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Abstract
This paper suggests a new image compression

scheme, using the discrete wavelet transformation (DWT),
which is based on attempting to preserve the texturally
important  image characteristics. The main point of the
proposed methodology lies on that, the image is divided
into regions of textural significance employing  textural
descriptors as criteria and fuzzy clustering methodologies.
These textural descriptors include cooccurrence matrices
based measures and coherence analysis derived features.
While rival image compression methodologies utilizing the
DWT apply it to the whole original image, the herein
presented novel approach involves a more sophisticated
scheme in the application of the DWT. More specifically,
the DWT is applied separately to each region in which the
original image is partitioned and, depending on how it has
been texturally clustered, its relative number of the
wavelet coefficients to keep is then, determined. Therefore,
different compression ratios are applied to the above
specified image regions. The reconstruction process of the
original image involves the linear combination of its
corresponding reconstructed regions. An experimental
study is conducted to qualitatively assessing the proposed
compression approach. Moreover, this experimental study
aims at comparing different textural measures in terms of
their results concerning the quality of the reconstructed
image.

1.  Introduction

Image compression plays a critical role in telematics
applications. It is desired that either single images or
sequences of images be transmitted over computer
networks at large distances so as that they could be used
for a multitude of purposes. For instance, it is necessary
that medical images be transmitted so as that reliable,

improved and fast  medical diagnosis performed by many
centers could be facilitated. To this end, image
compression is an important research issue. The difficulty,
however, in several applications lies on the fact that, while
high compression rates are desired, the applicability of the
reconstructed images depends  on whether some
significant characteristics of the original images are
preserved after the compression process has been finished.

For instance, in medical image compression
applications, diagnosis is effective only when compression
techniques preserve all the relevant and important image
information needed. This is the case with lossless
compression techniques. Lossy compression techniques,
on the other hand, are more efficient in terms of storage
and transmission needs but there is no warranty that they
can preserve the characteristics needed in medical image
processing and diagnosis. One important such
characteristic of  such images is texture. More specifically,
texture analysis of these images can lead to very
significant results concerning real tissue motion [1] and
thus, can result in improved diagnosis.

More generally, however, it is well known that
significant visual effects for any kind of image rely on
their textural characteristics [2]. The main motivation for
the research effort presented in this paper is, precisely,
how these important visual effects could be kept without
being severely distorted during image compression
process. To this end, their efficient coding is necessary. It
is well known that such textural characteristics, cannot be
captured from images using first order gray scale statistics.
More specifically, Julesz  concluded, based on
experiments on human preattentive perception, that
statistics based on second-order distribution of gray levels
could be used as discriminators in identifying textures [2].



One of the most prominent, along these lines, approaches
in texture identification is the one adopted by Haralick [3].

This paper aims at investigating a novel compression
scheme of  images based on the discrete 2-D wavelet
transform having as goal the preservation of their
important textural characteristics. At this point it is
necessary to briefly discuss about image compression and
the wavelet transform. The general idea behind image
compression is to remove the redundancy in an image so
as to find a more compact representation. A popular
method for image compression is the so-called transform
coding, which represents the image in a different space
than the original, such that the coefficients of the analysis
in the basis of the new space are decorrelated. It has been
shown that the multiresolution wavelet decomposition is
projections onto subspaces spanned by the scaling function
basis and the wavelet basis. These projections on the
scaling functions basis yield approximations of the signal
and the projections on the wavelet basis yield the
differences between the approximations of two adjacent
levels of resolution. Therefore, the wavelet detail images
are decorrelated and can be used for image compression.
Indeed, the detail images obtained from the wavelet
transform consist of edges in the image. Since there is
little correlation among the values on pixels in the edge
images, it is easily understood why the wavelet transform
is useful in image compression applications. Indeed, image
compression is one of the most popular applications of the
wavelet transform [4]. However, the most widely accepted
contemporary approach for dealing with image
compression employing the wavelet transform, is to apply
it to the whole image and then, keep its corresponding
coefficients which are larger than a predefined threshold.
A more sophisticated compression scheme involving the
DWT is utilized here in order to achieve preservation of
significant image characteristics.

