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Abstract

Colorectal cancer is one of the leading types of cancer in the developed countries. Epidemiological studies have

shown that the risk of developing colorectal cancer can be significantly reduced through early detection and removal

of cancer precursor lesions. We propose a novel framework for the automated identification of colon cancer precursors

based on the processing of color video frames acquired during endoscopy. The spectral information of the three color

channels forming the endoscopic frames is used for the description of the colonic mucosa. The suitability of different

color models for this application is investigated. The textural properties of the colonic mucosal surface are measured

using second order statistical descriptors on the wavelet transform of the multichannel video signals. A new reduced

set of measures based on the inter-channel covariance of the features has proven to provide high discrimination of

image regions corresponding to normal and abnormal tissue. The proposed framework was tested using a Support Vec-

tor Machine classifier on different video frame sets presenting adenomatous polyps and the average sensitivity and spe-

cificity was estimated to reach 94% and 95.7%, respectively.
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1. Introduction

Cancer of the colon and rectum is one of the

commonest forms of malignancy in developed

countries, and the incidence appears to be rising
ed.
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[1]. The National Cooperative Colon Polyp study

clearly showed that the identification and removal

of adenomatous colon polyps significantly reduce

the risk of developing colorectal cancer [2]. Polyps

are visible tissue masses protruding from the mu-
cosal surface. They are characterized by their col-

or, the appearance of their mucosal surface, the

presence of ulcers, their bleeding tendency, and

above all the presence of pedunculus (peduncu-

lated or non-pedunculated). Their size varies from

barely visible transparent protrusions to penducu-

lated lesions with a diameter of 3–5cm or non-

pedunculated lesions with a diameter of 10–20cm.
Although there are many histopathologic types

of colonic polyps, approximately 75% of them

are adenomatous [3]. There are several screening

procedures that are used for the detection of colo-

nic polyps, including barium enema, computed

tomography or magnetic resonance imaging of

the colon, virtual endoscopy, rectosigmoidoscopy

and finally endoscopy, which is the most accurate
screening procedure for patients with clinical or

laboratory suspicion of colonic polyposis [4].

During the endoscopic examination of the co-

lon it is possible for some polyps to be discounted

by the physicians and become malignant in the

following years. This fact imposes the need of a

reliable system that would be capable of support-

ing the detection of polyps. Such a system could
increase the physician�s ability to accurately lo-

cate early stage polyps, and could contribute to

a reduction in the duration of the endoscopic pro-

cedure, which is in most cases painful for the pa-

tients. Moreover, a consequent cost reduction of

the operation would be feasible, since more pa-

tients would be able to be examined in less

time.
Computer-aided diagnosis is a useful tool for

improving accuracy for several diagnostic tasks

[5]. In many of these tasks, the measurement of

color and textural characteristics of medical

images have shown to provide important informa-

tion for the automatic detection of lesions, such as

lesions of the liver [6,7], prostate [8], brain [9],

breast [10,11], heart [12], skin [14–16], cervix [13]
and colon [17–22]. As it has been proposed by

Kudo [23,24] changes in the cellular pattern (pit

pattern) of the colon lining can be used for quali-
tative and quantitative diagnosis of colonic le-

sions. This textural information can be exploited

for the automated identification of polyps.

In this paper, we propose a novel framework

for the identification of colorectal polyps using
wavelet domain measurements of the textural con-

tent of color video endoscopy frames. This frame-

work includes: (a) acquisition and preprocessing of

the endoscopic color video frames, (b) calculation

of textural image measures and, (c) classification

of these measures into classes that correspond to

image regions depicting healthy or suspicious for

abnormality tissue.
The textural measures are calculated on the 2-

dimensional Discrete Wavelet Transform (2D-

DWT) of each color channel of the video frames.

2D-DWT is a multiresolution technique, which in-

tends to transform images to a representation in

which both spatial and frequency information is

present. It conforms to the way the human visual

system processes images [25], and its application
in texture classification problems has resulted in

higher success rates [20–22,26]. The utilization of

the textural information existing in or between

the different color channels of an image have been

a point of interest only in the recent years of re-

search, where the widely available computational

power has increased. Significant improvement of

texture classification results has been reported
using color instead of grayscale images [27–29].

The classification task has been assigned to a

Support Vector Machine (SVM). SVMs are super-

vised machine learning algorithms that are based

on statistical learning theory [30]. Their remarka-

bly robust performance, even with sparse and

noisy data and their ability to resist overfitting

and the ‘‘curse of dimensionality’’, makes them
attractive for a number of real world problems

[31]. They have been successfully applied to many

classification tasks such as face recognition [32],

handwritten digit recognition [33], defect detection

[34], detection of bacilli in medical images [35], and

classification and validation of cancer tissue sam-

ples using microarray expression data [36].

