly distorted. Giuiliano et al. [20] recommended a 
gridding procedure based on stochastic search algorithms. 
Although it deals with rotations effectively, it requires manual 
intervention in order to define the radius of the spots. As a 
result, it is not efficient when the microarray image contains 
various spot sizes.  

In this paper, an original, fully-automatic and unsupervised 
approach to gridding microarray images is presented. It relies 
on a Genetic Algorithm, which determines very effectively the 
line-segments, constituting the borders between adjacent 
blocks or spots. The proposed method can deal with rotations, 
misalignments and local deformations of the ideal rectangular 
grid, as line-segments may have various angles in the 
microarray image. It is also noise-resistant and it is efficient 
even under adverse conditions such as the appearance of 
various spot sizes or the absence of spots.  

The rest of this paper is structured in four sections as 
follows: In Section II, a typical cDNA microarray image is 
portrayed and a brief description of Genetic Algorithms is 
provided. In Section III, the proposed gridding method is 
presented. The gridding process is expressed as an 
optimization problem which then is solved by using a specific 
Genetic Algorithm. In Section IV experiments are presented 
that test the proposed gridding method and compare it to 
existing software packages for microarray image analysis, as 
well as to a recently published technique. To this extent, 
artificial microarray images, and real microarray images were 
used. Our conclusions are apposed in section V. 
 

II. BACKGROUND MATERIAL 

A. A typical cDNA microarray image 
A typical cDNA microarray image usually contains one or 

more distinct, rectangular or square blocks, each one 
containing equal number of spots. These blocks are arranged 
in a 2D array layout. Under magnification, spots belonging to 
the same block are arranged in a 2D array layout too. Fig. 1 
illustrates a typical microarray image which is composed of 6 
blocks in a 3x2 layout. Each block contains equal number of 
spots which are located in a 16x17 block layout. 
As it can be easily observed, a typical microarray image has 
the following properties: 

--All blocks inside the microarray image contain equal 
number of spots being arranged in identical 2D array layouts.  

--Adjacent blocks and adjacent spots are clearly separated. 
However, the edge-to-edge distance between two adjacent 
blocks is larger than the distance between two adjacent spots 
within each block. 

  
B. Genetic Algorithms  

Genetic Algorithms (GAs) are powerful, stochastic non-
linear optimization tools based on the principles of natural 
selection and evolution [21]. Compared to traditional search 
and optimization tools (such as Blind Search Algorithms), 
GAs demonstrate superior performance, given that they are 
robust optimizers, suitable for solving problems for which 
there is little or no a priori knowledge of the underlying 
processes.  

Given a specific optimization problem, a typical GA 
searches for the optimal solution as follows: Firstly, it creates a 
finite number of potential solutions encoded as alpha-
numerical sequences called Chromosomes. These 
Chromosomes constitute an initial Population Pop1. 
Subsequently, the GA produces a new Population Pop2 
according to the following: The Chromosomes constituting the 
Pop1 are evaluated using a Fitness Function. Thereafter, the 
GA evolves the Population Pop1 into a new Population Pop2 
using the three Genetic Operators: Reproduction, Crossover, 
and Mutation. This Evolutionary Cycle from one Population to 
the next (Pop1 to Pop2, Pop2 to Pop3 and so forth) continues 
until a specific termination criterion is satisfied. Subsequently, 
the essential elements of the GA are: Chromosome 
representation, Chromosome evaluation, the Evolutionary 
cycle, and the Termination criteria. 

A Chromosome is often represented as a simple alpha-
numerical sequence which encodes the values of variables 
defining a possible solution to the optimization problem at 
hand. Although a traditional GA uses a binary number in order 
to encode these variables, in the present application, a Real-
Coded Genetic Algorithm (RCGA), which uses real values, is 
applied. The reason is that real-coded Chromosomes exhibit 
various advantages over binary-coded Chromosomes as they 
can use large or unknown domains for the variables they 
encode. On the other hand, assuming that the Chromosome has 

BlockBlock

Fig. 1.  A typical microarray image containing 6 blocks each one having 272 
spots. 
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a fixed length, binary implementations cannot increase the 
domain without sacrificing precision [22]. 

The evaluation of the Chromosome is based on a Fitness 
Function which assigns to the Chromosome a Fitness Value 
measuring the quality of the solution that the Chromosome 
represents. Naturally, the Fitness Function depends on the 
particular optimization problem at hand and on the 
Chromosome representation. 

