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Abstract

In this contribution is investigated the use of multilayer perceptron type neural
networks in the characterization of images by texture content. The paper is focused on
the effects of textural feature extraction methods on the network architecture, training
performance and generalization capability when applied in indexing of images
contained within multimedia image databases. An in depth experimental study is
conducted comparing several well known textural feature extraction techniques along
with a novel discrete wavelet transform based methodology. It is demonstrated that
the proposed technique leads to the design and selection of multilayer perceptron
architectures with the best texture classification accuracy.
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1. INTRODUCTION

An important problem in the development of multimedia systems is the design of
complex image content seeking query mechanisms on large image databases.
Understanding image characteristics and describing these images involving such
characteristics requires significant effort in order to depict an image in terms of a
symbolic representation that best matches its information content in the multimedia
database. Such a symbolic representation, i.e. a string, may become the corresponding
image index in a complex query mechanism.

This paper deals with the design of image indices by labeling the
corresponding regions in terms of their second order characteristics and, more
specifically, texture. The proposed index design scheme is smple: an image is divided
in rectangular regions of predefined dimensions and each one is labeled according to
its textural content. Textural classification may play a significant role in the solution
of the image-indexing problem in multimedia applications.

A texture-based image indexing method is usualy composed of three stages.
The first stage aims at the description of the texture and at the extraction of efficient
textural descriptors. The second stage is devoted to the division of the image in
regions. Dividing an image into overlapping or non-overlapping square regions of
equal dimensions is the simplest technique attaining reasonable results. The last stage
consists of classification and labeling of these regions in terms of their textural
content using statistical pattern recognition techniques.

This paper proposes a new descriptor for texture classification based on
measures obtained from the detail coefficients of the Discrete Wavelet Transform
(DWT). An image division scheme into regions of sguare non-overlapping windows
of equal dimensions has been adopted. Multilayer Perceptron (MLP) type neural



networks have been involved in the image indexing approach to classify and label the
textural content of each window.

The contribution of this paper lies not only on the use of a novel texture
descriptor and the application of MLPs in this image indexing task for multimedia
applications, but mainly on investigating the effects of different textural descriptors
on MLP learning and generalization capabilities regarding such a task. The
experimental study conducted in this paper aims, precisely, at illustrating this latter
investigation.

2. TEXTURAL FEATURE EXTRACTION TECHNIQUESINVOLVED
In this section three widely known feature extraction methods are briefly described.

2.1 Cooccurrence analysis based textur e descriptor

For each image region-window, previously described, we use the information that
comes from the cooccurrence matrices [1]. These matrices represent the spatial
distribution dependence of the gray levels within an area. Each (i,j)th entry of the
matrices, represents the probability of going from one pixel with gray level (i) to
another with agray level (j) under a predefined distance and angle. More matrices are
formed for specific spatia distances and predefined angles. From these matrices, sets
of statistical measures are computed (called feature vectors) for building different
texture models. We have considered four angles, namely 0°, 45°,90°, 135° as well as
a predefined distance of one pixel in the formation of the cooccurrence matrices.
Therefore, we have formed four cooccurrence matrices. Among the 14 statistical
measures, originaly proposed by Haralick [1,2], that are derived from each
cooccurrence matrix we have considered only four. Namely, angular second moment,
correlation, inverse difference moment and entropy.
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We have experimentally found, that these measures, provide high discrimination
accuracy which can be only marginally increased by adding more measures in the
feature vector. Thus, using the above mentioned four cooccurrence matrices we have
obtained 16 features describing spatial distribution in each window corresponding to a
region in which an original image is divided in order to apply the proposed image
indexing scheme.

2.2 The Run-length encoding texture descriptor

The run length matrix, p(i,j), is a method of statistical analysis, that represents
the frequency that j points with agrey level i continue in the direction q [3]. The (i)th
dimension of the matrix corresponds to the grey level and has a length equal to the



maximum grey level, n, while the (j)th corresponds to the run length and has length
equal to the maximum run length, |. As with the co-occurrence matrix, q = 0', 45', 90'
and 135' offer the greatest interest. Five features can be calculated from the run length
matrix as shown in the equations below, where A is the area of the image
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The run lengths are very large for macrotextures, especially structural textures, but
can be quite small for fine textures. The nonuniformity features are small if the grey
levels or the run lengths are similar throughout the matrix, while the long run length is
large if thereis high intensity clustering in the texture.

