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Abstract. This paper describes a novel system for real-time video texture analysis. The 

system utilizes hardware to extract 2nd-order statistical features from video frames. These 

features are based on the Gray Level Co-occurrence Matrix (GLCM) and describe the textural 

content of the video frames. They can be used in a variety of video analysis and pattern 

recognition applications, such as remote sensing, industrial and medical. The hardware is 

implemented on a Virtex-XCV2000E-6 FPGA programmed in VHDL. It is based on an 

architecture that exploits the symmetry and the sparseness of the GLCM and calculates the 

features using integer and fixed point arithmetic. Moreover, it integrates an efficient 

algorithm for fast and accurate logarithm approximation, required in feature calculations. The 

software handles the video frame transfers from/to the hardware and executes only 

complementary floating point operations. The performance of the proposed system was 

experimentally evaluated using standard test video clips. The system was implemented and 

tested and its performance reached 133 fps and 532 fps for the analysis of CIF and QCIF 

video frames respectively. Compared to the state of the art GLCM feature extraction systems, 

the proposed system provides more efficient use of the memory bandwidth and the FPGA 

resources, in addition to higher processing throughput, that results in real time operation. 

Furthermore, its fundamental units can be used in any hardware application that requires 

sparse matrix representation or accurate and efficient logarithm estimation.

Keywords: Field Programmable Gate Arrays, Parallel Architectures, Pattern Recognition, 

Video Signal Processing, Real-Time System.
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1. Introduction 

Texture is an innate property of the natural objects, and it is widely used for video content 

description. The utility of texture feature extraction from video extends to a wide range of 

advanced modern applications, including segmentation of objects in image sequences [1,2], 

object recognition [3], tracking of moving objects [4,5], video transcoding for video content 

adaptation [6] and adaptive intra refreshment schemes for improved error resilience in object-

based video coding [7].

The Gray Level Cooccurrence Matrix (GLCM) features [8] describe the textural 

image content by encoding the second order statistical properties of texture. These properties 

are mostly related to the human perception and discrimination of textures [9]. The GLCM 

features have been successfully utilized in a number of applications including medical [10], 

remote sensing [11] and industrial visual inspection applications [12,13]. 

A major drawback of the GLCM feature extraction method is its high computational 

complexity, which is prohibiting for real-time video texture analysis in software. A system 

capable of performing video texture analysis in real-time would be useful for a variety of 

applications including temporal analysis of video frame sequences [14], and analysis of 

medical video streams, such as endoscopic [10] or ultrasound screening [15]. In such cases, 

the software implementations are usually incapable of achieving real-time performance when 

full resolution video streams are used rather than downscaled videos. To overcome the 

limitations imposed by the software, we considered the utilization of dedicated hardware 

based on Field Programmable Gate Arrays (FPGAs). FPGAs are low cost and high density 

gate arrays capable of performing many complex computations in parallel while hosted by 

conventional computer hardware. They have been the choice for the implementation of 

computationally intense feature extraction tasks, including fingerprint feature extraction [16], 

facial feature extraction [17], the computation of Zernike moments [18], etc.

An FPGA-based system for the computation of two GLCM features has been 

proposed by Heikkinen and Vuorimaa [19]. This system approximates only two simple 
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features, namely mean and contrast, without actually computing the GLCMs. Tahir et al. [20] 

has presented another architecture that calculates the GLCM of multispectral images. The 

calculation of the GLCM is performed by one FPGA core whereas the computation of the 

GLCM features is performed by a second core that is subsequently programmed onto the 

FPGA. However, the use of this second core results in a time overhead for reprogramming the 

FPGA, affecting the overall feature extraction performance.

A similar system was proposed by our research group [21]. This system calculates 

both the GLCMs and features in hardware, but relies on software for a significant part of the 

computations. It performs well when the input image is divided into overlapping blocks, but 

in the case of non-overlapping blocks, it is inefficient as several of the units are unused for 

extended periods of time. Another FPGA-based system for GLCM calculation has been

proposed by our research group [22], which provides more efficient calculation of GLCMs,

however it does not calculate any GLCM features in hardware. Furthermore, the transfer of 

GLCMs over the PCI bus incurs a significant performance overhead, which can be 

prohibiting for real-time video texture analysis. The system presented in [23] was capable of 

GLCM features calculation in hardware, but employed data redundancy in order to achieve 

high processing throughput. However, the redundancy led to high memory capacity 

requirements and redundant transfers of data over the PCI bus.