The rest of this paper is organized as follows. In
Section 2, we provide information on the acquisi-

tion setup and the spectral content of the endo-

scopic video frames, in Section 3 we review the
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color models that have been adopted for texture

and medical image analysis, and in Section 4 we

present a novel scheme for the analysis of the col-

onoscopic images as applied on the wavelet do-

main of our multichannel measurements. Section
5, outlines the principles of the SVM models,

and the experimental results of our study are pre-

sented in Section 6. Finally, the conclusions of our

study are summarized in Section 7.
2. Endoscopic imaging

Endoscopes usually consist of a fiber-optic tube

attached to a viewing device, and are used for the

exploration and biopsy in such areas as the gastro-

intestinal system and the bronchi of the lungs.

Endoscopes employ miniature cameras and tiny

surgical implements that allow exploration and

minimally invasive endoscopic surgery through

small incisions. Such surgery is much less trau-
matic to the patients than traditional open surgery.

The endoscopy oriented to the visual examination

of the colonic mucosa is also known as colon-

oscopy. Standard colonoscopes are quite small

having an average length of around 185cm and

are only 12–13mm in diameter. The instrument

head is connected to a variety of auxiliary devices

via a separate cable, such as a suction box, an
external cold light source and a water feed tank

which is used for intestine cleaning. The recording

of the colonoscopy procedure is commonly per-

formed by a standard video recording system.

The color images of the colon or the rectum

that are acquired by an endoscope provide impor-

tant information for diagnosing various kinds of

rectal and colon diseases. An endoscopic camera
usually consists of three light sensors, symbolized

as i = R,G,B. Each of these sensors is character-

ized by its spectral response function Si(k), which
indicates the sensitivity of the sensor to different

wavelengths k. The spectral response functions of

these sensors correspond to overlapping intervals

of the visible spectrum that are centered on red

(R), green (G) and blue (B) wavelengths. This over-
lap introduces a correlation between the RGB

components. The color reproduction characteris-

tics of the endoscope depend on several factors,
including (a) the spectral radiant distribution of

the illuminant E(k), which specifies the energy

emitted by the light source of the endoscope at

each wavelength k, (b) the spectral sensitivity

Si(k) of the sensors i = R, G, B, which specifies
its sensitivity to the light energy at each wave-

length k, (c) the spectral transmittance of the imag-

ing lenses L(k) and (d) the spectral reflectance of

the mucosal surface O(k). When the light travels

from the source, is reflected by the mucosal surface

and finally arrives at the sensor through the lens,

its spectrum is modified and the spectral character-

istics of these stages are multiplied. The spectrum
of a light beam, arriving at each sensor, is weighted

by the response function Si(k) of the sensor, since

each sensor captures a particular interval of the

signal�s wavelength. The intensity value Vi(x,y)

of the sensor response to this beam, at a specific

point with coordinates (x,y), is calculated by con-

volving the incident spectrum with the bandpass

filter Si(k):

V iðx; yÞ ¼
Z
w
EðkÞSiðkÞLðkÞOðk; x; yÞdk

w is the range of wavelengths for which the sensors

have non-zero sensitivity (visible spectrum) [37].

Multispectral imaging of different objects has

shown that more than three components could

be necessary for an accurate reproduction of their
spectra. For example, three components are

needed for the reproduction of oil paintings� spec-
tra [37]. Under this framework, Principal Compo-

nent Analysis (PCA) on a number of normal rectal

membrane reflectance spectra from different pa-

tients at Kyoto National Hospital [37], showed

that 99.7% of the spectra could be expressed by

only three principal components, while the intro-
duction of more principal components could only

contribute to an increase of 0.3%. Thus, the reflect-

ance spectra of the rectal membrane can be ade-

quately estimated from the RGB output channels

of the electronic endoscope without significant loss

of valuable information needed for medical diag-

nosis. The analog output signals of the endoscope

are then led to the composite input of a standard
video recording system and the video frames are

digitized so that they can be processed by a per-

sonal computer system (Fig. 1).



Fig. 1. Acquisition of colonoscopic video frames.
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3. Color models for medical diagnosis

The RGB color model is a common representa-

tion of color used in digital imaging. The three pri-

mary components that it uses to represent color

(Red, Green and Blue) correspond to different re-

gions of the visible spectrum. In many medical deci-

sion support applications, the direct use of theRGB
model has been considered inadequate to represent

accurately the clinical and pathological characteris-

tics of the examined tissue [14,38,39]. Moreover, it

has been reported that RGB endoscopic images are

not good enough for the diagnosis of a disease in

early stages [37,40]. Major disadvantages of the

RGB representation advocating to its low perform-

ance are (a) the high correlation among the RGB

channels and (b) the representation of colors does

not conform to the perceptual mechanisms of the

human brain [41,42].

Different color models have been proposed to

overcome these drawbacks. The acquired RGB sig-

nals can undergo a pre-processing stage in which

they will be transformed linearly or non-linearly

into a color model that could enhance the signifi-
cant image characteristics for the identification of

the cancer pre-cursors. The normalized RGB,

known as rgb (see Appendix A), has proven to

be independent of viewpoint, surface orientation,

illumination direction and illumination intensity,

assuming dichromatic reflection and white illumi-
nation [43]. It has been employed for automatic

lip reading [44] and face detection applications

[45–49]. A major drawback of rgb is that it pro-

vides poor segmentation results when intensity is

low [50].
Best segmentation results for the analysis of

skin lesions [14] and for the characterization of

color textures [29] have been achieved with the

use of the Karhunen–Loeve (K–L) color model

[51] which is derived from the application of

PCA on digital images. The K–L color model is

formed by the eigenvector of the correlation ma-

trix of an RGB image, which remains approxi-
mately the same for a large set of natural color

images [29,51]. The images are transformed into

an orthogonal basis in which the axes are statisti-

cally uncorrelated. In that sense, the information

present in RGB space is decorrelated. Practically,

it can be derived as a linear transformation of

the RGB coordinates (see Appendix A).