The suggested approach at first attempts to divide the
image into subregions according to the distribution of
several textural descriptors which belong in two main
categories. First, cooccurrence matrices based features and
second, coherence analysis based measures are compared
at this stage of the proposed methodology. Each subregion
is then classified as texturally important or not utilizing
fuzzy logic unsupervised techniques.  In the sequel, the
discrete two-dimensional wavelet transform [5,6] is
applied to each such region but  the compression ratio
imposed depends on the corresponding classification stage
decision. The reconstruction process involves the
combination, linear in our case, of the reconstructed
subregions by utilizing the inverse 2-D discrete wavelet
transform. This methodology has been successfully
applied, in terms of the trade-off between the preservation
of important image features and achievement of high
compression ratios, to the well known in the literature
Lena picture.

2. The wavelet compression scheme using
textural regions of interest.

The goal of this paper is to achieve higher compression
ratio in images using the two-dimensional DWT more
effectively by exploiting  image structure characteristics,
which are usually unemployed in image compression.
More specifically,  we aim at  exploiting the second order
characteristics of images in the design of improved lossy
compression systems.

A good measure related to second order image structure
is texture [3]. The rationale underlying the proposed
compression methodology is that the significance of image
regions varies in space. That is, not all image areas are
important in describing the spatial probability distribution
of its pixel intensities and subsequently in contributing to
the visual effects of the image under consideration.  A
measure of  such image region significance can be derived
by exploiting textural information. When the textural
characteristics in an image region assume high values
then, it is reasonable to suppose that the textural
information content of this area is very important.
Therefore, the image spatial probability distribution can be
more precisely derived if a larger number of features
describing it is extracted for such an area than for other
ones. Thus, if a compression methodology keeps a larger
number of coefficients in texturally significant regions
than in the other regions then, a much better decompressed
image can be finally obtained since its probability
distribution  can be more accurately restored.  In the
sequel, the steps involved in the suggested compression
scheme are illustrated.
1. The goal of the first stage of the proposed

methodology is, therefore,  to cluster the image in two
classes, namely, in significant  and non significant
textural regions. To this end, first, the image is raster
scanned with sliding windows of M x M dimensions.
We have experimented with 256 x 256 images and we
have found that M=8 is a good size for the sliding
window. For each such window we perform two kinds
of analysis which are subsequently compared in terms
of how their associated features contribute to the
preservation of textural characteristics, after applying
the suggested compression scheme.

2. The first approach herein employed for deriving
textural features is based on the cooccurrence matrices
[3]. These matrices represent the spatial distribution
and the dependence of the gray levels within a local
area. Each (i,j) th entry of the matrices, represents the
probability of going from one pixel with gray level (i)
to another with a gray level (j) under a predefined
distance and angle.  More matrices are formed for
specific spatial distances and predefined angles. From
these matrices, sets of statistical measures are
computed (called feature vectors) for building
different texture models.  We have considered four



angles, namely 0, 45, 90, 135 as well as a predefined
distance of one pixel in the formation of the
cooccurrence matrices. Therefore, we have formed
four cooccurrence matrices. Due to computational
complexity issues regarding cooccurrence matrices
analysis a quantization procedure is usually applied to
the image under consideration. This paper attempts,
also, to evaluate the significance of the factor of
quantizing the original image into a lower than 256
number of gray levels for the clustering stage as well
as for the reconstruction process involving the inverse
2-D DWT. We have experimented with quantizations
of 16, 64 and 256 gray levels. Among the 14
statistical measures, originally proposed by Haralick
[3], that are derived from each cooccurrence matrix
we have considered only four of them. Namely,
angular second moment, correlation, inverse
difference moment and entropy.
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3. The second method for deriving textural features

employed in the herein comparisons is the coherence
analysis of the original images. A brief description of
the measures resulting by applying this methodology

follows [7]. Let ( )θ x y, denote the estimated

orientation angle at point ( )x y, and ( )G x y, denotes

the gradient at the same point. The measure of
coherence at the point W  is then estimated within a

window of size W around the point ( )x y0 0, , using

the projection of the gradient magnitude ( )G x yi i, ,

taken in the direction ( )θ x yi i, , onto the unit vector

in the direction ( )θ x y0 0, according to the next

formula :

( ) ( ) ( )( )ρ θ θ0 0 0= −G x y x y x yi i i i, cos , ,  (1)