In this paper we propose a novel FPGA-based system for real-time extraction of 

GLCM texture features from video frames. The motivation for the development of this system 

was to cover the need for real time extraction of texture features from uncompressed video 

streams, such as the input of the Colorectal Lesion Detection (CoLD) software [24]. The 

proposed system is capable of calculating a total of 64 GLCM features in parallel, namely 

angular second moment, correlation, inverse difference moment and entropy, at four different 

directions in a video frame, for four video frame blocks. It is implemented on a single FPGA 

core that performs the calculation of both the GLCMs and the features, exploiting the 

symmetry and sparseness of the GLCM and using integer and fixed point arithmetic. The 

proposed system also incorporates an algorithm for efficient approximation of the logarithm 
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in the entropy feature, and an effective buffering scheme, which only occupies a small 

fraction on the FPGA area and reduces the external memory requirements, while retaining a 

high processing throughput.

The rest of this paper is organized in five sections. The methodology used for the 

extraction of the GLCM texture features is described in Section 2. The architecture of the 

proposed system presented in Section 3 is followed by a complexity analysis in Section 4. 

The results obtained from the experimental evaluation on standard video clips are apposed in 

Section 5. Finally, Section 6 summarizes the conclusions derived from this study.

2. Texture Features Extraction

GLCMs encode the gray level spatial dependence based on the estimation of the 2nd

order joint-conditional probability density function, which is computed by counting all pairs 

of pixels of a video frame block at distance d having gray levels i and j at a given direction θ. 

The cooccurrence matrix can be regarded symmetric if the distribution between opposite 

directions is ignored, so the angular displacement is usually included in the range of the 

values {0, 45, 90, 135} [25]. Among the 14 statistical GLCM features, originally proposed 

by Haralick et al [12], we consider four (Eqs. 1 to 4), namely, angular second moment (f1), 

correlation (f2), inverse difference moment (f3) and entropy (f4). These four selected features 

are widely used in the literature because they provide high discrimination accuracy, which 

can be only marginally increased by adding more features in the feature vector [12,26].
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where pij is the ijth entry of the normalized cooccurrence matrix, Ng is the number of gray-

levels of the video frame, μx, μy, σx, and σy are the means and standard deviations of the 

marginal probabilities Px(i) and Py(j) obtained by summing up the rows or the columns of 

matrix pij respectively. 

The calculation of the Eqs. 1-4 requires floating point operations that would result in 

high FPGA area utilization and low operating frequencies. To implement the calculation of 

the features efficiently in hardware, we have reformulated the equations by extracting five 

expressions V1 to V5 as follows:
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In the above equations, the operations needed to calculate V1 to V5 (Eqs. 9-13) are performed 

using integer or fixed point arithmetic. These values are computed in hardware and 

subsequently used for the calculation of the four features f1 to f4 in software, requiring only 16 

floating-point operations that incur a negligible time overhead. In contrast to this approach, 

the implementation of a floating-point unit capable of performing the division operation on 

FPGA would significantly diminish the performance of the system, by reducing the achieved 

frequency and throughput of the hardware architecture.

The parameter r (Eqs. 14 and 15) represents the number of pixel pairs of a block, for a 

specific direction and distance. IDMLUT[|i-j|] is an Ng×32-bit lookup table, which contains a 

32-bit fixed point representation of the function 1/(1+(i-j)2), 0 ≤ |i-j| < Ng. The calculation of 

the logarithm log2cij is implemented using a fast approximation method in hardware. The 

implementation returns a 32-bit fixed point value log2cij for each integer cij.

3. System Description

The proposed system is based on a Xilinx XCV2000E-6 FPGA, programmed in 

VHDL [27]. The FPGA features 19,200 slices, includes 160 256×16-bit Block RAMs and can 

support up to 600kbit of distributed RAM. It is packaged in a 560-pin ball grid array 

(BGA560) that provides 404 user I/O pins. It is hosted by the Celoxica RC-1000 board that 

includes four 2MB static RAM banks [28]. These RAM banks can be accessed by the FPGA 
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or the host computer independently, whereas simultaneous access is prohibited. This is 

ensured by the board’s arbitration circuit which assigns the ownership of each bank to either 

the host or the FPGA using isolator circuits. The FPGA and the host processor can 

communicate through the board in two ways: by bulk PCI transfers from/to the memory 

banks, and by control and status byte transfers. Bulk transfers are commonly used for large 

data transfers, but can only be initiated by the host. Control and status byte transfers are 

mostly used for synchronization and can be initiated by either the FPGA or the host.