Phenomenal color models attempt to classify
colors in relation to how they are perceived by

the human brain. In general, these color models

mainly incorporate Hue, Saturation and Bright-

ness as classifying descriptors, and they are more

intuitive in manipulating color [52]. A representa-

tive example is HSV (Hue, Saturation and bright-

ness Value). HSV have been successfully employed

in different applications of skin segmentation
[53,54] and the measurement of plaque from in-

tra-oral video frames [55]. It has led to higher clas-

sification performance than RGB in both noisy

and noise-free conditions for color texture analysis

[27], but on the other hand Palm [56] showed that

HSV performs equivalently to RGB for color tex-

ture classification using different measures.

Perceptually uniform color models, as L*a*b*,
L*u*v* and their derivatives [28,42,57], have been

proposed to describe color closer to the way hu-

mans perceive color, in the sense that the perceived

color differences are measured by Euclidean dis-

tances. They have been applied successfully in

many cases, such as general color image segmenta-

tion [58], the retrieval of color patterns using tex-

tural features [59], the analysis of skin lesions
[14], the segmentation of human flesh [60] and col-

or clustering in medical image database [61]. A

reason for inhibiting these spaces from being
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widely used in image processing tasks is their

noise-sensitivity due to the nonlinear transforma-

tions involved [62]. In addition, their non-linearity

poses a computational complexity problem [52].

L*a*b*, L*u*v* and HSV are calculated as a
non-linear transformations of the RGB model

(see Appendix A).
4. Color texture analysis of the colonoscopic video

frames

Texture is a fundamental characteristic of the
digital images and it usually reflects the composi-

tion and structure of the pictured objects. Meas-

urement of these textural characteristics can

provide significant information for the discrimina-

tion of these objects. For a number of years, tex-

ture analysis mainly focused on the use of gray-

level image information [63–65] and only a few

efforts have been presented exploiting color image
information, for instance in [27–29,66]. Color and

texture is the discriminating information that is

usually used by gastroenterologists to differentiate

normal from abnormal tissue of the colonic muco-

sa [23,24]. On this basis, a system that would be

capable of identifying colorectal polyps should

automatically incorporate processing algorithms

for the analysis of texture in color images.
The polyps that the system should be capable of

identifying can have different sizes. The image res-

olution cannot be defined so that to cover the

whole range of their sizes. This leads to deal with

the classification of normal/abnormal regions in

different resolutions in order to exploit the infor-

mation from the intermediate scales for the final

decision. Multiresolution analysis is performed
by applying the 2-dimensional Discrete Wavelet

Transform (2D-DWT) on the colonoscopic video

frames.

4.1. Discrete wavelet transform

In 1-dimensional DWT (1D-DWT) of a signal,

two functions mutually orthonormal are initially
adopted: the scaling function u and the mother

wavelet w. Other wavelets are then produced by

translations of the scaling function u and dilations
by the mother wavelet w, according to the equa-

tions [67]:

uj0;k
ðtÞ ¼ 2j0=2uð2j0 t � kÞ;

wj;kðtÞ ¼ 2j=2wð2jt � kÞ; j ¼ j0; j0 þ 1; . . . ; k 2 Z

ð1Þ
for some j0 2 Z, where Z is the set of integers. The
scaling function u defines a kernel function and

the mother wavelet w results in an oscillation of

the input signal. Families of scaling functions can

act as suitable bases for L2(R) or for alternative

spaces. The structure of a wavelet basis is deter-

ministic in location and frequency due to transla-

tion and dilation respectively. A function

f 2 L2(R) can be represented in a wavelet series,
using a given basis, as [67]

f ðtÞ ¼
X
k

cj0;kuj0;k
ðtÞ þ

Xj0
j¼1

X
k2Z

wj;kwj;kðtÞ ð2Þ

where j is the scale of the transform, j0 is the
‘‘coarsest scale’’, cj0;k ¼ hf ;uj0;k

i and wj,k = hf,wj,ki
are the wavelet coefficients and hÆ ,Æi is the standard
L2 inner product of two functions

hf1; f2i ¼
Z
R
f1ðtÞf2ðtÞdt ð3Þ

The first term of Eq. (2) corresponds to a low res-

olution signal Lj0 ¼ fcj0 ; kg, k 2 Z that can be

obtained by lowpass filtering. The coefficients

Dj = {wj,k}, k 2 Z, 1 6 j 6 j0, constitute the detail

signal at scale j, that can be obtained by highpass

filtering. Together Lj0 and Dj are known as the

wavelet representation of depth j0 of the signal f.

