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Abstract In this paper, we present a computer-aided-
diagnosis (CAD) system prototype, named TND (Thyroid
Nodule Detector), for the detection of nodular tissue in
ultrasound (US) thyroid images and videos acquired during
thyroid US examinations. The proposed system incorpo-
rates an original methodology that involves a novel
algorithm for automatic definition of the boundaries of the
thyroid gland, and a novel approach for the extraction of
noise resilient image features effectively representing the
textural and the echogenic properties of the thyroid tissue.
Through extensive experimental evaluation on real thyroid
US data, its accuracy in thyroid nodule detection has been
estimated to exceed 95%. These results attest to the feasibility
of the clinical application of TND, for the provision
of a second more objective opinion to the radiologists by
exploiting image evidences.
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Introduction

Among all radiological modalities, ultrasound (US) possesses
a rare combination of advantages including portability,

harmlessness, real-time data acquisition and affordability.
Modern ultrasonographic systems can provide high resolution
images allowing physicians to deduce useful information
concerning the tissue characterization and structure. Especial-
ly for certain types of diagnoses including the prostate, breast,
lung, and the thyroid gland, US is considered to be the
dominant imaging modality.

The thyroid is a small gland which produces hormones
that affect heart rate, cholesterol level, body weight, energy
level, mental state and controls a host of other body
functions. There are different types of thyroid cancer, but
the most common ones (papillary carcinoma and follicular
carcinoma) are highly curable if detected early. According
to epidemiologic studies palpable thyroid nodules occur in
4%–7% of the population, but nodules found incidentally
on US examinations show a frequency of 19%–67% [1].
Overall, a significant percentage of nodules detected by US
examination, escape detection on clinical examination. The
challenge is to utilize US imaging to detect thyroid nodules
that are clinically occult due to their texture, size or shape.

Computerized analysis improves medical image interpre-
tation, providing a reliable second opinion in detecting
lesions, assessing disease severity, and leading to more
accurate diagnostic decisions. Several software systems have
been implemented aiming at the Computer Aided Diagnosis
(CAD) on US images for different soft tissue internal organs,
including those for liver [2–4], breast [5–7], prostate [8, 9].
Only a few US CAD systems have been proposed for the
evaluation of the thyroid gland. Smutec et al. [10] proposed
an approach for automatic differentiation between inflamed
and healthy thyroid tissue. This approach was based on
Muzzolini’s spatial features [11] and Haralick’s co-
occurrence features (CM) [12]. Furthermore, a Support
Vector Machines based system has been presented by Tsantis
et al. [13] for assessing the malignancy risk of thyroid
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nodules. This system combined statistical features computed
from local grey-level histograms (GLH) and from Haralick’s
co-occurrence matrices [12]. More recently, a level-set active
contour model has been proposed for automatic delineation
of thyroid nodules [14], however this method requires that
an initial contour is manually defined.

Such systems offer a less subjective means for the
interpretation of thyroid US images, based on a variety of
texture representation approaches summarized in Table 1. The
use of GLH can be found in many approaches including the
studies of Mailloux et al. [15, 16]for the discrimination of
different types of thyroid tissue, the study of Morifuji [17]
for malignancy determination of thyroid nodules, and the
study of Hirning et al. [18], for the quantification and
classification of echographic findings in the thyroid gland.
These studies attest to effectiveness of GLH for the
characterization of thyroid tissue. Nevertheless, GLH based
features can not encode any information related to the spatial
distribution of image pixels [19]. Thus, more recent
approaches combine GLH features with statistical features
for texture analysis of ultrasound thyroid images. Such
statistical features include Haralick’s co-occurrence features
investigated in [13, 20], Muzzolini’s spatial features pro-
posed in [10], Radon Transform features presented in [21]
and Local Binary Pattern features investigated in [22]. Most
of these approaches use GLH and/or second or higher order
statistical textural descriptors for the representation of
thyroid ultrasound patterns, however, none of them takes
into account the noise-originated uncertainty inherently
present in all ultrasound images.