The architecture of the implemented hardware is illustrated in Fig. 1. The software 

iteratively feeds the FPGA board with four video frame blocks per iteration. Each pixel is 

represented by 6 bits (Ng=64) and the pixels of the four blocks are interleaved, allowing the 

utilization of the memory bank width and the retrieval of one pixel from each block in one 

clock cycle, for a total of four pixels. The FPGA reads each block’s pixels, calculates the 

GLCM of each block and their respective feature vectors for the θ=0, 45, 90 and 135

directions and d=1 distance, and stores them into memory bank 1 and 2.

The FPGA architecture consists of:

 A control unit

 Three memory controllers (for memory banks 0, 1 and 2)

 A circular buffers unit

 Sixteen GLCM calculation units (GCUs)

 Four vector calculation units (VCUs)
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Fig. 1. The hardware architecture

Control Unit

The control unit coordinates the FPGA functions by generating synchronization 

signals that coordinate the memory controllers, the circular buffers unit, the GLCM 

calculation units (GCUs) and the vector calculation units (VCUs). It also handles the 

communication with the host, by exchanging control and status bytes and by requesting or 

giving up the ownership of the memory banks.

Memory Controllers

Three memory controllers handle the transactions between the FPGA and the 

asynchronous memory banks. Each controller is assigned to a specific memory bank, 

providing a 32-bits synchronous interface through which the data can be accessed for 

read/write operations.
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Circular Buffers Unit

The pixels of each input block are read from memory bank 0 sequentially. During the 

calculation of the four GLCMs, each pixel in the block is visited five times: First, the pixel is 

regarded to be the center of a 33-pixel neighborhood, and after a number of sequential reads 

the same pixel becomes non-central in four other 33-pixel neighborhoods at 0, 45, 90 and 

135 directions from the central pixel of each neighborhood. It is noted that the dimension of 

the neighborhood is 33 because the distance between the neighboring pixels for the 

calculation of the GLCM is d=1. Moreover, only four out of the eight possible neighborhoods 

are taken into account due to the symmetry of the GLCM. In order to avoid multiple reads of 

the same pixels, a circular buffers unit has been implemented, reducing the external 

bandwidth requirements of the proposed architecture.

Figure 2 illustrates a part of the input block. The squares in the grid represent the 

pixels in the block. The pixels marked with diagonal lines are stored in the circular buffer. 

The circular buffer outputs five pixels, namely the central pixel of the 33 neighborhood 

(black background) and its four neighboring pixels for the four directions (gray background). 

These five pixels are forwarded to the GCUs. As shown in Fig. 2, in every clock cycle (A, B 

and C snapshots) the last pixel is removed from the circular buffer, the neighborhood is slided 

by one pixel to the right and a new pixel is inserted into the buffer. The circular buffer 

contains the pixels marked with diagonal lines in every consecutive snapshot.

The circular buffers unit contains four circular buffers, one for each input block of 

WW dimensions. Each buffer consists of W+3 6-bit cells, as shown in Fig. 2. Through the 

use of buffering, the external read bandwidth is 4 pixels per clock cycle, while the GCUs 

operate with a throughput of 20 pixels per clock cycle, received from the circular buffers unit. 

Therefore, the implementation of this unit enables a fivefold increase of throughput and a 

consequent fivefold reduction of input bandwidth requirements.
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Fig. 2. Three consecutive snapshots of the operation of the circular buffer

GLCM Calculation Units

A GLCM calculation unit (GCU) is used for the calculation of the GLCM of a single block 

for a particular direction. It consists of an n-way set associative array [29] with a capacity of 

Nc cells and the auxiliary circuitry needed for the calculation of the GLCM. Set associative 

arrays can be used for efficient storage and retrieval of sparse matrices because each of their 

elements can be accessed or updated in four clock cycles while pipelining ensures a 

throughput of one operation per cycle. Other methods for calculating and storing the GLCM 

include the utilization of the available BlockRAMs or the implementation of standard sparse 

structures that store indices and values. The former does not exploit the sparseness of the 