Reproduction, Crossover and Mutation are the three Genetic 
Operators used for the creation of new Chromosomes [22]. All 
of them have been implemented in several, distinct fashions 
depending on the Chromosome representation.  

Common terminating criteria are: (i) A solution that satisfies 
the defined minimum standards, (ii) The attainment of a 
maximum number of Populations, (iii) The attainment of a 
fixed number of Populations for which the Fitness Value of the 
best Chromosome remains the same, and (v) Combinations of 
the above [23]. 

 

III. THE PROPOSED GENETIC APPROACH TO GRIDDING 
MICROARRAY IMAGES 

Due to the nature of the alignment of blocks inside the 
microarray image and the arrangement of spots inside the 
blocks, the gridding procedure is divided into two stages: 

STAGE I: The microarray image is segmented into 
blocks, by determining (drawing) a set of line-
segments LBG whose members are the line-
segments constituting the borders of adjacent 
blocks. 

STAGE II: Each block (from Stage I) is segmented into 
single-spot compartments, by determining 
(drawing) a set of line-segments LSG whose 
members are the line-segments constituting 
the borders between adjacent spots.  

In detail, let G be a microarray image or a block, which 
makes it quadrilateral in shape. Its boundaries are named as 
“Line_Above”, “Line_Below”, “Line_Left” and “Line_Right” 
(Fig. 2).  

In the particular case when G is an MxN microarray image, 
it becomes rectangular in shape. “Line_Above” is defined then 
by the end points B(0,0) and C(0,N-1), “Line_Below” is 
defined by the end points A(M-1,0) and D(M-1,N-1), 
“Line_Left” is defined by the end points B(0,0) and A(M-1,0) 
and “Line_Right” is defined by the end points C(0,N-1) and 
D(M-1,N-1). Otherwise, when G is a block, “Line_Above”, 
“Line_Below”, “Line_Left” and “Line_Right” are four line-
segments determined in stage I of the gridding procedure. In 
the latter case, the borders of G can have any possible 
direction on the two-dimensional Cartesian plane.  

Each set of line-segments (LBG or LSG) can be divided into a 
sub-set of line-segments LV whose members are the line-
segments defined by “Line_Above” and “Line_Below” of G 
and into a sub-set of line-segments LH whose members are the 
line-segments defined by “Line_Left” and “Line_Right” of G. 

The determination of line-segments which are included in 
either the LV or the LH sub-sets can be viewed as an 
optimization problem which is tackled by using the proposed 
Genetic Algorithm which determines the exact values of the 
variables of all the optimal line-segments included in both sub-
sets, one sub-set at a time. For this purpose, the following 
elements of GAs must be determined: Chromosome 
representation, Chromosome evaluation, the Evolutionary 
cycle, and the Termination criteria. 

  
A. Chromosome representation 

The Chromosome m represents all line-segments Li, 
i=1,…,N(m) belonging either to the LV sub-set or the LH sub-
set. N(m) is the number of the line-segments belonging to the 
respective sub-set. 

The line-segments, in both sub-sets, are represented on a 
two-dimensional Cartesian system. Thus, they can be 
described algebraically by the following linear equation: 
 
 ( )2 1

1 1
2 1

y yy y x x
x x

−
= + −

−
 (1) 

 
where (x1, y1), (x2, y2) denote the coordinates of the two end-
points of the line-segment, and x is the independent variable of 
the equation, whose range is defined as:  
 
 [ , ]1 2x x x∈  (2) 
 

The Cartesian system used for the representation of line-
segments belonging to the LV sub-set (Fig. 3a) always differs to 
the one used in the LH sub-set (Fig. 3b). The reason is that (1) 
is not defined when x1 is equal to x2. 

The first line-segment represented by the Chromosome m is 
L1. In the case when the Genetic Algorithm searches for the 
optimal line-segments included in the LV sub-set, L1 is defined 
as the line-segment which is left to the first column of blocks 
(or spots), nearest to the line-segment “Line_Left” (lineV1, Fig. 
4). Likewise, in the case when the Genetic Algorithm searches 
for the optimal line-segments included in the LH sub-set, L1 is 
defined as the line-segment which is above the first row of 
blocks (or spots), nearest to the line-segment “Line_Above” 
(lineH1, Fig. 4).  