These patterns are categorized by sophisticated classifi-
cation algorithms, capable of dealing with complex disease
states requiring the integration of pre-diagnosed data and
clinical information. Physicians involved in the process of
diagnosis based on medical images are often challenged or
discouraged by the complicated, hard to use, and expensive
diagnosis software systems. Additionally most of these
systems depend on the user to manually define regions of

interest (ROI), within which the image processing is
performed. This makes CAD systems susceptible to the
physicians’ experience and subjectivity.

In this study, we propose an original methodological scheme
for the detection of nodular tissue in US thyroid images and
videos. This scheme involves a novel algorithm for automatic
ROI definition through the unsupervised detection of the
boundaries of the thyroid gland. We also propose a fuzzy
logic-based approach to obtain an uncertainty-aware represen-
tation of thyroid ultrasound patterns. This approach involves
the combination of fuzzy local binary pattern distributions
(preliminarily investigated in [23]) with fuzzy grey-level
histograms (FGLH). The proposed scheme has been imple-
mented as a prototype exploratory analysis system, named
TND (Thyroid Nodule Detector). TND offers a simple,
practical, and user friendly interface providing a means to
tune all the parameters that are relevant to the methods
involved. A considerable series of experiments were con-
ducted, for the evaluation of the best suited methodologies
and parameter values involved in the proposed scheme. The
ultimate purpose of the TND system, is the provision of a
second opinion, for nodules that may not be diagnosed due to
poor US image quality and/or for medical students, junior
radiologists and others needing a second opinion.

The rest of this paper is organized as follows.Methodology
section introduces a description of the main components of the
proposed scheme. Then in section Performance Evaluation an
experimental evaluation study on real US thyroid data is
presented, demonstrating the effectiveness of the proposed
scheme. Finally in the last section the conclusions of this
study are summarized.

Methodology

The proposed scheme for thyroid nodule detection consists
of five components (Fig. 1), namely: pre-processing, ROI
definition, feature extraction, feature classification and
post-processing. The pre-processing component incorpo-
rates all necessary modalities to convert input data, either
images or videos, to a unified form suitable for further
processing. The second component involves a novel
algorithm for automatic detection of the thyroid boundaries
and definition of a respective ROI that includes only the
thyroid gland. The third component involves a set of feature
extraction methods, where image texture and echogenity
information is encoded via feature fusion. In the fourth
component, classification algorithms categorize the patterns
formed by the extracted features into predefined groups
related to diagnosis. Finally, the output of the classification
component is post-processed and visualized either as binary
or as grayscale images or videos. Details on the compo-
nents of TND system are described in detail in the
following sub-sections.

Table 1 Literature review of feature extraction approaches for thyroid
ultrasound image analysis

Feature extraction approach Authors—Ref

Grey level histogram Mailloux et al.—[13, 14]

Morifuji et al.—[15]

Hirning et al.—[16]

Muzzolini’s features Smutek et al.—[10]

Cooccurrence matrix Tsantis et al.—[11]

Skouroliakou et al.—[18]

Smutek et al.—[10]

Radon transform Savelonas et al.—[19]

Local binary patterns Keramidas et al.—[20]

J Med Syst



Data preprocessing

In the preprocessing component an image normalization
method has been utilized. In US images dynamic range of
pixels intensities can be quite narrow, and their distributions
may vary substantially. To deal with this phenomenon,
pixel values are redistributed proportionately to cover the
entire range of display brightness for each image or video
frame [24].