GLCM, as all its elements need to be stored, while the latter cannot ensure a high throughput, 

as the cycles needed to traverse the indices is proportional to the length of the array. In 

contrast to the aforementioned methods, the set associative array was chosen, as it is a flexible 

alternative that can provide efficient utilization of FPGA resources, high throughput per clock 

cycle and high frequency potential.
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An n-way set associative array consists of n independent tag arrays (tag0 - tagn-1) as 

illustrated in Fig. 3. Each tag array consists of Nc/n cells. The set associative array uniquely 

maps an input pair of 6-bit gray-level intensities (i, j) to an address of the Nc-cell data array, 

which is implemented using FPGA Block RAMs. A Block RAM has the capacity to store 256 

GLCM elements, therefore Nc is set to multiples of 256. The data array cells contain the 

number of occurrences of the respective (i, j) pairs, using a 16-bit integer representation. Each 

of the (i, j) pairs is represented by a single 12-bit integer, which results from merging i and j. 

This integer is split into two parts: the set(i, j) part, which consists of its log2(Nc/n) least 

significant bits and the tag(i, j) part, which consists of its 12-log2(Nc/n) most significant bits. 

The procedure of incrementing a data array cell that corresponds to an input pair (i, j) is 

implemented in four pipeline stages:

1) All valid tag array cells located in the set(i, j) row are retrieved and stored to 

temporary registers. The validity of each tag is confirmed using one valid bit per tag.

2) The temporary registers’ values are compared to tag(i, j). 

a) If a match is found, then the column number of the matching tag is written 

in the offset register. 

b) If there are no matches, the tag(i, j) is stored in the tags array, at the first 

available cell of the set(i, j) row. The proper selection of the parameters n and 

Nc for each application ensures that the set(i, j) row has enough available 

cells for the calculation.

3) The contents of both the offset register and set(i, j) form an address a. The data 

array element in address a is read and stored in a temporary register.

4) The value of the temporary register is increased by one and it is written back to the 

address a of the data array.

After all input pairs are read and processed, the data array will contain the GLCM of a video 

frame block for a particular direction. The GLCM calculation unit gives triplets (i, j, cij) as 

output, which is forwarded to a vector calculation unit.
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Fig. 3. GLCM calculation unit block diagram

Vector calculation units

Four special units, named as vector calculation units (VCUs) have been assigned for 

the calculation of vectors  1 2 3 4 5, , , ,V V V V V V  (Eqs. 9-13). Each vector calculation unit 

receives a GLCM generated by a GLCM calculation unit as input and outputs a vector V . 

The vectors are stored to the board’s memory banks through the corresponding memory 

controllers.

The calculation of V1 to V4 values is implemented in four independent pipelined 

circuits. The pipeline stages for each circuit are illustrated in Fig. 4a. All circuits implement a 

pre-processing stage, computation stages, a post-processing stage and an accumulation stage. 

Both pre-processing and post-processing stages facilitate the operations needed for the 

transition from/to the lower diagonal representation of the GLCM. The pre-processing stage 

uses a shifter to implement the multiplication of the GLCM’s main diagonal by two, whereas 

the post-processing stage involves the use of a shifter for the multiplication of the results of 

the intermediate computation stages by two, for all cij except for those belonging to the main 
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diagonal. The computation stages involve table lookup, logic or arithmetic operations such as 

multiplication, addition and subtraction. The multipliers needed for the multiplication 

operations are implemented using FPGA slices, as there are no dedicated multipliers in the 

XCV2000E-6 FPGA. The timing analysis shows that the multipliers implemented in a single 

pipeline stage do not limit the maximum frequency of the design. If the maximum frequency 

was affected, alternatively, the multipliers could have been easily extended to two or more 

pipeline stages. If the architecture were to be implemented on a Virtex2 or on a more recent 

FPGA, the multiplier blocks of the FPGA would be used, reducing the FPGA area utilization 

of the design. The li, lf and lf’ symbols (Fig. 4a) correspond to the integer, the fractional and 

the corrected fractional part of log2cij as computed by the logarithm calculation unit 

(described in the next subsection), which is included as a sub-unit of each of the vector 

calculation units. The output of each post-processing stage is accumulated in a corresponding 

register during the accumulation stage. 

Preprocess cij×cij Postprocess Accumulate

Preprocess i×j×cij Postprocess Accumulatei×j
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Fig. 4. Vector calculation unit pipelines
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The calculation of V5 is implemented in two pipelines. A dual ported 64×16-bit Block 

RAM is used for the storage of Cx(i). The first pipeline (V5 a in Fig. 4a) is used to calculate 

Cx(i) from cij values. At the first stage of this pipeline, the previous value of Cx(i) is retrieved 

and at the second it is increased by cij and it is written back to the Block RAM. The second 

pipeline (V5 b in Fig. 4b) is activated when all of the cij values have been read. At the first 

stage of this pipeline, Cx(i) is retrieved from the Block RAM, at the second stage it is squared 

and at the third stage it is added into an accumulator register.