The rest of the line-segments Li, i=2,…,N(m), represented 

G

Line_Above

Line_Below

Line_Left Line_Right

A

B
C

D

Fig. 2.  “Line_Above”, “Line_Below”, “Line_Left” and “Line_Right” of a 
microarray image or block G. 
 



TMI-2007-0563 
 

4

by the Chromosome m, are defined as line-segments which are 
parallel to L1, and their distance from L1 is equal to ( 1)i d− ⋅ . 
d is the distance between two adjacent line-segments. Thus, 
the line-segments Li, i=2,…,N(m) can be described by the 
following linear equation, in which the unknown variables are 
the line-segment L1 and the distance d: 
 
 ( 1)i 1L L i d= + − ⋅   (3) 
 

 
As previously mentioned, the Chromosome m represents all 

the line-segments Li, i=1,…,N(m) belonging either to the LV 
sub-set or to the LH sub-set. Consequently, the Chromosome 
should encode the end-points [( , ), ( , )]L1 L1 L1 L1

1 1 2 2x y x y  of the 
line-segment L1 and, the distance d. However, instead of this, 
the Chromosome encodes only: (i) the y-coordinate ( L1

1y ) of 
the start point of the line-segment L1, (ii) the y-coordinate 
( L1

2y ) of the end point of the line-segment L1 and, (iii) the 
distance d  between two adjacent line-segments (Fig. 5). 

It is worth pointing out that the x-coordinates ( L1
1x and L1

2x ) 
of the end-points of the line-segment L1 have not been 
included in the Chromosome. The reason is that they can be 
computed from the y-coordinates. For instance, the x-
coordinates of the line-segment “lineV” (Fig. 3a) can be 
computed given that: (i) the intersection point of the line 

LV
1y y=  and the line-segment “Line_Above” (BC) is the 

point ( , )LV LV
1 1x y , and (ii) the intersection of the line LV

2y y=  
and the line-segment “Line_Below” (AD) is the 
point ( , )LV LV

2 2x y . Equivalent, the x-coordinates of the line-
segment “lineH” (Fig. 3b) can be computed given that: (i) the 
intersection point of the line LH

1y y=  and the line-segment 

“Line_Left” (BA) is the point ( , )LH LH
1 1x y , and (ii) the 

intersection of the line LH
2y y=  and the line-segment 

“Line_Right” (CD) is the point ( , )LH LH
2 2x y . 

 
Two gridding results are shown in Fig. 4. In the case when 

the Genetic Algorithm searches for the exact values of the 
variables of the optimal line-segments defined by 
“Line_Above” and “Line_Below”, its Chromosome will encode 
the y-coordinates of the end-points of “lineV1” and “dV”. In the 
case when the Genetic Algorithm searches for the exact values 
of the variables of the optimal line-segments defined by 
“Line_Left” and “Line_Right”, its Chromosome will encode 
the y-coordinates of the end-points of “lineH1” and “dH”. 

 
Obviously, the Genetic Algorithm can deal with rotations, 

misalignments and local deformations of the ideal rectangular 

L1
1y dL1

2y

Fig. 5.  The parameters encoded in the real-value Chromosome used in the 
GA. 
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Fig. 4.  Line-segments constituting the grid structure: (a) in a microarray 
image, (b) in a block. 
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Fig. 3.  Two dimensional Cartesian systems used for the representation of 
line-segments and graphical explanation of the computation of the x-
coordinates of the end points of line-segments: (a) belonging to the LV subset, 
(b) belonging to the LH subset. 
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grid. Indeed, given that the angle of the line-segment is 
depended on its end points, the Genetic Algorithm can 
determine line-segments which have various angles as it 
determines the end points of the line-segments. 

B. Chromosome evaluation 
Each Chromosome m in every Population is evaluated using 

a Fitness Function, F(m), which assigns to it a degree of how 
appropriate a solution to the gridding optimization problem it 
is. The higher the value of the Fitness Function, the more 
appropriate the Chromosome is. As far as the gridding 
optimization problem, the Chromosome evaluation contains 
the following two objectives: (i) Maximization of the number 
of line-segments which are determined simultaneously; (ii) 
Maximization of the probabilities of all the determined line-
segments to be part of the grid. 