The expansion of DWT for 2D-signals, is straight-
forward if we consider that the wavelet transform

is separable [67]. The 2D-DWT of a 2D-signal can

be calculated by first applying 1D-DWT on its

rows and then apply the 1D-DWT on the columns

of the resulted 2D-signal. More precisely a separa-

ble filterbank is applied to the original 2D-signal

L0 according to the following recursive equations:

Lj0 ¼ ½Hx � ðHy � Lj0�1Þ#2;1�#1;2
Dj1 ¼ ½Hx � ðGy � Lj0�1Þ#2;1�#1;2
Dj2 ¼ ½Gx � ðHy � Lj0�1Þ#2;1�#1;2
Dj3 ¼ ½Gx � ðGy � stLj0�1Þ#2;1�#1;2

9>>>>=
>>>>;

ð4Þ
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where k2Z, 1 6 j 6 j0, j0 2 Z, #2,1 and #1,2 de-

note the sub-sampling along the rows and columns

respectively, * is the convolution operator, H is the

lowpass filter and G is the highpass filter. As in the

1D-DWT the coefficients fLj0 ;Dj1;Dj2;Dj3g,
1 6 j 6 j0 are known as the wavelet representation

of depth j0 of a 2D-signal L0.

4.2. Second-order statistical measures

An efficient method to measure the textural

information of a single-channel video frame digi-

tized in a number of intensity levels, is the gray-
level cooccurrence method [68,69]. Cooccurrence

matrices encode the gray-level spatial dependence

based on the estimation of the second-order joint

conditional probability density function f(i, j,d,a),

which is computed by counting all pairs of pixels

at distance d having gray levels i and j at a given

direction a. The angular displacement usually is in-

cluded in the range of the values {0,p/4,p/2, 3p/4}.
Among the 14 statistical measures, originally pro-

posed by Haralick [63,70], that are derived from

each cooccurrence matrix we have considered four:

ASM ¼
XNg

i

XNg

j

pði; jÞ2

Energy-Angular Second Moment ð5Þ

COR ¼

PNg

i¼1

PNg

j¼1

ði � jÞpði; jÞ � lxxly

rxry
Correlation

ð6Þ

IDM ¼
XNg

i

XNg

j

1

1þ ði� jÞ pði; jÞ

Inverse Difference Moment ð7Þ

ENT ¼ �
XNg

i

XNg

j

pði; jÞ logðpði; jÞÞ Entropy

ð8Þ
where p(i, j) is the ijth entry of the normalized

cooccurrence matrix, Ng is the number of gray lev-

els of the image, lx, ly, rx, and ry are the means
and standard deviations of the marginal probabil-

ity px(i) obtained by summing the rows of matrix

p(i, j). ASM is a measure of the homogeneity of

an image. COR is a measure of linear intensity

dependence between the pixels at the specified
positions relative to each other. IDM is a measure

of lack of variability of the intensity levels within

the image and ENT measures the randomness of

the intensity distribution within the image [70].

Studies on grayscale texture and colonoscopic

images have shown that these four measures pro-

vide high discrimination accuracy, which can be

only marginally increased by adding more meas-
ures in the feature vector [18–22,71].

4.3. Wavelet domain multichannel second-order sta-

tistical measures

The technique we propose for the analysis of

the colonoscopic video frames, is based on the

covariance estimation of the second-order statisti-

cal measures on the DWT of each channel of the

video frame. Different covariance measures have

been proposed in the literature for color texture

analysis [27–29,72], but in most of them the 1st or-
der statistical information of an image has been ta-

ken into account. It is described in the following

four steps:

Step 1

Let I be the original multichannel signal com-

posed by the separate channels Ci, i = 1,2, . . .,c.
The models used in this framework to describe

image color, impose a maximum number of chan-

nels c = 3. Each of these channels is raster scanned

with a fixed size sliding square window.

Step 2

On each window a K-level 2D-DWT (j0 = K) is

applied according to the equations of wavelet

decomposition Eq. (4). This transform results in

a new representation of the original window,
which consists of

B ¼ 3K þ 1 ð9Þ
sub-windows corresponding to the different wave-

let bands Lj0 , Dj1, Dj2, Dj3, 1 6 j 6 j0 as illustrated

in Fig. 2. In this figure each band is denoted as

Bb(k), where b = 0,1,2,3 for k = K and b = 1,2,3



Fig. 3. Framework for the identification of normal/abnormal

tissue in colonoscopic video frames.

Fig. 2. Scheme of the sub-images resulted from K-level DWT of

an image.
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for k < K. These bands correspond to

B0(k) = LK,Bb(k) = DKb,b = 1,2,3 for k = K, and

Bb (k) = Djb, 1 6 j < j0, b = 1,2,3, for k < K,

respectively.