Automatic ROI definition

The thyroid gland consists of two lobes located along either
side of the trachea. Each lobe is surrounded by a thin
fibrous capsule [25]. That capsule can be recognized in
longitudinal thyroid US images as thin hyperechoic lines.
Considering that thyroid nodules reside only within the
thyroid parenchyma, the image analysis operations should
be performed only within the thyroid boundaries.Although

various approaches have been proposed for segmenting US
images from thyroid, breast and prostate [26–29], even the
most popular of them, such as active contour methods,
present sensitivity to the gradient of the edge, and require
physicians to roughly outline an initial contour of the area.
To this end we propose a novel algorithm for the detection
of the boundaries of thyroid gland, which will be referred to
as TBD-2 in the rest of this paper. The proposed algorithm
improves the Thyroid Boundaries Detection (TBD) algo-
rithm presented in [22], and it is capable of tracking the
boundaries of the thyroid gland (Fig. 2(c)) instead of
providing a rough rectangular approximation of the gland
as the original TBD (Fig. 2(b)). Restraining image analysis
within the ROI defined by the gland’s boundaries results in
a consequent reduction of the computational cost as well as
of the expected error rate in the subsequent classification
task, since the irrelevant image regions, which would
otherwise be considered as negative, are significantly
reduced. TBD-2 is implemented in four steps: a) image
pre-processing, b) analysis of the pre-processed image, c)
identification of the areas corresponding to the thyroid
boundaries, and d) refinement of the detected boundaries.

In the first step of the TBD-2 algorithm, a US image of
N×M pixels and G grey levels is uniformly quantized into z
discrete grey levels. By such a quantization process, a
coarse segmentation of the US image is obtained, that
accentuates the hyperechoic bounds of the thyroid gland.
Let gi be the original grey value of a pixel and g0i the grey
value of that pixel after quantization. Then g0i can be
computed as follows:

g0i ¼
ðG� 1Þ � 2�gi�ðz�1Þ

G�1

j k
þ 2�gi�ðz�1Þ

G�1

j k
%2

� �
2 � ðz� 1Þ

6664
7775 ð1Þ

In the second phase the quantized image produced is
sampled from top to bottom with K horizontal non-
overlapping stripes of size h×M pixels.

For each stripe a weighted sum Sn is estimated by the
equation:

Sn ¼
XG
g¼0

wðgÞ
X
Pg;n

1

0
@

1
A ð2Þ

where n is the stripe index incrementing from top to
bottom, and Pg,n represents the set of pixels of stripe n with
grey value g.

It should be noted that w(g), in Eq. 2, denotes a quadratic
weight function which aims to amplify the contribution of
higher grey levels, which clearly appear as hyperechoic lines
in US images after the quantization process of the first stage.
This weight function is defined as wðgÞ ¼ a � g2 þ b � g þ g
where α, β, γ are constants. Constants β, γ are chosen so as

Pre-Processing

ROI 

Definition

Feature

Extraction

Classification

Post-Processing

Input US

Video/Images

Detected Nodules

on US Video/Images

Fig. 1 Block diagram of the
proposed CAD system
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to satisfy w(0)=0 and w(1)=G. Therefore w(g) is finally
derived by the following equation:

wðgÞ ¼ aþ 1� a � G2

G � g
� �

� g2 ð3Þ

A measure directly proportional to the rate of change of
Sn, between two successive stripes is computed as follows:

Dn ¼ dðSiÞ
di

����
i¼n

� Sn ; n ¼ 1; 2; :::K ð4Þ

Then stripes that contain the outer and the inner thyroid
boundaries are selected. If nouter and ninner are the stripe
indices that correspond to a rough estimation of the outer
and the inner boundaries respectively, then nouter and ninner
should satisfy the following conditions:

nouter ¼ argmin
n

Dn � w1ðnÞ½ �
ninner ¼ argmax

n
Dn � w2ðnÞ½ �

ninner � nouter > Δ; Δ > 0

8>><
>>: ð5Þ

where ω1(n) and ω2(n) are defined by the following
equations:

w1ðnÞ ¼ log l�K�n
l�K þ 1

� �
n < l � K

0 n � l � K
	

ð6Þ

w2ðnÞ ¼ log n�ð1�lÞ�K
l�K þ 1

� �
n < ð1� lÞ � K

0 n � ð1� lÞ � K

(
ð7Þ

l ¼ 1� Δ
N

ð8Þ

Parameter K is the total number of stripe samples per
image, Δ represents a minimum anteroposterior diameter of

the thyroid gland, and the logarithmic weight functions
ω1(n) and ω2(n) bias nouter and ninner towards the upper and
lower image regions, respectively.

