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3-D Spot Modeling for Automatic Segmentation of
cDNA Microarray Images
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Abstract—Spot segmentation—the second essential stage of
cDNA microarray image analysis—constitutes a challenging
process. At present, several up-to-date spot-segmentation tech-
niques or software programs—proposed in the literature—are
often characterized as “automatic.” On the contrary, they are in
effect not fully automatic since they require human intervention
in order to specify mandatory input parameters or to correct their
results. Human intervention, however, can inevitably modify the
actual results of the cDNA microarray experiment and lead to
erroneous biological conclusions. Therefore, the development of
an automated spot-segmentation process becomes of exceptional
interest. In this paper, an original and fully automatic approach
to accurately segmenting the spots in a cDNA microarray image
is presented. In order for the segmentation to be accomplished,
each real spot of the cDNA microarray image is represented in a
three-dimensional (3-D) space by a 3-D spot model. Each 3-D spot
model is determined via an optimization problem, which is solved
by using a genetic algorithm. The segmentation of real spots is
conducted by drawing the contours of their 3-D spot models. The
proposed method has been compared with various published and
established techniques, using several synthetic and real cDNA mi-
croarray images that contain thousands of spots. The outcome has
shown that the proposed method outperforms prevalent existing
techniques. It is also noise resistant and yields excellent results
even under adverse conditions such as the appearance of spots of
various sizes and shapes.

Index Terms—cDNA microarrays, genetic algorithm, image
analysis, spot segmentation, 3-D spot modeling.

I. INTRODUCTION

T HE DISCOVERY of cDNA microarrays in 1995 has fun-
damentally altered the way scientists monitor the expres-

sion levels of genes. Instead of analyzing the expression level
of one gene at a time, scientists can simultaneously analyze the
expression levels of thousands of genes over different samples
[1]. Due to this revolutionary feature, during the last decade,
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cDNA microarrays have been broadly used in many biomedical
application areas such as: i) cancer research, infectious disease
diagnosis, and treatment (i.e., determination of molecular dif-
ferences between normal and abnormal cells, classification of
tumors, determination of risk factors, and monitoring of treat-
ment during different disease stages) [2]; ii) pharmacology re-
search (i.e., determination of correlations between the genetic
profiles of patients and their therapeutic responses to drugs) [3];
iii) toxicology research (i.e., determination of correlations be-
tween toxic responses to toxicants and changes in the genetic
profiles of objects exposed to such toxicants) [4]; and iv) agri-
cultural development [5]. In current-day bioinformatics, even if
other techniques (such as proteomics) increasingly gain ground
in the aforementioned biomedical applications, cDNA microar-
rays continue to be used.

Image analysis is an essential aspect of a cDNA microarray
experiment. The process of analyzing a cDNA microarray image
can be divided into three main stages [6]: i) gridding: the cDNA
microarray image is cut into numerous compartments, each con-
taining one individual spot and background; ii) spot segmenta-
tion: each compartment is individually segmented into a spot
area and a background area; and iii) intensity extraction: the ex-
pression levels of the genes in these spot areas are calculated.

Although cDNA microarray image analysis may appear as
relatively straightforward, it is in fact a rather complicated pro-
cedure. Amongst its stages, the segmentation of cDNA spots
is the most challenging one. This is attributed to the nature of
cDNA microarray images. The quality of images is often de-
graded due to the existence of noise and/or artifacts as well
as due to uneven background [7]. Additionally, many spots are
rather different from the ideal ones (circles with fixed diame-
ters) as they vary in size and shape. Furthermore, some spots are
so poorly contrasted that are not clearly visible. A considerable
number of spot-segmentation techniques have therefore been
proposed to date, some of which have been incorporated into
commercial software programs that nevertheless fail to unequiv-
ocally resolve the aforementioned problems. According to [6],
the segmentation techniques can be classified into: i) shape-seg-
mentation approaches and ii) shape-independent approaches.

Shape-segmentation approaches assume that the spot has a
certain two-dimensional (2-D) shape. Amongst them, the fixed
circle segmentation algorithm (implemented by the ScanAlyze
software program [8]) and the adaptive circle segmentation
algorithm (implemented by the Dapple software program [9])
match circular templates to spots. Recently, another shape-seg-
mentation method capable of segmenting noisy microarray
spots has been proposed [10]. In this method, each spot is
represented by a parametric circle with one or two elliptical
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center holes. A weakness of the preceding methods is that they
can segment only circular microarray spots. To deal with the
various shapes of spots, the seeded region growing algorithm,
adopted by the Spot software program [11] has been suggested.
Although this algorithm can segment regions of irregular shapes
by implementing a watershed algorithm, its performance is
based on the appropriate selection of starting points.

