Method for an automatic analysis of the ECG
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ABSTRACT

A method is presented for an analysis of the ECG. Using cubic spline techniques we proceed first to a smoothing of the
signal and then to the elimination of baseline drift. The properties of the calculated derivatives are used lo establish criterta
Jor the identification of the ECG waves and the measurement of their essential parameters. The complele procedure can be
carried oul by a computer, withoul human intervention. The resulls of this fully automatic procedure can be used directly as

a means of classifying the ECG.
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INTRODUCTION

One ever-present difficulty in any analysis of the
electrocardiogram’' ® is the noise created by power
lines, muscles, recording amplifiers ctc; to these must
be added the baseline drift. All of them affect the
parameters of the signal and make their measure-
ment uncertain. A number of analogue and digital
filtering methods have been used to minimize the
effect of these unwanted signals.

We present a fully automatic method for an
analysis of the ECG. The elimination of human
intervention can make the procedure faster and in
many cases more accurate. However, ‘alarm keys’
arc provided in the programs, which do permit
intervention in exceptional cases.

We remove the noise in the digitized ECG using
a cubic spline technique as a low pass filter, based
on the local statistics of the signal; a similar technique
is used as an interpolator for removing the baseline
drift. The derivatives calculated during these proces-
ses are used for the establishment of criteria for the
identification of the P, O, R, S, " waves as well as
the measurement of their parameters. The first wave
to be recognized is the R wave and the identification
of the P, Q, S, T waves is based on this recognition.

The recorded signals were 12-lcad ECGs taken
from human subjects, each lead including five to
eight LCG complexes. They were recorded on
analogue tape and prefiltered at 1 kHz and were
subsequently, digitized off-line at a 250 Hz sampling
frequency by a 10 bit A/D converter and coded by 11
bits/sample.

Programs were written in FORTRAN 77; they are in
three parts: preprocessing, signal analysis and
identification of ECG waves.

PREPROCESSING

Smoothing

For smoothing of the ECG a cubic spline technique
(CUSP) is used, it approximates the digitized signal
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by a series of third order piecewise polynomials.” The
intersections of the polynomial components are
called ‘knots™. The knots are found by an algorithm
which estimates the position of the knots by
minimizing a local error based on the local statistics
of the signal'’. The flow diagram of the routine used
is shown in Figure la.

In Figure 2 an ECG signal is shown before
smoothing (Y) and after smoothing (.5}, Also shown
is the difference e = ¥ — 8 which corresponds to the
removed noise; it is almost band-limited white noisc.
We have selected the cubic spline technique because
it is particularly suitable for smoothing signals which
have regions of sharp variation and regions of low
variation. This is due to the piecewise nature of the
polynomial, which permits quick adaptation to the
changes of the original signal'’. The fact that the
number of knots is not predefined is an advantage
of the method, given that the estimation of knots by
the local properties of the signal is much more
accurate.

Elimination of baseline drift

For the elimination of the baseline drift we use some
characteristics of the first derivative, calculated
during smoothing. Figure 3 shows the first derivative
S’ of the smoothed ECG § of Figure 2. 1t can be seen
that the values of S” are large and change abruptly;
they are low and change slowly during the inactive
periods. This is true even when the bascline drift is
large. We take advantage of this characteristic of '
to detect the baseline segments.

We detect the segments of the filtered signal lying
between two knots, during which time the absolute
value of §" is lower than a threshold: $" <e. If this
condition holds for at least three sequential segments,
their union is identified as a ‘baseline segment’ (SE).

The middle point of cach SE (MSE) is calculated.
We obtain the slowly varing component (SVC),
which is a good approximation of the baseline drift,
by using a cubic spline interpolator, the knots of
which are the MSEs. Subtracting the slowly varying
component from the smoothed signal, we remove the
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Figure 1

bascline drift; the result is the reconstituted signal
Sk

This result, for the ECG of Figure 2, is shown in
Figure 4: bascline drift is removed without deforma-
tion of the ECG waves.