2.3 The Fractal dimension based textur e descriptor

The fractal dimension is an image feature that characterizes the roughness of
an image [4]. However, it is possible that two images of different texture and different
optica appearance have the same fractal dimension. Thus, its discrimination
capability, in some cases is problematic.

In order to alleviate this problem, the fractal dimension was computed in the
origina subimage, as well as in the first two lower resolution versions of the original
subimage and the first two sets of detail subimages, containing higher horizontal and
vertical frequency spectra information. The subimages were produced by
decomposing the original image through the dyadic wavelet transform [5]. The
aforementioned feature extraction procedure is originally proposed in [6]. Following
this procedure, seven-dimensional training patterns can be created from each image
region.

3. ANOVEL DWT DISTRIBUTION BASED TEXTURAL DESCRIPTOR

The problem of texture discrimination, aiming at labeling image areas, is
considered in the wavelet domain, since it has been demonstrated that discrete
wavelet transform (DWT) can lead to better texture modeling [7]. We use the popular
2-D DWT schemes [8,9]. We have performed a one-level wavelet decomposition of
the image regions, thus resulting in four wavelet channels. Concerning the wavelet
decomposition of the image regions, among the one approximate and the three detail
wavelet channels 2, 3, 4 (frequency index), we select for further processing only the
three detailed channels, whose variances are the largest, since they might carry more



information than the approximate one. With respect to this, we should say at this point
that Unser [10] has pointed out local variance of the wavelet coefficients as an
appropriate measure for classifying texture. A more sophisticated approach is
proposed by applying cooccurrence analysis to the three detail wavelet channels and
extracting 3~ 16 = 48 relevant measures.

4. COMPARATIVE EXPERIMENTAL STUDY

The proposed image-labeling scheme for multimedia applications heavily depends on
the accuracy of the texture classification stage. The experimental study below outlined
is a preliminary evaluation of the performance of the image indexing system
components associated with its labeling phase.

A total of 12 Brodatz texture images [11]: 3, 5, 9, 12, 15, 20, 51, 68, 77, 78,
79, 93 (see Figure 1) of size 512" 512 has been used. From each texture image 10
subimages of size 256" 256, with 256 gray levels depth, were randomly selected, and
the above mentioned feature extraction techniques have been applied. The MLP
generalization capability has been tested using patterns from 20 subimages of the
same size randomly selected from each image.
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Figure 1. Twelve texture patterns obtained from digitizing images found in the "Brodatz
Album". Textures. 20, 5, 51, 3, 12, 9, 93, 15, 68, 77, 78, 79.

A recently proposed learning algorithm, named BPV'S [12], has been used to
train the MLPs. This algorithm provided better generalization capability than other
popular training algorithms when tested on texture classification problems (see [12]
for relevant experiments). For each feature extraction method thirty simulation runs
have been performed using MLPs with 5 to 50 neurons in the hidden layer in order to
find the architecture with the best average generalization capability. The best



available architecture for each case is exhibited in Table 1. For example, a MPL with
48 input neurons, 30 hidden and 12 output neurons with biases exhibited the best
performance for the DWT distribution estimation method.

Feature extraction method | MLP architecture
DWT distribution estimation 48-30-12
Fractal dimension 7-30-12
Cooccurrence analysis 16-40-12
Gray level run length moments 5-10-12

Table 1. The best available MLP architectures.

The average generaization performance of the 30 MLPs that have been
trained using DWT features was the best and reached a 99.1%. The number of
misclassified test patterns out of 240 for each method is presented in Figure 2. As
shown in Figure 2, the MLPs that have been trained using the DWT distribution
estimation patterns had significantly better generalization capability than al the
others. For example, 13 MLPs trained with DWT distribution estimation patterns
misclassified only 3 test patterns out of 240. On the other hand, 15 MLPs trained with
Fractal dimension patterns misclassified 13 test patterns out of 240. Note that one
MLP trained with DWT distribution estimation patterns achieved 100% classification
success, i.e. it exhibited O misclassifications.
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Figure 2. Number of trained ML Ps with respect to their corresponding number of
misclassified test patterns.



5. CONCLUSIONS

An image-indexing scheme for multimedia applications based on image textural
content has been proposed and preliminary evaluated. Regarding its components, a
novel DWT distribution estimation technique has been suggested for the texture
description stage. This method, along with three other well known feature extraction
techniques, have been comparatively investigated in terms of their effects on the
generalization performance of the labeling component of the indexing system. The
preliminary results indicate that the proposed approach is considerably reliable for
demanding applications. Integration aspects of this research effort are under thorough
investigation by the authors.
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