Step 3

The cooccurrence measures described in the

previous paragraph are calculated over each sub-

window Bb(k), b = 1,2,3, k = 1,2, . . . ,K. The re-

sulted set of measures corresponds to different

channels and wavelet bands

F BbðkÞ
Ci

ðaÞ i ¼ 1; 2; . . . ; c; b ¼ 1; 2; 3;

k ¼ 1; 2; . . .K; ð10Þ

where F 2 {ASM,COR,IDM,ENT} and a corre-

sponds to the angle considered in the calculation

of the cooccurrence matrices, a 2 {0,p/4,p/2,3p/
4}. A one-level wavelet decomposition of a color

window leads to 144 measures (16 cooccurrence

measures · 3 wavelet bands · 3 color channels),

which comprise a 144-dimensional feature space.

Step 4

A significant reduction of the feature space

dimension is achieved by considering the covari-

ances of these features between the different chan-

nels Ci, i = 1,2, . . .,c. For c = 3, we define Color

Wavelet Covariance (CWC) of a measure F 2
{ASM,COR,IDM,ENT} Eqs. (5)–(8) at wavelet
band Bb(k), b = 1,2,3, k = 1,2, . . . ,K, between

two color channels Cl and Cm as

CWC
BbðkÞ
F ðl;mÞ ¼ Cov F BbðkÞ

Cl
; F BbðkÞ

Cm

� �

CWC
BbðkÞ
F ðl;mÞ

¼
P

a F BbðkÞ
Cl

ðaÞ � F
BbðkÞ
Cl

� �
� F BbðkÞ

Cm
ðaÞ � F

BbðkÞ
Cm

� �� �
na

ð11Þ

where l 6 m, F is the mean value of F over the dif-

ferent angles a, and na is the number of angles con-
sidered for the calculation of the cooccurrence

matrices. For a 2 {0,p/4,p/2,3p/4}, na = 4. Using

these measures, the 144-dimensional feature space

is reduced to 72 features, and consequently the

complexity of the classification task that follows

will be reduced.

Fig. 3, outlines the complete framework for

the automated identification of colon cancer
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precursors. First, a video frame is acquired as a

three-channel signal with values corresponding to

the RGB color model. These values are then pre-

processed and transformed to a different color

model C1C2C3, which enhances the properties that
characterize the normal/abnormal regions of the

colonic mucosal surface. The textural information

existent in each of the C1, C2, and C3 channels of a

video frame is measured in the wavelet domain

and the CWC measures are calculated. The result-

ing measures form a set of feature vectors that feed

an SVM classifier. The classification result is final-

ly depicted as an artificially generated frame con-
structed by overlapping windows corresponding

to the characterized regions of the original video

frame. The windows that are classified as ‘‘nor-

mal’’ or ‘‘abnormal’’ are depicted in black and

white color respectively. The same procedure is re-

peated for the rest of the colonoscopic video

frames.
i

5. Support vector machines

Given a finite number of training data the learn-

ing machine should be able to learn any training

set without error. Suppose we are given a number

of observations (l) each one consisting of a vector

xi in Rn, i = 1,2, . . ., l and the corresponding truth
value yi in {�1,1}. An unknown distribution

P(x,y) exists, according to which the data are pro-

duced. A learning machine should be able to learn

the mapping xi ! yi. Different functions can be de-

fined as xi ! f(x,a) where a is an adjustable

parameter. Choosing various values for a we can

produce a different ‘‘trained machine’’. Any such

machine is deterministic. The error that is pro-
duced by the machine during testing is called ex-

pected risk and can be described as

RðaÞ ¼
Z

1

2l
j y � f ðx; aÞ j dPðx; yÞ ð12Þ

The mean error on the training set is called empir-

ical risk Remp and is defined as

RempðaÞ ¼
1

2l

Xl
i¼1

j y � f ðx; aÞ j ð13Þ
Remp is a fixed number for each choice of a and

training set {xi,yi}. Vapnik [30], proposed the fol-

lowing bound of risk:

RðaÞ 6 RempðaÞ

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðlogð2l=hÞ þ 1Þ � logðg=4Þ

l

� �s
ð14Þ

where h is the VC (Vapnik Chervonenkis) dimen-

sion representing the capability of the machine to
learn. Three important properties of the risk bound

can be mentioned

1. Risk bound is independent of P(x,y).

2. R(a) cannot be computed.

3. If we know h we can compute the Risk bound.

So we are looking for a learning machine that pro-
duces the lowest upper bound on the actual risk.

VC dimension is a property of the functions

{f(a)} and is defined as the maximum number of

training points that can be shattered by f(a). In
the case that the data are in R2, the VC dimension

is three. In general when we are dealing with data

from Rn, the VC dimension is n + 1 [73].

The linear machines on separable data is the
simplest case but as it comes from the study of

non-linear machines on non-separable data, such

general cases result to a similar quadratic pro-

gramming problem. Supposing that we have a

hyperplane

H : w � xþ b ¼ 0

where w is normal to the hyperplane and jbj/kwk is

the distance from origin, which separates positive

from negative samples. The support vector algo-

rithm for the linearly separable case looks for sep-

arating hyperplane with the largest margin.