Hence, it becomes essential to define the probability of a 
line-segment to be part of the grid, before the mathematical 
definition of the Fitness Function. 
 
Probability of a line-segment to be part of the grid 

A line-segment which is part of the grid is located in an area 
empty of spots. The pixels of this area are part of the 
background and their intensities are generally lower than the 
intensities of the pixels constituting spots. 

As a result of the above observation, we define a region RLi 
which is located on either side of the line-segment Li. More 
precisely, RLi is defined as: 
 
 { | ( ) ( , ) }Li iR p p G d p L w= ∈ ∧ ≤  (4) 
 
where p are the pixels contained within the quadrilateral G and 
d(p,Li) denotes the distance of the pixel p to the line-segment 
Li. w is a constant integer which controls the width of the 
region RLi, on either side of the line-segment Li. 

The probability P(Li) of a line-segment Li to be part of the 
grid is defined as the percentage of background pixels fB(Li) 
located in RLi minus the percentage of spot pixels fS(Li) located 
in RLi. It is computed by the following equation: 
 
 ( ) ( ) ( )i B i S iP L f L f L= −  (5) 
 

The real-value functions fB(Li) and fS(Li) are computed as 
follows: 
 
 #{ | ( ( ) ( ( ) ) )}( )

#{ | }
Li B

B i
Li

p p R I p If L
p p R

∈ ∧ ≤
=

∈
 (6) 

 
and  
 
 #{ | ( ( ) ( ( ) ) )}( )

#{ | }
Li B

S i
Li

p p R I p If L
p p R

∈ ∧ >
=

∈
 (7) 

 
where the symbol # denotes the number of the elements of the 
set that is defined by the brackets {}. I(p) denotes the intensity 

of the pixel p. IB is the intensity value that is present in most 
pixels of G. An example of IB is illustrated in Fig. 6. 

It is self-explanatory that the majority of pixels of G forms 
the background. Therefore, IB corresponds to a threshold.  
Pixels with intensity lower or equal to IB have a distinct 
probability to belong to the background, while pixels with 
intensity higher than IB have a distinct probability to belong to 
the spots. 

 
 

Fitness Function 
The Fitness Function, F(m), of a Chromosome m that 

encodes a possible solution to the particular optimization 
problem is defined by the following equation: 
 

 ( ) ( ), ( )
( )

( ),
p LS Max

p

S m N m if f m f
F m

S m otherwise

⋅ ≤⎧⎪= ⎨
⎪⎩

 (8) 

 
where 
 

 
( )

1

( ) ( )
N m

p i i
i

S m P L q
=

= ⋅∑ , (9) 

 
and 
 

 1, ( )
0,

i MA
i

if P L P
q

otherwise
>⎧

= ⎨
⎩

. (10) 

 
Also, 
 

 

( )

1( )
( )

N m

i
i

LS

k
f m

N m
==

∑
, (11) 

 
and 
 

 1, ( )
0,

i Low
i

if P L P
k

otherwise
≤⎧

= ⎨
⎩

. (12) 

 
Sp(m) denotes a total sum of the probabilities P(Li) of the 

line-segments Li, i=1,…,N(m), that are represented by the 
Chromosome m, and have a higher than a threshold PMA 
probability P(Li) to be part of the grid. PMA is a threshold 
which expresses the minimum acceptable probability of a line-

IB Intensity
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y
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Fig. 6.  A typical histogram of G, where IB is depicted. 
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segment to be part of the grid. Therefore, it controls which of 
the line-segments Li participate in the sum Sp(m). 

fLS(m) denotes the percentage of the line-segments Li, 
i=1,…,N(m), that are represented by the Chromosome m, and 
have a lower than (or equal to) a threshold PLow probability 
P(Li) to be part of the grid, where PLow < PMA. N(m) denotes 
the total number of the line-segments Li which are represented 
by the Chromosome m.  