The cubic spline technique has been used before
by other authors for the removal of baseline drift''?,
The advantage of our method is that it can be carried
out by the computer without external intervention;
the knots are not predefined but found by the
program. Moreover, at this step, the waves of the
LCG are not identified and cannot be used as knots
m an avtomated method.
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Figure 2 An cxample of an ECG signal before (Y} and after
smoothing {8}, and the differencee = ¥ — S, Yis the sample ECG

data, X is the estimated knots for the spline § and S is the
smoothed ECG signal
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Figure 3 'The derivative 8 of the smoothed signal of Figure
2. The points give the position of the spline’s knots
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Figure 4 'I'hc cstimation and removal of baseline drift. X are
the automatically detected MSEs points on the S, used as the
knots of an interpolating spline, which approximates the SV,
The S =85=SVC is the reconstituted ECG signal. S is the
smoothed ECG signal, X is the estimated points of the ECG
bascline, SVC is the spline that approximates the baseline drift

and Sg = 8§ — SV is the reconstituted signal
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Figure 5 Examplc of ECG treated by our method: a, original
(Y), smoothed (S§) and noise removed from the signal (e); b,
the first derivative (S") of the smoothed ECG; ¢, the identified
MSEs points (X) and the bascline estimation (SVC); d, the
smoothed and reconstituted ECG (Sg)
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Figure 5 shows another ECG signal preprocessed
by our method and Figure 16 shows the diagram of
the corresponding routine.

SIGNAL ANALYSIS

After the removal of the noise and baseline drift we
can proceed to the analysis of the reconstituted signal

R-
This is done in two steps: first, detect significant
local peaks which can be ECG waves and second
measure their duration, amplitude and relative

position in the complex (with relation to the peak of

the R wave).

Detection of the significant maxima

We show a local maximum in Figure 6, and store its
time of occurrence ({.,,) and its amplitude (Sgmay)s
together with its inflexion points Iy (before) and I,
(after) the maximum. The discussion which follows
applies to both maxima and minima.
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Figure 6 Representation of a local maximum. The coordinates
(tmax> Srmax)> the inflexion points Iy, Iy and the duration

torr — ton

A local maximum is considered to be significant
(ST, if the two following conditions are satisfied:
(i) The absolute value of the maximum amplitude
is greater than the threshold a: | Sgpay | > a. (i) The
absolute value of the difference of the first derivative
S’ of the two inflexion points Iy, I, is greater than a
threshold m: | Sp, — Si, | > m.

Using the above criteria, we reject the minor local
maxima of Sz, which cannot be ECG waves but
occasional fluctuations; significant local maxima
(SI,,.x) may be the ECG waves. The values of the
thresholds @ and m were found by repeated tests on
different ECGs. Figure Ic shows the flow diagram for
this routine.

Detecting the SI,,, we also know the amplitude
and the times corresponding to each one. The
duration is computed by estimating the onset and
off-set time of each SI,,,.. The onsct and offset time
are estimated in the following way: the tangents on
the inflexion points I, /g are extrapolated until they
cross the reconstituted zero level at ¢, ¢y, respect-
ively (Figure 6). The difference, f,p— £, is the
duration of the corresponding SI,,.,.

All the 12 leads of one subject are analysed by the
above mentioned procedure. The result of this signal
analysis is a population of SI,,,, fully defined by
lead, time, amplitude, duration, and first derivative
values of the two inflexion points.

THE IDENTIFICATION OF THE ECG
WAVES

The SI,,,, population is searched for the recognition
of the P, Q, R, S, T waves. We first recognize the
R waves and then we identify the others by
constructing a histogram.