Because of round shape of the thyroid lobes, their
boundaries on longitudinal US images are not always
perfect horizontal lines. Thus a refinement phase for a
more detailed detection of these boundaries appears to be
necessary. In this phase the image area around the nouter
stripe of height 3h is vertically sampled from top to bottom
with non overlapping rectangular windows of dimensions
l0 ¼ M=v and h0 ¼ 2h=v, where v is a parameter controlling
the boundary detection detail. For each window a weighted
sum Sn’ is computed according to Eq. 2. Then the window
with the maximum sum value on each column is chosen as
the one over the hyperechoic lines of the outer boundaries
of each lobe. The same steps are applied around ninner stripe
for the detailed detection of the inner boundaries of each
lobe (Fig. 2c).

A pseudo code of the TDB-2 algorithm described above
is depicted in Fig. 3.

Feature extraction

Feature extraction is performed on sub-images sampled in a
raster scanning fashion with a sliding window of user-
defined size and sliding step, which allows an overlap
between the consecutive samples. The novel combination
of fuzzy distributions that is implemented in the proposed
scheme as well as the calculations involved are described in
the following subsections.

1) Textural Features

Texture patterns appearing in US images can be
represented by a fuzzy distribution of Local Binary
Patterns, referred to as Fuzzy Local Binary Patterns (FLBP)
features [23]. Although the original approach of Local

Fig. 2 a US image with thyroid nodule. b Detected thyroid boundaries superimposed to the original input image through TBD algorithm. c
Refined detected thyroid boundaries superimposed to the original input image through TBD-2 algorithm
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Binary Pattern (LBP) [30] has been used successfully in
many studies [31], it has also been proven to be sensitive to
small variations of the pixel intensities usually caused by
noise. The FLBP is an enhanced extension of the LBP
approach, capable of better coping with speckle noise [23],
a common characteristic of all US images [32].

Contrary to the original LBP operator, where a single LBP
code characterizes a 3×3 neighbourhood, in FLBP approach, a
neighbourhood can be characterized by more than one LBP
codes. Figure 4 illustrates FLBP feature extraction scheme,
where multiple LBP codes are involved in the characterization
of a 3×3 neighbourhood.

The degree, to which each LBP code characterizes a
neighbourhood, depends on the membership functions m0()
and m1() computed for each peripheral pixel i 2 ½0; 7�.

Membership functions m0() and m1() can be defined as
follows:

m0ðgiÞ ¼
0 if Δgi � T

T �Δgi
2 � T if � T � Δgi < T

1 if Δgi � �T

8>>><
>>>:

ð9Þ

m1ðgiÞ ¼
1 if Δgi � T

T þΔgi
2 � T if � T � Δgi < T

0 if Δgi � �T

8>>><
>>>:

ð10Þ

where gi is the grey level value of pixel i (Fig. 4a), and
Δgi ¼ gi � gcenter. For both m0() and m1(), T 2 ½0; G�
represents a parameter that controls the degree of fuzziness.

For a 3×3 neighbourhood, LBP codes can be obtained
from the following equation,

LBP ¼
X7
i¼0

di � 2i ð11Þ

and the corresponding contribution CLBP of each LBP code
in the FLBP histogram can be defined as:

CLBP ¼
Y7
i¼0

mdiðgiÞ

where di 2 f0; 1g, and thus mdi() can be either m0() or m1.
Thus each neighbourhood is characterized by a set of

ordered pairs of LBP codes and contribution values (Fig.
4d). In other words, each 3×3 neighbourhood contributes to
more than one bins of the FLBP histogram. This histogram
forms a feature vector, representing the underlying texture.

2) Intensity Features

In US images a substantial amount of information
concerning the pathology of the examined tissue is
contained in image echogenity [33]. Several studies on
US medical images have been using echogenity features
based on grey-level histograms (GLH) [10, 13]. In the
proposed system, fuzzy grey-level histograms (FGLH) have
been utilized for intensity representation, given that they are
well known for their insensitivity to noise [34].