The Fitness Function F(m) of a Chromosome m equals to 
Sp(m) or Sp(m)·N(m), according to the value of the percentage 
fLS(m). If the percentage fLS(m) of the Chromosome m is higher 
than a threshold fMax, it means that the line-segments, 
represented by the Chromosome m, are ill-defined because 
they are located in areas containing spots instead of 
background (1st case). On the other hand, if the percentage 
fLS(m) of the Chromosome m is lower or equal to the threshold 
fMax, it means that the line-segments, represented by the 
Chromosome m, are well-defined because they are located in 
background areas, some of which may be contaminated with 
noise (2nd case). Using the Fitness Function F(m), the Genetic 
Algorithm can assign to the Chromosome m of the 1st case a 
lower Fitness Value than to the one of the 2nd case. Moreover, 
the multiplication Sp(m)·N(m) in (8) prevents the Genetic 
Algorithm from converging to a local solution that would be 
not an efficient one (this would lead to termination without 
determining all the line-segments belonging to the LH or the LV 
sub-sets). Indeed, the higher the Fitness Value of the 
Chromosome is, the greater number N(m) of the line-segments 
Li which have a high probability P(Li) to be part of the grid it 
represents.   

It is worth pointing out that the probabilities P(Li) of the 
line-segments Li which are less or equal to the threshold PLow, 
are not taken into account for the calculation of  (9) given that 
PLow < PMA. As a result, the Fitness Function F(m) exploits 
only the percentage of the line-segments Li (11) and not the 
exact values of their probabilities P(Li).  

C. Evolutionary circle -Termination Criteria 
Let Popn be a Population of Chromosomes which consists of 

Npop Chromosomes, where n stands for the consecutive number 
of Populations. A new Population Popn+1 of an equal number 
of Chromosomes (Npop) is created through the following 
stages: (i) Reproduction stage: Pr% of the best Chromosomes 
of the current Population Popn are carried over to the new 
Population Popn+1. (ii) Crossover-Mutation stage: The 
Chromosomes needed to complete the new Population Popn+1 
are produced through iterations of the following: Four 
Chromosomes of the Population Popn are selected using the 
tournament selection method [24]; These Chromosomes are 
subsequently subjected in turn to a Crossover operator 
(according to a Pc% probability) and then to a Mutation 
operator (according to a Pm% probability). The best two of the 
four resulting Chromosomes (the two with the best Fitness 
Value) proceed to the new Population Popn+1. 

It should be noted that the Crossover operator applied, is the 
joint application of the BLX-a, and the Dynamic Heuristic 

Crossover as it is the most promising Crossover application 
[25]. Moreover, the Mutation operator applied, is the wavelet-
Mutation as it exhibits a fine-tune ability as opposed to other 
Mutation operators [26]. 

New Populations are thus produced until at least one of the 
following two criteria is met: (i) the Genetic Algorithm is 
executed up to a maximum number of Populations GMax; (ii) 
the Genetic Algorithm is executed up to a maximum number of 
Populations GFit for which the best Fitness Value has remained 
unchanged. 
 

IV. RESULTS  
Several experiments were executed so as to evaluate the 

performance of the proposed method for gridding cDNA 
microarray images. It should be noted that the following pre-
processing step was applied before gridding. The reason being 
that, microarray images may contain low-intensity spots which 
are not clearly visible. Hence, in order to study them, we 
adjusted the pixels’ intensity of the microarray images so that 
low-intensity spots are amplified and high-intensity spots are 
not saturated. To this extent, the Box-Cox transformation was 
applied as a pre-processing step, before gridding, as it has 
been proven useful for adjusting microarray spot intensities 
[27]. 

The microarray images used in the experiments are divided 
in two different datasets: 

The first dataset contains 25 real microarray images from 
the Stanford Microarray Database (SMD) [28], which is 
publicly available. The images are digitized at ~ 5000 x 2000 
pixels at 16-bit grey level depth and they are stored in tiff 
format. Each one of them encloses 48 blocks, each block 
containing 864 spots. The microarray images have been 
produced by comprehensively analyzing the gene expression 
profiles in 54 specimens of acute lymphoblastic leukemia, 37 
positive and 17 negative to BCR-ABL [29]. BCR-ABL is a 
fusion gene product resulting from translocation between the 
9th and the 22th chromosomes. 

The second dataset contains the data used for the evaluation 
of the gridding algorithm described by Blekas et al.[30]. More 
precisely, it contains ten microarray blocks, which have been 
arbitrarily selected from ten microarray images, artificially 
created or obtained from publicly available microarray 
databases. These blocks are stored in tiff format, at 16-bit grey 
level depth and they have been obtained from paper [30] upon 
request from its authors.  