The fixed point calculation of the V vector is performed without rounding or 

truncating any intermediate results by increasing the bit width of the operands in each 

calculation stage. Thus, no error is introduced during the conversion of floating to fixed point

operations. For example, in the first stage of the V2 computation the input values i and j are 6-

bit wide and their product i∙j is 12 bits wide. In the next stage, cij is 16 bits wide and the width 

of the resulting product i∙j∙cij is 28 bits. The accumulators of all pipelines have a width of 64 

bits to prevent overflow. The approximation error of the logarithm function used for the 

entropy feature is discussed in the following subsection. 

Logarithm Calculation Unit

Several methods have been proposed in the literature for the implementation of the 

log-operation, including Look-Up-Table (LUT) [30], CORDIC-based [31,32] and power 

series implementations [33]. The use of a LUT for 32-bit representation of the logarithm for 

all 16-bit integers would require a 65536-element array with a total size of 65536  32-bit = 

256kB. The implementation of such an array on FPGA would not be feasible since its size 

exceeds the available resources. CORDIC-based and power series implementations require 

several computation steps and need long pipelines and many computational units, in order to 

be implemented in hardware.
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In the proposed system we have implemented an efficient method for the approximation 

of the base-2 logarithm of 16-bit integers. It is based on the linear approximation method 

originally proposed by Mitchell [34] but includes an additional error-correcting step, in which

the logarithm is approximated by two linear segments. A VLSI implementation of an error-

correcting circuit for the logarithm approximation using Mitchell’s method has been proposed 

in [35]. This implementation is optimized for low power consumption and combinatorial 

operation, and it does not minimize the approximation error. The implementation we propose

optimizes the logarithm computation for minimum approximation error. Furthermore, the 

proposed implementation achieves high frequency by using three pipeline stages; still it

requires limited hardware resources. Other approaches to logarithm approximation based on 

Mitchell’s method [36,37] employ more linear segments, but would require more slices and 

reach lower frequency when implemented on FPGA.

It involves three steps: 

1) The integer part of the logarithm, li =  )(log 02 x  is determined by the position of 

the Most Significant Bit (MSB) of the input integer x0, where

1
0 22  nn x  1)(log 02  nxn  li = n, n ≥ 0 (17)

2) The fractional part, lf = log2(x0)- li is estimated using the linear approximation of 

log2(x), between the points ),2( nn  and )1,2( 1  nn  of the x–log2(x) as follows: 

1
2122

2 0
1

0 






 nf
f

nn

n x
l

nn

lx (18)

The above expression for the computation of lf can be easily extracted from the binary 

representation of x0, as it is equal to x0 without its most significant bit, shifted right by 

n bits.
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3) The approximation accuracy achieved can be further increased by a transformation

performed on the fractional part of the logarithm. This transformation involves a 

segmentation of the )2,2[ 1nn  interval into two halves. This is mathematically 

expressed in the following equation: 
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where the parameter a is experimentally determined. For different values of a the error E

between the actual values of the logarithm log2(x) and its approximation (li + lf’) was 

estimated by Eq. 20, as illustrated in Fig. 5.
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Although the minimum error was achieved for a = 0.22 (E = 0.07%), we selected a = 0.25 (E

= 0.08%) because it can be easily implemented in hardware using shift and add operations 

and leads to a comparable error E. In order to further reduce the approximation error, the first 

16 values of log2(x) are stored in a 16×32-bit lookup table.
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Fig. 5. Error E estimated for different values of parameter a
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The three steps of the proposed method are implemented in a three-stage pipelined circuit, 

which allows a throughput of one result per clock cycle. The implementation of the proposed 

method on the XCV2000E-6 FPGA requires 123 FPGA slices and achieves a maximum 

frequency of 121.5MHz. In comparison, a fully pipelined CORDIC core requires more than 

200 slices, as generated by Xilinx CoreGen. Furthermore, the CORDIC core requires scaling 

of the input in order to converge, which must be implemented in additional circuitry that 

occupies approximately 70 more slices.

