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Abstract

This paper pertains to the recognition of textural
regions for color video analysis. The proposed scheme
uses the covariance of 2nd-order statistics on the wavelet
domain, between the different color channels of the video
frames. These features, named as Color Wavelet
Covariance (CWC), are used as color textural descriptors.
A Support Vector Machine was chosen for the
classification of the CWC feature vectors. Experiments
were conducted using both animated Vistex texture
mosaics and standard video clips. The estimated average
accuracy ranged from 90% to 97%. The results show that
the proposed methodology could efficiently be used in
various multimedia applications as a complete supervised
color texture recognition system.

1. Introduction

Video sequence analysis is an arising research area,
which becomes essential as multimedia applications enter
in our everyday life. The increase of the computational
power of modern workstations has made feasible the
application of complicated image analysis techniques on
video frames. Such techniques usually exploit color and
texture, both fundamental properties of the visible
surfaces. Significant research effort has concentrated to the
mathematical representation of color and texture for video
sequence analysis. State of the art applications exploiting
these properties include object tracking [1], face detection
and recognition systems [2], tumor detection in
endoscopic video [3] and content indexing [4].

Recent studies in color texture analysis have considered
the use of perceptual approaches [5], the use of
chromaticity moments [6], the derivation of textural
information from luminance channel along with pure
chrominance features as well as the processing of each

color channel separately, by applying gray-level texture
analysis techniques [7]. Other approaches exploit the
interdependence of the existent textural information within
the different channels of a color image, usually captured
by means of correlation. On this direction Van de Wouwer
et al [8] achieved high classification rates using correlation
signatures estimated from the wavelet coefficients of color
images. Paschos [9] proposed a set of discriminative and
robust chromatic correlation features using directional
histograms. Vandebroucke et al [10] exploited the
correlation of 1st order statistical features between the
different color channels for unsupervised soccer image
segmentation and Al-Rawi et al [11] proposed Zernike
moments of correlation and covariance functions for
illumination invariant color texture recognition.
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Figure 1. Color texture recognition scheme



In the same framework we have formulated a
mathematical representation of color texture named as
Color Wavelet Covariance (CWC) that exploit the
covariance of 2nd-order textural measures in the wavelet
domain of the color channels of the images. Considering
that video sequences are series of sequentially ordered
images in time, this methodology could also be applied for
the representation of color texture in video frames. In this
paper we propose the use of CWC features for the
identification of regions characterized of different texture
in video sequences. The scheme illustrated in Fig.1
outlines our approach.

For each acquired video frame a set of CWC feature
vectors are calculated. These vectors constitute the input
of a Support Vector Machine (SVM) classifier, which is
responsible for the texture recognition task. SVMs are
supervised machine learning algorithms that are based on
statistical learning theory [12] and they have shown
remarkably robust performance in several pattern
recognition applications [13-16]. In the proposed
framework the SVM is trained using features extracted
from a single frame. After training it is capable of
identifying different texture regions along the whole video
sequence. The SVM's output are video frames depicting
the identified texture regions, which are consecutively
enhanced following a post-processing stage.

The rest of this paper is organized in 4 sections. In
section 2, the feature extraction methodology used for the
representation of texture in video frames is described.
Section 3 provides a short description of basic principles
of the SVM classification scheme. In section 4, we present
the results of the experimentation aiming to the assessment
of the recognition performance of the proposed approach.
In the last section the conclusions of this study are
summarized.

2. Color Texture Features

In the proposed feature extraction methodology we
assume that each video-frame I, is decomposed into three
color channels Ci, where i = 1, 2, 3. Each channel is raster
scanned with a fixed size sliding square window. On each
window a K-level 2D-Discrete Wavelet Transform (DWT)
is applied. The Daubechies wavelet bases were used due to
their orthonormal properties, which are important for the
preservation of the textural structure along the different
scales of the transform [17]. This transform results in a
new representation of the original window, which consists
of

B  = 3K + 1 (1)

sub-windows, corresponding to different wavelet bands.
Each band is denoted as Bj(k), where k is the current

level of the transform and j = 0, 1, 2, 3 for k = K, or j = 1,
2, 3 for k < K. B0(k) corresponds to the low frequency

band.
The textural information contained in each window is

captured with the use of cooccurrence matrices.
Cooccurrence matrices encode the gray level spatial
dependence based on the estimation of the 2nd order joint
conditional probability density function f(i, j, d, a), which
is computed by counting all pairs of pixels at distance d
having gray levels i and j at a given direction a. The
angular displacement of d = 1 is included in the range of
the a-values {0, π/4, π/2, 3π/4}.