Using the two datasets, it is demonstrated that the proposed 
method can accurately determine the grid structure even if the 
images have been produced by different technologies or even 
if the images contain microarray spots of varying quality. The 
enormous number of spots which are contained in the 
microarray images used in the experiments additionally 
support this argument. Indeed, the microarray images contain 
1,040,300 microarray spots from which 1,036,800 spots are 
contained in the first dataset and 3500 spots are contained in 
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the second dataset. Moreover, using the second dataset, the 
performance of the proposed method is compared with the one 
proposed in [30], as well as with other well-known software 
programs (ScanAlyze and SpotFinder). 

During the experiments, the efficiency of the proposed 
method was analyzed by means of a statistical analysis. The 
statistical analysis resembles to the one described in [30]. 
More precisely, each microarray spot existing in the 
microarray images was classified in one of the following three 
categories: “perfectly”, “marginally” and “incorrectly” 
gridded. A spot was “perfectly” gridded if the entire spot area 
was contained inside the equivalent compartment of the grid. 
This means that even if one pixel of the microarray spot was 
outside the compartment then it could not be classified in this 
category. A spot was “marginally” gridded if at least 80% of 
the entire spot area was contained inside the equivalent 
compartment of the grid. A spot was “incorrectly” gridded if 
less than 80% of the entire spot area was contained inside the 
equivalent compartment of the grid. All of the spot areas of the 
microarray spots were either the ones annotated in the SMD 
results, for the first dataset, or were defined, for the second 
dataset, in the same manner, as it is described at [30]. 

In all the experiments, the population size of the Genetic 
Algorithm was set to 100.  This size is high enough to reduce 
the possibility of the Genetic Algorithm to prematurely 
converge to a local solution that would not be an efficient one. 
Meanwhile, it does not increase the time required for the 
population to converge to an efficient solution [31]. The 
percentage of each Population which was reproduced was 
relatively small (Pr=10%) as the reproduction was used only 
for the best Chromosomes of the Population to be preserved in 
the next Population. In accordance with [32] the high 
Crossover probability of 80% was chosen (Pc=80%). The 
Mutation probability was experimentally adjusted to 80% too 
(Pm=80%). In [33], it is suggested that the Real-Coded GAs 
may take advantage of high Mutation rates. Our experiments 
have confirmed this advantage of high Mutation rates as a low 
mutation rate could in fact cause the Genetic Algorithm to find 
a solution that is not efficient. The reason is that the Real-
Coded GAs do not provide enough diversity through the 
Crossover operation alone. Mutation on the other hand can 
select a new real value within the allowable range of each of 
the designed genes of the Chromosome. The Termination 
criterion was satisfied when the Genetic Algorithm was 
executed for 1000 Populations (GMax=1000) or when the best 
fitness value remained unchanged for 200 Populations 
(GFit=200).  

Fitness parameters have been experimentally adjusted. The 
value of the afore-mentioned margin (w) depends on which of 
the two stages of the gridding procedure (section III) the 
Genetic Algorithm is executed. This is due to the fact that the 
edge-to-edge distance between two adjacent blocks is larger 
than the distance between two adjacent spots within each 
block. As a result, the margin (w) was set to 8 when the 
Genetic Algorithm was searching for line-segments 

constituting the borders between two adjacent blocks (Stage I 
of the gridding procedure). Respectively, when the Genetic 
Algorithm was searching for line-segments constituting the 
borders between two adjacent spots, the margin (w) was set to 
2 (Stage II of the gridding procedure). A minimum acceptable 
probability PMA of 0.7 was adopted.  A threshold PLOW of 0.5 
and a threshold fMax of 0.2 were adopted as the most 
appropriate in order to distinguish the Chromosomes which 
represent line-segments located in background areas from the 
ones which represent line-segments located in spot areas. 

Table I summarizes the Genetic Algorithm parameters used 
in the experiments. 

 
The evaluation results of the proposed method are shown in 

table II. The first row corresponds to the results obtained using 
the first dataset while the second row corresponds to the 
results obtained from the second dataset. As it can be easily 
observed, the proposed method determines the grid structure 
almost perfectly, irrespective of which dataset was used. In 
details, more than 94% of the microarray spots have been 
perfectly gridded and only a small percentage of them, less 
than 1%, have been incorrectly gridded. 