4. Complexity Analysis

The parallel computation of sixteen vectors V  from four input video frame blocks of W×W

dimensions (one vector for each angle and block) requires 6 steps. The number of cycles 

needed for each of the steps is shown in Table I.

TABLE I
COMPLEXITY ANALYSIS

Step Cycles Task

1 Nc/n Reset the GLCM calculation units

W×W Read all pixels from RAM bank 0 (four pixels per cycle)

W+3 Wait for the circular buffer to become empty
2

4
Wait for the last pixel pair output by the circular buffer to be processed by 

the GLCM calculation units

2 Reset the vector calculation units

Nc Read all (i, j, cij) triplets from the GLCM calculation units for 0o direction

67 Wait for the vector calculation units to complete the computation of V5

3

20 Write vectors V  of all vector calculation units to RAM

4 Nc+89 Repeat step 3 for 45o direction

5 Nc+89 Repeat step 3 for 90o direction

6 Nc+89 Repeat step 3 for 135o direction

The first step involves resetting the valid bits for the tags array of the GLCM 

calculation units to zero. This requires one cycle for each row of the array or Nc/n cycles in 

total. In the second step, the input video frame blocks are read from memory bank 0 into the 

circular buffers, in WW cycles. In the next W+3 cycles, the circular buffers do not receive 
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any input but they produce the last pixel pairs from the pixels that are still stored in them. The 

GLCM calculation units have a latency of four cycles, thus the system needs to wait four 

more cycles for the units to complete the GLCM calculation. In the third step, the system 

resets the vector calculation units in two cycles and forwards the calculated GLCM for 0o

direction to the vector calculation unit in Nc cycles. The vector calculation units produce the 

V vector 67 cycles after the last element of the GLCM has been read. Furthermore, 20 cycles 

are needed to write the four V  vectors produced by the four vector calculation units to 

memory banks 1 and 2. The third step is then repeated for the 45o, 90o and 135o directions.

The total number of cycles needed for the computation of the feature vectors for four 

video frame blocks in parallel is 4Nc+Nc/n+W2+W+363.

5. Results

The performance of the proposed system was experimentally evaluated using 

standard test video clips, six of which are shown in Fig. 6. The videos are encoded in both 

CIF and QCIF formats. The host processor used was a 1GHz Athlon, which was state of the 

art at the time XCV2000E-6 was introduced. The results are organized in two parts; in the 

first part, we present the system performance measurements for several hardware simulations 

and in the second part, we present the system performance measurements for two hardware 

implementations, compared to the software implementation running on two different 

processors, the Athlon 1GHz and the Athlon XP 2800+.
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(a) (b) (c)

(d) (e) (f)

Fig. 6. Video clips used in the experiments: (a) container, (b) foreman, (c) mobile, (d) news, (e) silent 

and (f) tempete

A. Simulation

Real-time texture analysis requirements impose a high processing rate, which can be 

achieved when all vectors V (Eqs. 9-13) of a video frame sequence are calculated in 

hardware. The number of vectors successfully calculated in hardware highly depends on the 

number of gray-level transitions appearing on each video frame, which in turn affects the 

number of non-zero GLCM elements. This can be adjusted by proper selection of the GLCM

calculation parameters, Nc and n.

A series of hardware simulations were performed in order to experimentally 

determine the pairs of (Nc, n) values that could efficiently support real-time video texture 

analysis, without exceeding the available FPGA hardware resources. The output of the 

simulations is the percentage of vectors that can be successfully calculated in hardware using 
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non-overlapping consecutive blocks of standard dimensions (W×W, W=8 or W=16) that cover 

the whole CIF and QCIF video frames.

The results are illustrated in Fig. 7-10 and show that the choice of n mainly depends 

on the dimensions of the block used. Small blocks (W=8) can be handled entirely in hardware 

by set associative arrays of n≥8 with Nc=256. Larger blocks (W=16) require set-associative 

arrays of n≥16 and Nc=512. Under these circumstances a choice of (Nc, n)=(256, 8) for W=8 

and (Nc, n)=(512, 16) for W=16 is preferable if all calculations are to be performed in 

hardware.
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Fig. 10. Percentage of vectors calculated in hardware for QCIF video clips, using Nc = 512

B. Implementation

The simulation results led us to implement and evaluate two alternatives of the 

proposed system, using (Nc, n) = (256, 8) and (Nc, n) = (512, 16) respectively. As shown in 

the complexity analysis (Table I), the total number of cycles needed for the calculation of the 

feature vectors mostly depends on Nc and W. The use of Nc = 256 leads to faster processing 

than the use of Nc = 512 for a given block dimension W. Moreover, the use of larger blocks 

(W=16) results in higher overall performance, because the number of vectors is reduced.