The proposed approach for the estimation of color
textural features takes advantage of the covariance
between statistical measures of the cooccurrence matrix
corresponding to each color channel of the video frame.
To investigate the performance of this approach we have
considered four Haralick's measures, namely the angular
second moment (f1), the correlation (f2), the inverse
difference moment (f3) and the entropy (f4). These four
features provide high discrimination accuracy which can
only be marginally increased by adding more features in
the feature vector [18].

The features f1- f4 are estimated over each sub-window
Bj(k), j ≠ 0, k = 1, 2, … K, of the color channels Ci, i = 1,
2, 3 of the frame and they are noted as:
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where F ∈ { f1, f2, f3, f4 } and a corresponds to the angle
considered in the estimation of the cooccurrence matrices,
a ∈{0, π/4, π/2, 3π/4}. We define Color Wavelet
Covariance of a feature F (CWC or CWCF), F ∈ { f1, f2, f3,
f4 } at wavelet band Bj(k), j ≠ 0, k = 1, 2, … K, between
two color channels Cl and Cm as:
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estimated over the different angles a. For K=1, the
corresponding feature vectors consist of 72 CWC features
((3 variances + 3 covariances) x 4 cooccurrence matrices x
3 wavelet bands).

The use of these features can lead to a reduced feature
space compared to the original feature space defined by
Eq.(2).

3. Support Vector Machines

Let Φ be a non-linear mapping from the input space
nI ℜ⊆ to the feature space 

mF ℜ⊆ . The SVM algorithm
is capable of finding a hyperplane defined by the equation

wΦ(x) + b = 0 (4)

so that the margin of separation is maximized.  It is easy
to prove [12][19] that for the maximal margin hyperplane,
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where the variables λi are Lagrange multipliers that can be
estimated by maximizing the quantity
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with respect to λi, where the following constraints should
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=
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N, and a given value c. ),( ji xxK  is called kernel function
and it is defined as the inner product

)()(),( jiji xxxxK ΦΦ= Τ . (7)

Linear, polynomial, Radial Basis (RBF) and sigmoid
are the most common functions used as SVM kernels. The
one-against-one strategy is used for the classification of
multiple classes [19].

4. Results

The proposed color texture recognition approach was
tested on different video sequences. The experiments
presented in this paper are organized in two parts. In the
first part we evaluate the recognition performance of the
proposed approach using animated color texture mosaics
constructed from Vistex texture images [20]. In the second
part two standard video clips are used to demonstrate the
recognition accuracy of the proposed approach in real-
world scenes.

4.1. Texture recognition in animated mosaics

Five 10-frame animated mosaics of 5 textures were
used to evaluate the recognition performance of the
proposed approach. The video frames were 128x128 pixels
in size and the color depth was 24 bit = 3×8 bit. Each
video consists of the following Vistex textures:

Video 1: "bark", "clouds", "sand", "water", "flowers"
Video 2: "wood", "food", "fabric", "leaves", "grass"
Video 3: "sand", "flowers", "leaves", "grass", "bark"
Video 4: "clouds", "water", "metal", "stone", "brick"
Video 5: "metal", "fabric", "food", "stone", "wood"

Fig.2 illustrates four indicative frames of Video 1.
For each video, 1 frame was used for training and the

rest 9 were used for testing. This procedure was repeated
10 times using a different frame for training each time in
order to avoid bias. The window sizes tested were 8x8,

16x16 and 32x32 pixels. We have considered the use of
three different color spaces namely RGB, L*a*b* and K-L
(estimated as linear approximation of the Karhunen-Loeve
transformation of the RGB image coordinates). These
color spaces have been used in various texture recognition
applications in the literature [8][21-23]. Among the four
different SVM kernels mentioned in section 3, we have
chosen the linear as the least computationally complex.
The results, shown in Fig. 3, are estimated in terms of
Mean Classification Error (MCE).