ω
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ω
ω

Fig. 3 Pseudo code for ROI definition schema
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The normalized fuzzy histogram of an image region,
with dimensions N×M pixels, can be defined as:

HðgÞ ¼ 1

N �M
XN �M

i¼1

mgðgiÞ ð13Þ

where mg is a membership function that defines the degree of
membership of pixel i with grey value gi to histogram bin g. A
commonly used triangular function is the following:

mgðgiÞ ¼
T � gi � gj j

T2
gi � gj j < T

0 otherwise

8><
>: ð14Þ

where T 2 ½0;GÞ determines the degree of fuzziness.

Classification

The fusion of FLBP and FGLH feature vectors extracted
from sub-images sampled from the parenchyma of the
thyroid gland, are subsequently classified into a predefined
set of classes. The output of the classification phase is a
class label representing either normal or nodular tissue. For
the classification phase of the proposed scheme two widely
used approaches have been evaluated, the Support Vectors
Machines (SVM) and the k- Nearest Neighbours (k-NN).
Both methodologies have advantages and disadvantages
which are briefly described in the following paragraphs.

1) Support Vector Machines

The Support Vector Machine (SVM) [35] is a widely
accepted classifier, considered very effective for pattern
recognition, machine learning and data mining. It is based
on the structural risk minimization principle described by
Vapnik [36]. An optimal hyperplane decides the separation
between individual classes of patterns. The optimality is
based on the logic that the average distance between the
hyperplane and the closest training points on both sides
should be maximal. This aids in avoiding overfitting
training data and maximizing the classification performance
without being affected by the magnitude of the features-to-
samples ratio (a phenomenon known as “curse of dimen-
sionality”) [37].

2) k-Nearest Neighbourhood

A k-Nearest Neighbour (k-NN) classifier [38], is also
integrated in the system proposed, offering a good
alternative when simplicity andease of the training phase
are the predominant issues. The k-NN method is non
parametric and generally effective classification approach.
In addition it allows easy and fast incorporation of new
data into an existing trained system. However, the price to

pay with the k-NN is that for large datasets and
multidimensional feature spaces, it requires large memory
size and heavy computational load.

Post-processing

Misclassified pixels or small groups of misclassified
pixels may appear as spots or small oblong formations
within the output binary images. In order to reduce this
effect, the post-processing component introduces the
majority voting decision criterion proposed in [39]. This
criterion takes advantage of the overlap between the
consecutive sub-images sampled by the raster scanning
approach and considers that a pixel can belong to more
than one of the sampled sub-images. Therefore, a class
label for each pixel can be aggregated by the majority of
the class labels of the sub-images that this pixel belongs
to, and the sub-images its neighboring pixels belong to,
within a pixel radius R.

Performance evaluation

The proposed scheme presented in the previous section
has been implemented as a prototype exploratory analysis
system, named TND (Thyroid Nodule Detector). The
functionality of TND is considered in two phases, a
training phase and an application phase. In the first
training phase, TND can be trained with a dataset
annotated by experts, where different types of tissue
have been identified. Once the TND system has been
trained, it can be used to evaluate new US images or
videos of the thyroid gland. Indicatively, two of the main
windows of the graphical user interface (GUI) of the
TND system concerning the application phase are
illustrated in Fig. 5.

In the evaluation process a set of real US thyroid images
have been used. These images have been provided by the
Euromedica Medical Center of Athens in Greece with the
approval of its ethics committee. Examinations were
performed using a General Electric VOLUSON 730
sonographic imaging system [40]. A broadband probe
with a frequency range of 6.0 to 12.0 MHz was used. The
settings of the US scanner that affect image attributes
(dynamic range 60 dB, grey-map linear, frame rate high,
persistence low) were kept constant throughout the entire
study. Ultrasound images were digitized at 8-bit grey-
levels and their effective resolution was 480×440 pixels.