According to this, we have the following con-

straints for the data:

ðxi � wþ bÞ P þ1 for yi ¼ þ1; ð15Þ

ðxi � wþ bÞ 6 �1 for yi ¼ �1 ð16Þ

and finally

y ðxi � wþ bÞ � 1 P 0 8i ð17Þ



Linear K(x,y) = x Æ y

Polynomial K(x,y) = (x Æ y + 1)p

Gaussian radial

basis functions

K(x,y) = e�kx�yk2/2r2

Sigmoidal neural

network

Kðx; yÞ ¼ tanhðjx � y � dÞ
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The two hyperplanes produced by Eqs. (15) and

(16) are parallel and the maximum margin between

them is kwk2, subject to constraints Eq. (17). The

support vectors are those training points that sat-

isfy Eq. (17) and whose removal would change
the solution found.

Support vectors are critical elements for the

training set because

1. They lie close to the decision boundary.

2. If all the other training samples were removed

and training was repeated, the same separating

hyperplane would be found.

For the non-separable data, the above de-

scribed algorithm can be applied under the con-

straints of Eqs. (15) and (16) by introducing

additionally and when it is necessary a further cost

function to the primal objective function by intro-

ducing positive slack variables ni, i = 1,2, . . . ,l, in
the constraints [74,75]:

ðxi:wþ bÞ P þ1� ni for yi ¼ þ1 ð18Þ

ðxi � wþ bÞ 6 �1þ ni for yi ¼ �1 ð19Þ

ni P 0 8i ð20Þ

where ni must exceed unity in training error cases

and
P

ni forms an upper bound on the number

of training error.

The above can be generalized for the non-linear

case [76,77] according to which training data are

produced as dot products xi, xj. We are looking

for a mapping /:

/ : Rd 7! H

where H is a Euclidean (or in general a Hilbert)

space of infinite dimension. The training algorithm

depends on the dot products defined on H, i.e. /
(xi). /(xj). If there was a kernel function K

Kðxi; xjÞ ¼ /ðxiÞ � /ðxjÞ ð21Þ
we could use K for training even if we do not know

function /. The problem is still a linear separation
problem but in a different space. It is easy to find

kernel functions such that the training algorithm

and solution are independent of the dimension of

H. Such kernels must hold Mercer�s condition
[74] which tells us whether or not a perspective ker-

nel is a dot product in some space.

Kernel functions used in pattern recognition

problems are
where p, r, j, d are constants.
6. Experimental study

6.1. Implementation

Sixty colonoscopic video frame sequences of

closely captured early stage adenomatous polyps,

corresponding to different patients, were used in

our experiments, according to the physicians� rec-
ommendations. The colonoscopic videos were
provided by the Gastroenterology Section, Depart-

ment of Pathophysiology, Medical School, Uni-

versity of Athens and partially by the Section of

Minimal Invasive Surgery, University of Tübin-

gen. A representative sample of the video se-

quences is illustrated in Fig. 4. Each video frame

is raster scanned with 2401 overlapping windows

of 128 · 128 pixels size and eight pixels overlap.
The window size is relatively large compared to

the frame size, in order to obtain adequate statisti-

cal population for the calculation of the second-

order statistical measures. The relatively small

overlap (16 times smaller than the window size)

has been chosen to increase the accuracy in the

determination of the abnormal regions. The co-

occurrence matrix dimension was limited to 64.
The use of larger cooccurrence matrices leads to

insignificant improvement of the results and dis-

proportional increase of the overall computational

complexity.

The colonoscopic video frames were acquired

with an Olympus CF-100HL endoscope, and digi-

tized at 512 · 512 and 24bit color depth (8bit per

channel). A Pentium IV 1.4GHz was used for the



Fig. 4. Four representative cases of adenomatous polyps.

Table 1

Confusion matrix

Resulted

Negative Positive

Actual

Negative a b

Positive c d
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processing task (Fig. 1). The software implementa-

tion of the proposed framework was written com-

pletely in C++ under Microsoft Windows 98/NT

operating systems. It uses Intel performance li-

brary functions [78], which provide high perform-

ance for complex computational tasks on Intel

microprocessors. The modules implementing the

SVM classifier are based on functions of the
LIBSVM library [79]. The high processing speed

provided by the hardware and the efficient soft-

ware implementation was essential because multi-

ple frames had to be processed in a reasonable

time for a large amount of experiments.

6.2. Classification performance criteria

In many medical decision support applications

that involve classification of negative (normal)

and positive (abnormal) patterns, the data sets

are highly imbalanced. The patterns corresponding

to healthy instances are more than those corre-

sponding to pathological. In the video frames of

our experiments, the proportion of abnormal to

normal patterns reaches 10% on average. Accu-

racy, i.e the ratio of correctly classified patterns

to the total number of patterns in a data set, is a

classic metric for the evaluation of the classifica-
tion performance in machine learning. However,

it assumes that the class distribution is unknown,

unchanging and that the costs of a false positive

and a false negative are equal. These assumptions

make it unreliable when imbalanced data sets are
involved [80]. In such cases, the correct classifica-

tion of a minority class pattern is usually much

more important than the correct classification of

a pattern belonging to the majority class, espe-

cially when the classification task is oriented to

the identification of pathological situations. To

formulate more reliable criteria of the performance

of pattern recognition systems, statisticians use the
confusion matrix (Table 1). Its columns and rows

correspond to the classifier�s outcome and the ac-

tual characterization of the patterns respectively:

a is the number of correctly classified negative pat-

terns (true negatives), b is the number of negative

patterns that have been classified as positive (false

positives), c is the number of positive patterns that

have been classified as negative (false negatives)
and d is the number of correctly classified positive

patterns (true positives).