The absolute sum of the projections is then,  calculated

for all ( )i j, values within the window W . The

dimension w of  the sliding window W  should be an
odd number since it has one central point, namely,

( )x y0 0, . In this study the value of w = 5 has been

used.
A better measure of the coherence, which is the one
used in this paper, can be obtained by weighting the
measure of formula (1) by the gradient magnitude at
that point. The new formula for the calculation of the
coherence is
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Weighting by the gradient magnitude produces higher
coherence values at those points that have high contrast
information.  This coherence measure takes on low
values in regions that the texture is rather
homogeneous producing by  this way textural edges
accurately. The variation of  this measure is higher in
those points that are between the regions with different
textural structure.

4. After formulating the patterns, which are one-
dimensional when coherence is employed,
representing each sliding window closely related to
measuring textural significance, the next step is the
application of a clustering algorithm to them. To this
end, we have selected an unsupervised clustering
scheme due to its ubiquitous use without specifying the
two desired classes. We have experimented with the
fuzzy c-means due to its improved  properties. After
the clustering process has been finished, each image
pixel is assigned the label of the class which it belongs
to. It could be reasonably considered that the class with
the smaller number of members is the texturally
important one, when a non-specific image is attempted
to be compressed. That is, it is assumed that important
image details convey textural information while the
rest of the image, in general, does not.

5. When a pattern has been marked as texturally
significant, if cooccurrence matrices derived features
are used, then, the upper-left point of the
corresponding sliding window takes on the label of
255, otherwise the label of zero. In the same fashion,
when coherence analysis based textural features are
employed, then, a pixel is labeled with the value of 255
if it has been assigned to the texturally significant class
and with zero otherwise. Following this labeling
procedure, for each original gray level image a new
black-white image IMP results illustrating the
significant and non significant partitions.

6. The next step in the suggested compression scheme is
to decompose the original image into two images. The
first one, G1, is obtained by applying the following
formula to each pixel (x0,y0) of the original image G0:

G1(x0,y0) =  MIN(G0(x0,y0), IMPG0(x0,y0)),



Where, IMPG0 is the black-white image representing
the texturally significant image regions of G0
obtained in the previous step
Similarly, the second image, G2, is the outcome of
applying the following formula to each pixel  (x0,y0)
of the original image G0:

G2(x0,y0) =  MIN(G0(x0,y0), 255-IMPG0(x0,y0))
7. Subsequently, the 2-D DWT is applied to G1 and G2

successively. Let us call DWT_G1, DWT_G2 these
wavelet transforms respectively. Then, the
compression ratio is determined for each one of the
DWT_G1, DWT_G2. In all our experiments we have
used compression ratios of 60% for DWT_G1 and 80%
for DWT_G2.  DWT_G1´ and DWT_G2´ are the
compressed DWT_G1, DWT_G2 respectively.

8. The final step is image reconstruction. Let us call G^0
the reconstructed image. This is obtained by the
following formula from DWT_G1´, DWT_G2´:

 G^0 = a* INV_2D_DWT(DWT_G1´) +
b*INV_2D_DWT(DWT_G2´),

 Where,  INV_2D_DWT is the well known inverse
transform of the 2-D DWT and a, b are user defined
coefficients. In all our experiments we have used
a=1 and b=1. The selection of these coefficients,
however, is crucial for dealing with the blocking
effects which are expected to appear in the
boundaries between the texturally important and
non-important regions. Although the results shown
in the next section are very promising, more
sophisticated schemes than the use of a simple
linear combination between

 INV_2D_DWT(DWT_G1´)  and
 INV_2D_DWT(DWT_G2´),

however, are necessary to overcome these
problems.

3. Experimental study and discussion of the
results

The major effort in this work has been set to the
direction of defining the significant and non significant
textural regions in the image as well as to compare
different solutions applicable to such a task. The feature
spaces were created on the basis of the statistical measures
calculated over the cooccurrence matrices and secondly,
on the measure of coherence estimated over the gradient
domain of the image. The other major effort of this paper
regards the applicability of a wavelet compression scheme
that reconstructs the original image from its partitions.