On the whole, 64 patients who had ultrasonographic
examinations of their thyroid gland were enrolled in this
study. A total of 118 longitudinal thyroid US images
with nodules classified as Grade 3 or Grade 4 [41] were
acquired accompanied with ground truth information. This
experimental evaluation focuses on the detection of these
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types of nodules because they are associated with a
significantly higher malignancy risk compared to other
types of nodules [41].

Three expert radiologists marked up the boundaries of
the thyroid lobes and of the existing nodules. The ground
truth concerning the boundaries of the lobes was obtained
by following the rule that a pixel belongs to the thyroid
gland when it is included in at least two out of the three

delineations drawn by the experts [42]. The same rule has
been applied for the ground truth concerning the nodules.
Classification percentage actually quantifies the matching
between classified pixels of the US images and the
reference ground truth images.

The experimental evaluation that follows aims to present the
effectiveness of the proposed TBD-2 algorithm and the nodule
detection performance obtained by the proposed system.

Fig. 5 a Example of TND appli-
cation phase window. b Example
of TND input/output windows.
From left to right: original input
image, the binary output image,
and the greyscale output image
with the nodule framed by a
rectangular box
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Evaluation of the TBD-2 algorithm

Exhaustive experiments have been performed with the
TBD-2 algorithm to determine the optimal set of
parameters that minimizes the error in detecting the
boundaries of the thyroid lobes. There are two parame-
ters that the user can tune in the TBD-2 algorithm; h that
controls the vertical resolution, and v that controls the
horizontal resolution. The values tested for h varied from
8 to 128, and for v from 2 to 64, where v<2h. For large
h and small v the proposed method leads to gross detection
of the boundaries, resulting in a diminution of the methods
accuracy, whereas higher accuracy can be obtained for
smaller values of h and larger v. The optimal values of the
investigated parameters are h=32, and v=16, for which the
mean accuracy in boundaries detection reached a maxi-
mum of 91.6±3.2%.

For comparison reason the TBD algorithm proposed in
[22] has also been tested for the detection of the boundaries
of the thyroid lobes on the same image dataset. In this case,
after exhaustive experimentation for the determination of

the optimal set of parameters, the maximum mean accuracy
in boundaries detection was 85.5±2.1%.

Evaluation of the thyroid nodule detection scheme

The TND system has been applied on real longitudinal US
thyroid images and videos for the experimental evaluation
of the proposed nodule detection scheme. For this purpose
a leave-one-out cross validation scheme has been applied
[43] that uses the training data very efficiently and presents
relatively small bias especially for small datasets [44].
Multiple training and testing sessions were carried out,
where different values for system parameters were applied.
An exhaustive search of combinations of parameters values
have been based on the minimum classification error
criterion. The system has been evaluated in terms of
pixelwise classification accuracy and nodule detection
accuracy. The nodule detection accuracy is the percentage
of all existing nodules that have been correctly detected and
framed by a rectangular box.

Initially the performance of the proposed scheme is
evaluated without the automatic ROI definition, provided
by the TBD-2 algorithm, neither for the training nor for the
application phases. In this case the combination of FLBP
and FGLH features has been extracted from the whole US
image, including the skin, fat, and tissue surrounding the
gland. The best classification accuracy has been obtained
with the SVM classifier and the set of parameters values are
apposed in the first row of Table 2. This setup resulted in
90.1% accuracy in nodules detection, and 82.2% in
pixelwise classification between nodular and normal tissue.
The receiver operating characteristics (ROC) curve for the

Table 2 Optimal system configurations and corresponding classification accuracies

Setup no ROI Feature extraction Classification Post-processing NDA(%) APP(%)