R wave recognition

The R wave has some peculiarities. It is the largest
and sharpest positive wave and has the shortest
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Figure 7 'The first histogram of the R waves, a, and the
SI,,..- The R waves are placed on a relative time distance equal
to zero. The Sl are placed in positions according to their
relative time distances from the R waves of the cycle. The symbols
1,2, ... B, C correspond to the lead in which the ST, was
found. The peaks are clearly seen. b, The same histogram
as in a, but the waves are marked as identified. There are some

rejected ones, marked by X
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rise time. For its recognition we use the following
three criteria, which must be valid simultaneously:

(i) The amplitude Sg,,,, is positive and maximum.
(i) The difference of the first derivative on the two
inflexion points Iy, I, is very large (sharpest
wave).
(i) The first derivative on the inflexion point Iy
must be positive and have a very large value:
> M, (smallest rise time).

We do not need to estimate a precise threshold
value for the sharpness of the R wave. We have
noticed that a very large gap exists between the
sharpness of the R wave and the sharpness of the
other SI,,,, around it.

Using the above criteria we recognize the R waves
present in all the ECG leads of one subject. The
essential parameters of the R waves are the
parameters of the corresponding SI,,.. For every
lead the R-R times are calculated as well as the
middle points of the R—R intervals.

Identification of the P, Q, S, T waves

We identify the P, Q, S, T waves based on the R
wave recognition.

The R-R intervals are already calculated, as well
as their middle points. The time distance between
two sequential middle points is defined as a ‘period’
of ‘ECG cycle’. In every cycle is included one SI
recognized as an R wave, and several other ST, -
We calculate the relative times of occurrence of the
Sl of the cycle with relation to the time of
occurrence of the R wave of the same cycle. Then
we construct a histogram of the frequency of
appearance of the R waves and the SI,, as a
function of their relative distance. For the construc-
tion of the histogram we use the cycles of all 12 leads
from one patient. This means that we construct one
histogram for one patient including all the R waves
and the SI,_,. found in that recordings. The peaks
of this histogram correspond to the relative position
of the waves, in their natural sequence in the ECG
(P, Q, R, S, T). The SI,,,, contributing to the peaks
are correspondingly identified as P, Q, S, T waves
(the R waves were already known). After their
identification their essential parameters can be
retrieved.

The time of every peak of the histogram represents
the mean value of the relative time for the
corresponding wave. The error of this determination
is small, given that all the SI,,, have been used.

In Figure 7a, the primarily constructed histogram
is shown. The peaks can be immediately identified
as P, Q, S, T (Figure 7b). There is some dispersion
around the peaks. Most of the SI,,,, falling outside
one peak can be positively identified through a
comparison of their ¢,,, {,r times with the correspond-
ing parameters of the SI,,, falling on the peak. An
example of that is the identification of the T wave
in Figure 7b. Of course, there are some SI,,,, which
cannot with certainty be identified as waves after
this comparison; these are rejected (X in Figure 7b).

max



SUMMARY AND DISCUSSION

Two cubic spline techniques have been used to
remove the noise and the baseline drift. The result
is an analytical expression Sy of a smoothed version
of the original ECG. Based on this expression and
its first and second derivatives we have detected the
significant maxima and have measured their ampli-
tude, time of occurrence, and duration. Establishing
criteria for the R wave, we have recognized these
waves among the SI .. and have identified the P,
Q, S, T waves among the SI_, . based on their
relative time from the R wave of the same cycle. The
thresholds ¢, a, m, M used by the method were found
by repeated tests on a large number of 12 lead ECGs.
Their values are estimated as e = 100, a = 5, m = 200,
M = 1000.

We have checked our method on a number of 12
lead ECGs taken for epidimiological studies and have
chosen 16 representative ones (pathological or
otherwise). The results of the method were fed to the
Minnesota Classification Code. The classification of
these 16 cases was in very good agreement with that
obtained independently in the clinic.

If the histogram of the SI,,,, has large dispersion
and the peaks cannot be clearly recognized, an
‘alarm key’ is provided.
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