(1) (2)

(3) (4)

Figure 2. Four frames of Video 1
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Figure 3. MCE in different color spaces and
window sizes

Fig.3 shows that best results were obtained using the K-
L color space and a window size of 8x8 pixels. The MCE
obtained using L*a*b* color space is also low for the
same window size but the RGB to L*a*b* transform
involves non-linear computations which are more
expensive than the linear computations involved in the
RGB to K-L transform. The use of a small window size



8x8, which results to the lowest MCE, can be evaluated as
an advantageous characteristic of the proposed
methodology since it increases the output frames' detail.

To investigate the effect of the SVM kernel type in the
texture recognition performance of the proposed approach,
different kernel functions were tested including linear,
2nd-order polynomial, RBF and sigmoid. The results
obtained using K-L color space and a window size of 8x8
pixels are illustrated in Fig.4.
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Figure 4. MCE using different SVM kernel types

From the above diagram (Fig. 4), it can be concluded
that the linear kernel results in the lowest MCE. Fig.5
illustrates the output frames corresponding to Fig.2 using
the linear kernel. The different shades of gray in the output
images correspond to the different classes. These frames
validate the high accuracy achieved using the proposed
approach.

(1) 2.9% (2) 4.3%

(3) 4.2% (4) 5.0%

Figure 5. Output frames

Further improvement of the results can be achieved
using a post-processing stage, which involves the
application of a noise reduction scheme. We tried
indicatively a median filter with a kernel size of 5x5 pixels
on the output frames [24]. The application of this
technique resulted to a decrease of the MCE, from 4.50%
to 3.03%. Fig.6 illustrates the output frames of Fig.5 after
post-processing stage.

(1) 1.8% (2) 2.8%

(3) 2.5% (4) 3.8%

Figure 6. Output frames after post-processing

4.2. Texture recognition in standard video clips

In the second part of the experimentation we tested our
methodology on two standard uncompressed color video
sequences, named "silent" and "container". They both
consist of 300 frames and 5-class scene segmentation was
considered. For each sequence the first frame was used for
training and the rest were used for testing. The estimated
MCE over each sequence in K-L color space using
windows of 8x8 pixels in size and linear SVM kernel was
10.5% for "silent" and 12.1% for "container". Fig.7 and
Fig.8 illustrate indicative results for different frames of
these sequences. The first, the second and the third column
of these figures, correspond to the original, the reference
and the output frames respectively. The different shades of
gray in the reference and in the output images correspond
to the different classes. It can be observed that the output
frames are comparable to the reference frames. Some
misclassified regions belong to the classes comprised of
fewer samples and correspond to small texture areas. The
dominant classes are well defined in both video clips (e.g.
the background painting in "silent" and the sea in
"container").



5. Conclusions

In this paper we presented a novel methodology for
color texture recognition in video sequences. The feature
extraction scheme was based on the CWC features
which produce statistical color descriptors for texture on
the wavelet domain of the video frame sequences. The
recognition task was assigned to SVMs due to their
reliable performance.

The proposed methodology was tested on both
animated Vistex texture mosaics and standard video clips,
reaching to an average recognition accuracy of 97% and
90%, respectively.

The different texture classes identified in a video clip
could be utilized in several video-processing tasks
including object detection and tracking. A general
approach to refine these classes was to use median
filtering, but depending on the application, different image
processing algorithms could be applied. A future
perspective for the extension of this work could be the
integration of the heavy computational procedures
involved, on dedicated hardware, in order to reduce the
overall response time of the system for a potential real-
time multimedia application.

Frame 120 6.9%

Frame 229 12%

Frame 299 9.1%

Figure 7. Classification results for the "silent"
video clip

Frame 2 7.5%

Frame 191 11.9%

Frame 262 12.3%

Figure 8. Classification results for the "container"
video clip
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