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ABSTRACT
In this paper the performance of a simple scheme for the discrimination of different texture regions
in colonoscopic images is investigated. The proposed scheme uses textural descriptors based on
second order gray level statistics and employs a multilayer feedforward neural network to
discriminate among normal and cancer regions. Preliminary results indicate that this scheme is
capable of detecting abnormalities within the same image with high accuracy. It can be also
successfully applied on different images to detect abnormalities that belong to different cancer
types.

INTRODUCTION

In diagnostic colonoscopy, the medical expert based on a distributed percept of local changes interprets the
physical surface properties of the tissue such as the roughness or the smoothness, the regularity and the shape
to detect abnormalities. Adjacent surfaces showing different surface properties are distinguished on the basis of
the texture differences. It is well known that the performance of human perception on this complex task is
outstanding. The medical expert has the ability to add or remove components from an image so as to give
meaning to what he sees. He can also adapt to changes so much so that even a distorted image can be
recognized. No machine available today can achieve the equivalent perceptive power of a human being.

The idea of using machine learning methodologies to aid interpretation of colonoscopic images is
meritorious. However, it is important for one to realize the vast difficulties in physical attributes of the colon.
No two colons are similar. Even within the same colon, one section may have very different characteristics
from another. This fact introduces severe limitations in the use of computer-assisted endoscopy for interpreting
colonoscopic images. Given a colonoscopic image, the "true" features that are associated with it are not exactly
known to us. Usually, one or more feature extraction models are used to provide values for each feature's
parameters. The findings are then used to infer the results. In (Kwoh, 1995) multiple probabilistic networks
were used for subsets of findings to improve the colonoscopy procedure. This approach resembles the way
different expert contributions are combined.

In this work, we use texture information to train an artificial neural network for the detection of cancer
regions in colonoscopic images. In the next section the proposed approach is described. Then, some
preliminary simulation results are reported. The paper ends with some conclusions and future work.

TEXTURE DISCRIMINATION FOR ABNORMALITIES DETECTION

Texture plays an important role for the characterization of regions from digital images. It carries
information about the micro-structure of the regions and the distribution of the gray levels. A scheme for the
classification of such regions based on the texture information should be capable of encoding the properties of
the texture using a number of descriptors. These descriptors are usually represented by sets of statistical
measures defining by this way the vectors to be used, consequently, for the recognition.

The approach followed has two processing stages. The first stage consists of all the processing that will be
performed on an image to extract all the identifiable features. The information is purely dependent on what can
be extracted from the "raw" image. The second stage decides how to incorporate the information from the first
stage together with background and prior information such as temporal data, relationships about features, etc.,
to draw inferences. This process can be considered analogous to an expert who will consolidate all the facts
and verify the truth of the hypotheses.
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Textural Description Using Second Order Gray Level Statistics

In this work we use texture information for the detection of cancer regions in colonoscopic images by
finding some quantitative description of a texture. Usually one chooses a family of texture attributes which
account for the main spatial relations between the gray levels of texture. The texture models which underlie the
attributes belong to one of three categories: structural, statistical and random process. In the first case, a texture
is characterized by a family of primitives, and by the way according to which they are spatially organized (e.g.
Gabor filters, Daugman, 1988). The second category involves the use of statistical tools and inference: gray
level co-occurrence matrices (Haralick, 1979; Gotlieb and Kreyszig, 1990), gray level run length statistics
(Galloway, 1975; Siew et al., 1988), gray level difference (Weszka et al., 1976), second-order moments (Chen,
1982). According to the third category textured images are considered as realizations or samples of spatial
random fields. Texture features are extracted by fitting random fields to image data. This encloses auto-
binomial Markov fields modeling (Cross and Jain, 1983), autoregressive Gaussian models and the Gaussian
Markov models (Chellappa and Chatterjee, 1985; Chellappa et al., 1985; Cohen et al., 1991; Kashyap and
Chellappa, 1983).

In this paper we focus on normal/abnornal tissue samples discrimination based upon the analysis of the
gray level cooccurrence matrices. This method evaluates a series of matrices that describe the spatial variation
of gray level values within a local area. In our simulations, four cooccurrence matrices have been computed for
each sample area, with a displacement of one pixel and angles of 0, 45, 90, 135 degrees. The following four
features have been computed on each matrix to produce a 16-dimensional feature vector describing each tissue
sample:
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In the above features, (i,j) corresponds to the (i,j)th entry of the matrices and represents the probability of

going from one pixel with gray level (i) to another with a gray level (j) under a predefined distance and angle.
In our experiments, these four statistical measures out of the 14, originally proposed by Haralick (Haralick,
1979; Haralick et al. 1973) provided high discrimination accuracy that was only marginally increased by
adding more measures in the feature vector. A similar situation arises in clinical practice: experts in
interpreting colonoscopic images usually utilize only a few "important" features for inference.