We have tested the proposed approach on the well
known image of Lena. The original image is shown in Fig.
1 and the results of clustering, by direct application of the
fuzzy c-means, into the two -significant and non
significant regions are shown in Figs. 2 to 4 depending on
the number of intensity levels used in the estimation of the
features. In Fig. 2 the result of the use of 16 intensity

levels is shown and in Figs. 3 & 4 the results of the use of
64 and 256 levels are respectively shown. The black
regions are those characterized as the non significant and
the white ones are those characterized as the significant
textural regions. From these images it can be noticed that
as the levels of intensities increase the more detailed
regions are produced. It is a point more or less expected
since the information which is carried from the intensity
levels contributes to more accurate discrimination of the
feature subspaces. Measures calculated over the
cooccurrence matrices are enriched in accuracy when
larger cooccurrence matrices are used, since the more
levels result in more extended such matrices. Concerning
the use of the coherence measures produced over the
gradient domain of the image, the results are presented in
Fig. 5. It is obvious from this figure that the measure of
coherence is rather sensitive to the boundaries of the
regions of the image. This property is also enhanced from
the use of the gradient over which the measure of
coherence is estimated. The location of the boundaries is
certainly an important task in image processing but these
boundaries do not always discriminate among different
textural regions. At this point it should be reported that the
MATLAB fuzzy toolbox has been employed in all these
simulations.

As discussed in length in the previous section, the two
original image partitions transformed by the 2-D DWT are
then, compressed with different ratios using higher ratio in
the non significant region and lower in the significant one.
The compressed image is then reconstructed as a linear
combination of the two reconstructed parts and the results
are presented in Figs. 6-8,  depending on the number of
gray levels used when the cooccurrence matrices analysis
is involved in the first stage of the proposed compression
scheme. Thus, 16, 64 and 256 intensity levels correspond
to the reconstructed images of fig 6-8 respectively. After
experimenting on different ratios, we found that
maintaining an analogy of  60% of the wavelet coefficients
for the non significant texture regions and 80% of  the
wavelet coefficients for the significant ones leads to the
best trade-off between obtaining accepted quality in the
reconstructed image and performing maximum
compression. Fig. 9 shows the decompressed image using
the information of the coherence measure as a criterion for
textural significance. Finally, fig. 10 demonstrates the
reconstructed image when the compression has been
applied to the 2-D DWT  of the whole original image and
not on its partitions as in the previous figures 6-9.  The
results obtained above and shown in figures 6-10 illustrate
some important trends
1. The larger the number of intensity levels involved in

cooccurrence matrices based textural feature
extraction, the smoother the reconstructed image and
the better in general its quality.

2. However, when the 16 and 64 quantization levels are
employed important image details are better preserved



despite the fact that the image quality is not, in general,
better than the one obtained from using 256 levels.
This trend is clearly illustrated if one observes Lena’s
right eye, for instance. Figures 11 to 14 show in pixel
detail the reconstruction of Lena’s right eye
corresponding to different quantization levels.

3. Coherence analysis based textural features lead to
worse results concerning reconstructed image quality.

4. Image details are better preserved using the proposed
image compression scheme than the usually employed
compression schemes involving the 2-D DWT.

Figure 1. Original image

Figure 2. Clustering results using 16 quantisation levels.

Figure 3. Clustering results using 64 quantisation levels.

Figure 4. Clustering results using 256 quantisation levels.

Figure 5. Clustering results using the coherence measure.

Figure 6. Reconstructed image using 16 quantisation
levels.

Figure 7. Reconstructed image using 64 quantisation
levels.



Figure 8. Reconstructed image using 256 quantisation
levels.

Figure 9. Reconstructed image using the coherence
measure.

Figure 10. Reconstructed image applying the inverse DWT
to the whole image.

Figure 11. Reconstructed eye region using 16 levels.

Figure 12. Reconstructed eye region using 64 levels.

Figure 13. Reconstructed eye region using 256 levels.

Figure 14. Reconstructed eye region of the original image.

4. Conclusions

A novel image compression scheme has been presented
based on the 2-d DWT applied to texturally important and
non-important image partitions. The promising results
obtained concerning reconstructed image quality as well as
preservation of  significant image details, while, on the



hand achieving high compression ratios, illustrate that the
proposed approach deserves further investigations. The
main  problem remaining to be dealt with is the
elimination of  blocking effects in the partitions
boundaries, that is the reconstructed image smoothing in
these boundaries.
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