The implementation results per configuration, including the FPGA area coverage, the 

maximum frequency and the required BlockRAMs are presented in Table II. The performance 

of the respective configurations in frames per second (fps) is presented in Table III. These 

tables also include the synthesis results for the XC2V4000-4 FPGA, demonstrating the 

performance increase achieved by using a next generation FPGA that provides multipliers, 

higher frequency potential and larger BlockRAMs.
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TABLE II
IMPLEMENTATION RESULTS 

Nc N Slices Area Frequency BlockRAMs FPGA Device
256 8 11625 60% 43.95 MHz 24 XCV2000E-6
512 16 16158 84% 35.75 MHz 40 XCV2000E-6
256 8 9332 40% 68.28 MHz 24 XC2V4000-4
512 16 15058 65% 56.24 MHz 24 XC2V4000-4

The software performance was measured on two workstations based on a 1GHz 

Athlon and on an Athlon XP 2800+ processor.

TABLE III
PERFORMANCE IN FRAMES PER SECOND (FPS)

FPGA XCV2000E-6 FPGA XC2V4000-4 Software
Format

W
(pixels) n = 8 

Nc = 256
n = 16 

Nc = 512
n = 8 

Nc = 256
n = 16

Nc = 512
Athlon
1GHz

Athlon XP
2800+

CIF 8 74.44 35.89 115.64 56.46 5.3 8.57
16 - 133.01 - 209.24 21.2 32.38

QCIF 8 297.75 143.58 462.57 225.88 21.30 36.03
16 - 532.02 - 836.95 84.80 131.21

The results illustrate that the proposed FPGA-based system outperforms general-purpose 

processors for GLCM feature extraction from video frame blocks. Even though general-

purpose processors have a significant frequency advantage, the parallel FPGA 

implementations result in higher overall performance. It should be noted that all calculations 

on the FPGA are performed using fixed-point arithmetic and no intermediate results are 

rounded or truncated. This results in the accurate calculation of the features, however a 

negligible error could be introduced by the fast logarithm approximation method used for the 

calculation of the entropy. It is also worth noting that the VirtexE FPGA (XCV2000E-6)

retains its performance advantage compared to the AthlonXP processor, even though the latter 

was released four years later. The next generation Virtex2 FPGA (XC2V4000-4) displays a 

clear performance advantage over all other configurations, both hardware and software.

Comparison to state of the art architectures

Compared to the state of the art architectures presented in [19-23], the proposed 

architecture presents several significant advantages. The architecture proposed by Heikkinen 
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et al. [19] calculates two simple GLCM features without actually computing the GLCMs. 

This leads to a simpler design for the calculation of these two features, but the calculation of 

any other feature would involve substantial changes to the architecture, as the computation of 

the actual GLCM would be required.

The architecture presented by Tahir et al. [20] is implemented on a Celoxica RC-1000 

board that includes a Xilinx XCV2000E-6 FPGA as well; however it uses a single FPGA core 

to calculate only the GLCMs and not the features. The solution given by the authors is to 

reprogram a second FPGA core explicitly for the feature extraction, which is much slower as 

it involves repetitive alternation of the FPGA core and transfers of the GLCM data from/to 

the memory banks. Each reprogramming of the FPGA core requires transferring more than 

1.2 MB of data over the PCI bus, resetting the FPGA and possibly exchanging several control 

and status bytes in order to resume the calculation. This procedure incurs a delay of several 

tens of milliseconds, thus rendering real-time operation infeasible. The proposed architecture 

manages to implement both the GLCM and feature calculation on a single FPGA core by 

using a sparse representation of the GLCMs, which requires significantly fewer FPGA 

resources. Furthermore, in the system presented in [20] the pixels are read sequentially from 

the memory banks without the use of any buffering scheme, resulting in a throughput of only 

4 pixels per clock cycle. This system was developed for the acceleration of feature extraction 

from multispectral images, but not for real-time computation. Indeed, its results illustrate that 

real-time performance is not achieved for the GLCM calculation and feature extraction.