Neural Network-based Abnormalities Detection from Texture Samples

Advances in neurocomputing have opened the way for the establishment of medical image interpretation
systems which are able to learn complex associations by example. It is acknowledged that the appropriate use
of the neural network-based methodologies in medical problem solving could be very effective to improve the
efficiency and the quality of medical care. In contrast to the traditional techniques, neural network-based
methods have the following advantages:

• They can capture by learning arbitrary functional relationships, not explicitly prescribed, between input
and output data.

• They do not need any assumptions established on the statistical distributions underlying the input
patterns.

• Their have good generalization ability and fault tolerance.
• They exhibit robustness for imprecision and uncertainty in unconstrained information environment.

Neural network-based methodologies strongly depend on the technology that provides computers with high
computing performance for processing large amount of information in reasonable time. The most popular
neural network architecture is the multilayer feedforward neural network (MFNN). Consider a MFNN whose l-
th layer contains N

l  neurons, l = 1,...,M. The neurons operate according to the following equations:
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where net j

l  is, for the j-th neuron in the l-th layer ( j = 1,...,N l ), the sum of its weighted inputs. The weights

from the i-th neuron at the (l-1) layer to the j-th neuron at the l-th layer are denoted by w ij

l l−1, , l

jy  is the output

of the j-th neuron that belongs to the l-th layer, and the logistic function f net net
j

l
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neuron nonlinear activation function. Training the MFNN to discriminate among normal and abnormal tissue
samples is realised by adjusting the network weights through a gradient descent method. This corresponds to
minimizing the error function E:
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sample p and the target output value; p is an index over input-output pairs. An enhanced training algorithm is
used, which is called Back-Propagation with Variable Stepsize-BPVS (Magoulas et al., 1997). After training,
the network is able to discriminate between normal and abnormal texture samples by forming hyperplane
decision boundaries in the pattern space.

EXPERIMENTS

In the experiments reported a 16-21-2 MFNN architecture (i.e. 16 linear input neurons, 21 nonlinear
hidden neurons and 2 nonlinear output neurons) has been used and the cooccurrence matrices for the textural
description of tissue samples have been applied. Preliminary results have indicated that this scheme is capable
of detecting abnormalities within the same colonoscopic image with 99% of success.

Below, we present results on detecting abnormalities, which belong to two different types, in colonoscopic
images taken from two different colons. Image 1 (see Figure 1) is macroscopically a Type IIIs lesion according
to (Kudo, 1996). Histologically it is a low grade cancer. Image 2 is macroscopically a Type V lesion according
to (Kudo, 1996). Histologically it is a moderately differentiated carcinoma. The images have been digitized to
a size of 2K×2K pixels with 64 gray levels depth per pixel. Textures from 10 normal and 10 abnormal tissue
samples, corresponding to a 256×256 image window, have been randomly chosen from each image and used
for training the MFNN. Two different conditions on the Classification Error (CE) have been used to terminate
the training phase: (i) CE< 0.15, and (ii) CE< 0.2. In both cases the performance of the trained MFNNs has
been tested on a set of 80 texture samples (40 normal and 40 abnormal) from the two images.

Image 1 Image 2

Figure 1. Colonoscopic images used in the experiments.

The average performance of 10 MFNNs than have been trained on this task is summarized in Table 1. The
reported parameters are: CE is classification error in the training phase, CSµ  is the average percentage of

success in the testing phase and the computational cost required to train the networks is exhibited in terms of
the average number of gradient ( GRDµ ) and of error function evaluations ( EFEµ ). Note that the value of the CSµ
is very similar for the two cases, however the computational cost is quite different.

CE
CSµ GRDµ EFEµ

0.15 92.1 87 165

0.20 91.4 9 18

Table 1. Average performance of the 10 trained MFNNs.
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Details on the generalization performance of the 10 networks are exhibited in Figure 2. Note, that MFNNs
trained according to the first termination condition (CE<0.15) exhibit better performance than networks
trained using the second condition. For example, one network trained using the condition CE<0.15
misclassified 3 out of the 80 test samples (i.e. success 95%), while two networks trained according to the
condition CE<0.20 misclassified 5 out of the 80 test samples (i.e. success 93.75%). In conclusion, the neural
network-based methodology seems a promising tool for detecting normal and cancer regions in colonoscopic
images.  We currently investigate several well known textural feature extraction techniques along with a novel
discrete wavelet transform based methodology to study the effects of the different textural descriptors on
MFNN training and generalization capabilities.
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Figure 2. Number of trained MFNNs with respect to their corresponding
number of misclassified test samples.

CONCLUSIONS AND FUTURE WORK

In this paper, a scheme for the detection of cancer regions with high accuracy has been presented. The
scheme applies a neural network-based methodology and uses texture features extracted by the cooccurrence
matrices. A next step will be the application of this approach to a sequence of frames taken from a colonoscopy
video in order to construct a system that will be capable to discriminate abnormal regions in real conditions
and possibly on-line during operation.
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