TBD-2 SW FGLH FLBP MVDC

h v WD WS Bins T T Type Kernel g c R

1 - - 32 8 32 13 13 SVM RBF 1 23 3 90.1 82.2

2 32 16 32 8 32 13 13 SVM Sigmoid 1 22 2 95.2 91.3

TBD-2 Thyroid Boundaries Detection—2, h Stripe Height, v Horizontal Refinement Parameter, SW Scanning Window, WD Window Dimension,
WS Window Step, FGLH :Fuzzy Grey Level Histograms, Bins Quantized Histograms Bins, FLBP Fuzzy Local Binary Patterns, T Fuzzification
Parameter, SVM Support Vector Machines, RBF Radial Basis Function, g Gamma Parameter for SVM, c Cost Parameter for SVM, MVDC
Majority Voting Decision Criterion, R Radius Parameter for MVDC, NDA Nodule Detection Accuracy, APP Accuracy Per Pixel
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Fig. 6 ROC curves obtained by the two optimal system configu-
rations presented in Table 2

Table 3 Confusion matrix for the best system setup

Predicted normal Predicted nodular

Normal 87.8% 12.2%

Nodular 5.4% 94.6%
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pixelwise classification with this set up is depicted in Fig. 6
(Setup 1).

The experiments have been repeated with the feature sets
proposed by Smutec et al. [10] and Tsantis et al. [13]. In the
former case the best nodule detection accuracy obtained with
the SVM classifier was 87.6%. The respective pixelwise
classification accuracy reached 77.8%. The feature set
proposed by Tsantis et al. [13] resulted in a nodule detection
accuracy of 83.3% and a pixelwise classification accuracy of

74.2%. This comparison makes evident that the proposed
combination of FLBP and FGLH features is more suitable for
the discrimination of nodular from normal thyroid tissues.

In the second set of experiments the TBD-2 algorithm
determined the boundaries of the lobes of the thyroid gland.
Then, the feature extraction process has been applied only to
the regions that belong to the thyroid gland, excluding any
other tissue surrounding the gland. For the TBD-2 algorithm,
the optimal parameters values obtained in the section of the

Fig. 7 Indicative result images a Input US images with thyroid nodule. b output images where tissue classified as nodular is represented by white
pixels and normal tissue as black, c output images with the nodule framed by a rectangular box
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evaluation of the TBD-2 algorithm have been used. In that
case the best overall detection performance has been
accomplished again, with the SVM classifier and the second
set of parameters values presented in Table 2. Through this set
of parameters 95.2% of the existing nodules have been
detected, and 91.3% of pixels representing thyroid tissue
have been correctly classified as nodular or normal. The
confusion matrix concerning the pixelwise classification
accuracy is presented in Table 3. The ROC curve of the
proposed methodology is depicted in Fig. 6 (Setup 2), where
a substantial improvement can be clearly seen due to the
utilization of the TBD-2 algorithm. Additionally, indicative
output images are illustrated in Fig. 7.

Discussion and conclusions

In this study an original scheme has been presented for the
detection of nodular tissue in US thyroid images and videos.
The proposed scheme involves four components in which
novel contributions have been considered. These include:

& the TBD-2 algorithm for automatic definition of the
ROI including only the thyroid parenchyma, and

& the combination of Fuzzy Local Binary Patterns (FLBP)
and Fuzzy Grey Level Histogram (FGLH) features

A prototype CAD system, named TND, implementing
the proposed methodology has been developed and applied
for exploratory analysis on real US images and videos.
Through a simple and practical GUI, TND offers to the user
the potential of tuning a variety of parameters relevant to
the algorithms incorporated.

The feasibility of the proposed methodology has been
investigated through an extensive experimental application of
TND system on real US data. Experimental results showed that
the proposed FLBP-FGLH fuzzy feature combination is more
effective than the most relevant ones proposed in the literature
[10, 13]. Overall the experimental evaluation showed that
TND system can be clinically applied to provide physicians
with a second opinion on the problem of nodule detection.

Future prospects for the enhancement of TND system
include incorporation of sophisticated automatic methods
for selection of parameters values, such as genetic
algorithms, and integration of a suitable contour approach
such as the one proposed in [14] for delineation of the
detected nodules on the thyroid US images.

Availability of the software

A demonstration version of the presented software is available
for downloading from our web site: http//rtsimage.di.uoa.gr/
TND.htm
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