If a, b, c and d values are known, the accuracy

(A), the true positive (TP) and false positive (FP)

rates are formulated as follows:

A ¼ aþ d
aþ bþ cþ d

� 100ð%Þ

TP ¼ d
cþ d

� 100ð%Þ

FP ¼ b
aþ b

� 100ð%Þ

The tradeoff between TP and (100 � FP) rates can

be used as a reliable criterion for the evaluation of

classification performance for imbalanced data

sets [80–82], overcoming the disadvantages of

using accuracy. TP and (100 � FP) rates are also



Fig. 5. Average sensitivity and specificity using grayscale and

color models.
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known as sensitivity (SN) and specificity (SP),

respectively. Sensitivity is the accuracy among pos-

itive patterns, while specificity is the accuracy

among negative patterns. The classification per-

formance is high when both sensitivity and specif-
icity are high, in a way that their tradeoff favors

true positive or false positive rate depending on

the application.

6.3. Results

The objective of this experimental study is to

evaluate the performance of the proposed frame-
work and determine the most suitable color model

for the identification of colon cancer precursors.

The system is initially trained and then is able to

identify lesions of similar clinical and histological

characteristics. In the following experiments the

SVM classifier was trained and consequently used

for the recognition of the polyps. Training was

performed on 2401 patterns of a video frame,
and tested on 7203 patterns of the following

frames. Different training frames were used in

order to measure the generalization performance

of the proposed framework.

Tests were performed for both grayscale and

color images, using a Support Vector Machine

with radial basis function kernel since such kernels
Fig. 6. Classification results corresponding to Fig. 4,
have led to better classification results compared

to other kernel mapping techniques [73]. The color

models tested were the RGB, rgb, K–L, HSV,

L*a*b* and L*u*v*, respectively as previously de-

scribed. The results of these tests are illustrated in
Fig. 5, in terms of average sensitivity and specific-

ity of the corresponding video frame set. The clas-

sification performance is considered high when the

plot points are located closer to the upper left cor-

ner of the diagram SN vs. (100 � SP).

From the experimentation, we concluded that

the highest average (SN, SP) reaching (94%,
(a) using RGB and (b) using K–L color models.



Fig. 7. Average accuracy, using grayscale and color models.
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95.7%), was achieved using the K–L color model.

The average performance using RGB was also high

(83.1%, 97.7%) but almost equivalent to the per-
ceptual HSV (81.6%, 93.9%) and L*u*v* (80.7%,

96.3%). L*a*b*(73.3%, 95.1%) did not perform

as well as the other perceptually uniform model

L*u*v*. Worse results (70.1%, 92.4%) were

achieved using the normalized RGB model, possi-

bly due to the low intensity levels appearing in

some frames. The use of grayscale video frames

(single 8bit intensity channel) resulted in low sen-
sitivity but high specificity (50.6%, 98.6%).

Comparing the reconstructed frames after the

application of the SVM algorithm for the recogni-
Fig. 8. Average sensitivity and specificity using different SVM

kernels.
tion of polyps, the use of K–L color transforma-

tion leads to more accurate results than the

corresponding RGB spaces. The original images
used are shown in Fig. 4 and the reconstructed

ones are illustrated in Fig. 6a and Fig. 6b, respec-

tively. K–L model results in more accurate identi-

fication of lesions, having well defined borders and

less misleading false classified regions.

The average accuracy is high for all models, Fig.

7, exceeding 90%. However its distribution over the

different color models is not in agreement with the
results provided using sensitivity and specificity.

For instance, the use of K–L color model gives high

accuracy in the recognition of polyps 94.9%
Fig. 9. Classification results corresponding to Fig. 4, using K–L

color model and linear kernel SVM.
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whereas the use of RGB leads to a marginally high-

er accuracy than K–L, reaching 95.7%.

The performance in polyp�s identification was

studied along with the use of different SVM kernel

functions. Linear, second and third order polyno-
mial, Gaussian and sigmoidal kernels were tested

in order to determine the most suitable for the

K–L CWC set of measures. As it is illustrated in

Fig. 8, SVMs with Linear or Gaussian kernel func-

tion produce contiguous points closer to the upper

left corner of the diagram. However, the use of lin-

ear kernel results in higher average sensitivity but

lower specificity. This has the effect of many small
white regions (false positives) to appear in the

reconstructed images (Fig. 9). These can possibly

be misleading indications for the interpretation of

the colonoscopic findings. Using Gaussian kernel

functions in the SVM algorithm results in more

preferable reconstructed images, since they contain

less false positives due to higher specificity than the

linear kernel. The requirements of the application,
as these have been agreed on with the medical ex-

perts, suggest a higher specificity to sensitivity ratio.
7. Conclusions

We have proposed a novel framework for the

identification of colon cancer precursors using
multichannel (color) video endoscopy measure-