An early architecture proposed by our research group [21] performs best when the 

input image is divided into highly overlapping blocks. The implementation includes 

computational units, such as set-associative GLCM calculation units and logarithm 

approximation circuit in a single feature calculation unit, that are unused for large periods of 

time if the blocks are non-overlapping, rendering the high FPGA area utilization unnecessary

and inefficient. Furthermore, the preprocessing of the input image blocks involves a 

replication scheme for the pixels in the memory banks, increasing the memory requirements 

by four times. 
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In another architecture proposed by our research group [22], the hardware only 

calculates the GLCMs, however the features are not calculated on the FPGA, leaving this task 

for the supporting software. The GLCMs are not generally calculated using sparse set-

associative arrays. Sparse arrays are used only for small input blocks (W=16 and Ng=32). The 

input blocks are read and processed at a rate of 20 pixels per clock cycle by replicating the 

input image blocks in the memory banks. The method that allows the maximization of input 

bandwidth in [22] is the preprocessing of the input image blocks, by replicating and packing 

the pixels in a way that allows keeping the calculation units busy at all times. This results in 

efficient utilization of the FPGA resources, but inefficient memory utilization, as the 

preprocessed input image blocks require four times more memory than the original image 

blocks. The main drawback of [22] as compared to the proposed system is the requirement of 

transferring large amounts of data through the PCI bus, such as the replicated pixels and the 

computed GLCMs.

The system proposed by our research group in [23] is a preliminary version of the 

proposed system, which handles the feature extraction in hardware. Thus, it gains a 

performance increase compared to [22], which leads to real-time calculation of texture 

features. However, it does not employ a more efficient memory utilization scheme, such as 

the circular buffer, but it relies on data replication for the maximization of input bandwidth 

and processing throughput. However, such a redundancy due to data replication leads to high 

memory capacity requirements and redundant transfers of data over the PCI bus.

In contrast to the above state of the art architectures, the proposed architecture 

combines an efficient usage of the memory banks and the FPGA resources. A buffering 

scheme on the FPGA ensures a high processing throughput of 20 pixels per cycle, while the 

read rate from the memory banks is only 4 pixels per cycle and no data is replicated. By 

avoiding data replication, the memory capacity and memory bandwidth requirements are 

reduced by four times, while retaining high processing throughput. Taking into account the 

symmetry and the sparseness of the GLCM, a significant reduction in the required FPGA 

slices is achieved, enabling the implementation of both the GLCM and feature calculation in a 
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single FPGA core and eliminating the overhead associated with transferring the GLCMs 

from/to the memory banks and reprogramming the FPGA. Furthermore, the exploitation of 

the sparseness of the GLCM using set-associative arrays allows the proposed system to 

achieve high performance for Ng=64 instead of Ng=32 used in architectures [20,22], even 

though the number of elements of the GLCM is quadrupled. The use of Ng=64 in architectures 

that use dense representations of the GLCM [20,22] is infeasible on the particular FPGA as it 

would necessitate a quadruplication of the FPGA resource requirements. Additionally, the 

organization of the proposed architecture enables the exploitation of the full potential of the 

FPGA for parallel computations, by avoiding any idle states for the system units, in the case 

of non-overlapping blocks.

6. Conclusions

In this paper a novel system capable of performing real-time texture analysis of video 

frames was proposed. It is capable of calculating a total of 64 features comprising of four 16-

dimensional GLCM feature vectors from four video frame blocks in parallel. The hardware is 

based on FPGA technology and it is capable of performing fast integer and fixed point 

operations, which include the computation of many GLCMs in parallel and the computation 

of GLCM features. An algorithm for the approximation of the logarithm, which is required 

for the computation of the entropy feature, has been included within the hardware 

architecture. A buffering scheme ensures a high processing throughput, while maintaining 

low memory bandwidth requirements. The software supports the hardware by managing the 

video frame transfers from/to the hardware and by performing only supplementary floating 

point operations.

The proposed system was tested on standard test video clips encoded in CIF and 

QCIF formats, and demonstrated real-time performance for video texture analysis. Its 

performance exceeds the PAL/NTSC frame rate requirements [38], providing the potential of 

performing additional video frame processing tasks e.g. efficient discrete wavelet transform 
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[39]. The evaluation procedure showed that the proposed system is capable of performing 

GLCM feature computations much faster than software running on modern workstations, 

thereby making it suitable for replacing software implementations in systems requiring real 

time extraction of GLCM features from video frames [24]. Furthermore, its fundamental units 

can be used in any other hardware application that requires similar components, for example 

the sparse matrix representation or the accurate and efficient logarithm estimation.
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