 
The evaluation results of the proposed method have been 

also compared to the ones reported by Blekas et al. [30]. To 
this extent, we appose the results reported by Blekas et al. to 
table III. Comparing the results of the proposed method using 
the 2nd dataset (2nd row of the table II) with the results 
reported by Blekas et al. (table III), it is obvious that the 
proposed method outperforms the method proposed by Blekas 

 
TABLE I 

PARAMETERS VALUES USED FOR THE GENETIC ALGORITHM 

Parameters Values 

Population parameters  
Number of chromosomes (Npop) 100 
  
Genetic- operators parameters  
Reproduction percentage (Pr%) 10% 
Crossover probability (Pc%) 80% 
Mutation probability (Pm%) 80% 
  
Fitness parameters  
Margin (w)  8 or 2 
Minimum acceptable probability (PMA) 0.7   
Threshold of low probability (PLOW) 0.5 
Threshold fMax 0.2 
  
Termination-criteria parameters  
Maximum number of populations (GMax) 1000 
Maximum number of populations (GFit) 200 

 

 
TABLE II 

PERFORMANCE  OF THE PROPOSED GRIDDING METHOD 

 Perfect % Marginal%  Incorrect% 

1st  dataset 94.6 4.8 0.6 
2nd dataset 94.4 5.1 0.5 
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et al. Moreover, the results of the proposed method are 
significantly more successful than the ones of ScanAlyze and 
SpotFinder software programs.  

 
Fig. 7 represents the gridding results of two microarray 

blocks using the proposed method. Each block belongs to the 
first dataset. Both of them are contaminated with noise, and 
they contain uneven background. It is worth noticing that the 
proposed method can accurately determine the grid structure. 
Even the compartments of the grid which bound microarray 
spots fully-contaminated with noise, are very effectively 
depicted. 
 

 
Fig. 8 depicts the gridding results obtained by applying the 

proposed method to one of the blocks of the 2nd dataset. It is 

evident that although the block contains several under-
expressed and high-expressed spots, the gridding results are 
almost perfect. This example indicates that the accuracy of the 
proposed method is not influenced by spot intensities and 
sizes. 

To evaluate the gridding method when rotation exists, we 
rotated the microarray images by seven degrees and we 
applied the proposed method. Fig. 9 presents the gridding 
result of a rotated sub-image. It is demonstrated that the 
proposed method can very efficiently determine the rotated 
grid structure. 

 

 
Fig. 10a presents the gridding results of a microarray image 

which contains four blocks which are misaligned. The 
misalignment can be easily observed in Fig. 10b which depicts 
an enlargement of the central part of the image shown in Fig. 
10a. The ideal rectangular grid is deformed since the edge-to-
edge distance between the two top blocks is smaller than the 
edge-to-edge distance between the two bottom blocks. 
However, the proposed method has very effectively 
determined the grid structure. 

 
TABLE III 

PERFORMANCE OF GRIDDING METHODS BY BLEKAS ET AL.[30] 

Gridding methods Perfect 
% 

Marginal
%  

Incorrect
% 

Method proposed by Blekas et al.  89.6 9.2 1.2 
ScanAlyze 48.7 22.6 28.7 
SpotFinder 72.8 14.3 12.9 

 

Fig. 9.  Gridding results in a rotated microarray sub-image. 

Fig. 8.  Gridding results in a microarray block which contains several under 
expressed and high expressed spots. 

 
(a) 

(b) 
Fig. 7.  Gridding results in two blocks contaminated with noise. 
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V. CONCLUSIONS 
Gridding is the first important stage in microarray image 

analysis. In this paper, the gridding procedure is expressed as 
an optimization problem which is tackled by using a Genetic 
Algorithm, which determines the line-segments constituting 
the grid structure. The proposed method can very efficiently 
deal with various kinds of perturbations such as arbitrary 
rotations, local deformations and missing spots. It is also 
noise-resistant and it is efficient even under adverse conditions 
such as the appearance of various spot sizes or the absence of 
spots. Last but not least, it is fully-automatic since it does not 
require any input parameter or human intervention in order to 
adjust properly the grid structure. The experimental results 
over synthetic and real images demonstrate that it is very 
efficient and effective. It outperforms the existing software 
program methods as well as recently published techniques. 
After applying it to several images containing 1,040,300 
microarray spots, the proposed method achieved an accuracy 

of more than 94%. To our knowledge, this percentage is much 
higher than the ones obtained from state-of-the-art gridding 
techniques. 
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