ments and SVMs.We presented a number of obser-

vations based on different measurements of various

experimentations with real data. An approach like

this can be used to assist colon endoscopists to

accurately locate early stage adenomatous polyps

and thus decrease the probability of missinterpra-

tations during the clinical examination. The R, G
and B color channels of the endoscopic imag-

ing systems can adequately describe the colonic

mucosa, but textural alterations of the colonic

mucosal surface (pit patterns) can be used to differ-

entiate normal from abnormal tissue by the endo-

scopists. The textural features proposed were

based on the covariance of the second-order statis-

tical measures estimated on the wavelet domain
between the color channels and have been effi-

ciently used for the discrimination between nor-

mal/abnormal tissue.
Different color models have been applied to en-

hance the discriminative properties of the normal/

abnormal mucosal surface. The highest generaliza-

tion performance was achieved using the K–L

model. This leads to the conclusion that the
orthogonality of the color model used is of high

importance for the characterization of the colonic

mucosa texture in color video frames. The classifi-

cation results were evaluated in terms of sensitivity

and specificity. Among popular SVM kernels, the

Gaussian was found to perform better for the pat-

tern classification problem discussed. The average

sensitivity and specificity estimated on 60 video
frame sequences of real endoscopy data was 94%

and 95.7%, respectively. The identification of

adenomatous polyps of the colon can be per-

formed accurately by measuring and processing

the second order textural information of color

endoscopic video frames in the wavelet domain.
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Appendix A. In this appendix we present the for-

mulas for the color transformations used in this

paper [29,42,51,57].

(a) The coordinates of the rgb (normalized RGB)

model are calculated by dividing each of the

RGB coordinates by the summation of Red,

Green and Blue

r ¼ R
Rþ Gþ B

; g ¼ G
Rþ Gþ B

;

b ¼ B
Rþ Gþ B

;

where r + g + b = 1.
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(b) The conversion procedure from RGB to HSV

includes the following steps:

(i) Normalization of the RGB values to [0,1]

M ¼ maxðR;G;BÞ
m ¼ minðR;G;BÞ
r ¼ ðM � RÞ=ðM � mÞ
g ¼ ðM � GÞ=ðM � mÞ
b ¼ ðM � BÞ=ðM � mÞ

(ii) Calculate Value V 2 [0,1]

V ¼ maxðR;G;BÞ
(iii) Calculate Saturation S 2 [0,180]

if ðM ¼ 0Þ then S ¼ 0 and H ¼ 180

if ðM 6¼ 0Þ then S ¼ ðM � mÞ=M

(iv) Calculate Hue H 2 [0,360]

if ðR ¼ MÞ then H ¼ 60ðb� gÞ
if ðG ¼ MÞ then H ¼ 60ð2þ r � bÞ
if ðB ¼ MÞ then H ¼ 60ð4þ g � rÞ
if ðH P 360Þ then H ¼ H � 360

if ðH < 0Þ then H ¼ H þ 360

(c) Both L*a*b* and L*u*v* models are based on

the CIE-XYZ standard color model, which is

estimated as a linear transform of the RGB

coordinates as follows:

X
Y
Z

 !
¼

0:412 0:357 0:180
0:212 0:715 0:072
0:019 0:119 0:950

 !
R
G
B

 !

The lightness L*, and chroma coordinates a*,

b* are calculated as

L� ¼
116 � Y

Y n

� �1=3
� 16; Y =Y n > 0:008856

903:3 � Y
Y n

� �
; Y =Y n 6 0:008856

8><
>:

a� ¼ 500½f ðX=XnÞ � f ðY =Y nÞ�
b� ¼ 200½f ðY =Y nÞ � f ðZ=ZnÞ�

where f(t) is estimated as

f ðtÞ ¼ t1=3; t > 0:008856

7:787 � t þ 16=116; t 6 0:008856

(

where X, Y, Z refer to the color considered,

Xn, Yn, Zn refer to a suitably chosen reference

white (in this case CIE standard illuminant

D65 obtained by setting R = G = B = 100 in

RGB to XYZ transformation), and t 2 {X/
Xn,Y/Yn,Z/Zn}.

(d) The L*u*v* model�s coordinates are calcu-

lated by the following equations

L� ¼ 116 � Y
Y n

� �1=3

� 16

u� ¼ 13½L�ðu0 � unÞ�
v� ¼ 13½L�ðv0 � vnÞ�
where

u0 ¼ ½4X=ðX þ 15Y þ 3ZÞ�
v0 ¼ ½9Y =ðX þ 15Y þ 3ZÞ�
and X, Y, Z refer to the color considered, Xn,
Yn, Zn, vn, un refer to a suitably chosen refer-

ence white (in this case CIE standard illumi-

nant D65 obtained by setting R = G = B = 100

in RGB to XYZ transformation) and vn, un
are calculated by the same equations as u 0, v 0.

(e) The K–L color model�s coordinates (K1, K2

and K3) can be calculated as a linear transfor-

mation of RGB:

K1

K2

K3

 !
¼

0:333 0:333 0:333
0:500 0:000 �0:500
�0:500 1:000 �0:500

 !
R
G
B

 !
:
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