Shape-independent segmentation approaches regard pixel
intensities in a compartment as one-dimensional real values and
classify pixels into a spot area or a background area. Amongst
them, there are clustering algorithms such as K-means and,
hybrid K-means, which use cluster intensity representation
[12]–[15]. A weakness of these methods is that they do not
perform well in the cases when the spots are poorly contrasted
or when the spots are very close to each other. The model-based
segmentation algorithm, based on the clustering of pixels’
values, has been also suggested [16]. This method uses a
removal technique of the components that are spatially con-
nected in order to exclude small disconnected clusters which
are assumed to be artifacts. An obvious weakness is that this
removal technique is based on a threshold that defines the min-
imum size of the connected components in a cluster. Finally,
there are segmentation methods based on active contours and
multiple snakes [17]–[20]. Although these methods are very
effective in segmenting typical microarray spots, they usually
need a preprocessing stage in order to deal with large variations
of spots sizes. Furthermore, in the case of the compartment
being contaminated with noise and artifacts, these methods
occasionally yield inaccurate results.

Hybrid approaches, which have recently been presented, uti-
lize prior knowledge of the spot’s shape and location as well as
of the expected intensity information. For example, the Markov
random fields method (MRF) [21], [22] utilizes neighboring in-
formation, along with intensity information based on an MRF
modeling of the compartment. Although this combination of in-
tensity and spatial information results in a more accurate pixel
classification process, it requires an initial classification of the
pixels, which in turn affects the final results [23]. Nagarajan [24]
has also proposed a spot-segmentation method based on the cor-
relation of the pixels comprising a spot. Although the correlation
statistics is useful in flagging low-intensity spots, this method
can perform well only on good-quality images. Gottardo et al.
[25] has applied a Markov random field approach to segmenta-
tion. In their method the red and green intensities for both fore-
ground and background were represented using an uncorrelated
bivariate t distribution. Another hybrid approach is the segmen-
tation method included in the Matarray toolbox of Matlab [26],
which also combines both spatial and intensity information. A
disadvantage of this method is that it requires input parameters
in order to segment the spots.

As a result, the up-to-date spot-segmentation techniques or
software programs lack automation; they require human inter-
vention in order to specify mandatory input parameters or to
correct their results. Automating this part of the process is es-
sential because: i) it allows the acceleration of the analysis of
the expression levels of thousands of genes and ii) it prevents
variations in the results of gene expression levels due to human
intervention as it is reported in the experiment presented in [27].

Fig. 1. Three types of real microarray spots in 2-D and 3-D representations. (a)
Peak-shaped spot. (b) Volcano-shaped spot. (c) Doughnut-shaped spot.

In this paper, an original, fully automatic, and unsupervised
approach to the segmentation of spots in cDNA microarray im-
ages is presented. The proposed approach does not belong to
any of the aforementioned groups, as it processes microarray
spots in a three-dimensional (3-D) space, in which the third di-
mension represents the intensity. In particular, the proposed ap-
proach relies on a genetic algorithm (GA) which represents the
real spots of the cDNA microarray image with spot models, in
a 3-D space. The segmentation of the real spots is conducted
by drawing the contours of the spot models. Earlier versions of
our proposed method on spot segmentation, published in confer-
ences [28]–[31], utilize the diffusion model in order to represent
the real spots in a 3-D space. The main disadvantage of these
earlier versions of our method is that the diffusion model cannot
represent all types of microarray spots (Fig. 1). It can only deal
with peak-shaped spots. Therefore, the segmentation results are
inefficient in the cases of volcano or doughnut-shaped spots.
In the proposed approach an original spot model is presented
which can be used for the representation of all types of real mi-
croarray spots. Consequently, the proposed method can segment
all possible types of microarray spots. Moreover, the genetic al-
gorithm has been further developed in order to be noise-resistant
and yield more accurate results. It adopts fuzzy logic so as to
take into account the uncertainties that exist in the pixels’ inten-
sities due to noise, artifacts, and uneven background. The pro-
posed approach can conclusively deliver under the following ad-
verse conditions: i) the appearance of various spot shapes, such
as peak-shaped, volcano-shaped, and doughnut-shaped spots; ii)
the appearance of spots of diverse intensities, such as low-in-
tensity spots or saturated spots; and iii) the appearance of var-
ious spot sizes. Last but not least, the accuracy of the proposed
method is higher than that of various well-known and broadly
used segmentation techniques, as is evident in the comparison
results in Section V.

The remainder of this paper is structured in five sections as
follows: In Section II, a typical cDNA microarray spot is por-
trayed and a brief description of fuzzy logic and genetic algo-
rithms is provided. In Section III, the proposed modeling of
a microarray compartment is presented, while in Section IV
the segmentation method is described. Section V illustrates ex-
periments on the proposed method and offers its comparison
with nine existing techniques. To this extent, several artificial
cDNA microarray images and real cDNA microarray images
were used. Our conclusions are contained in Section VI.
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II. BACKGROUND MATERIAL

A. Typical cDNA Microarray Spots

Based on empirical observations [32], the following three
types of microarray spots, in relation to their shapes, can be
identified in a cDNA microarray image.

1) Peak-shaped spot [Fig. 1(a)]; this type of spot has an in-
tensity that peaks at its central region and declines at re-
gions further from the center. In the case when the peak is
narrow, the spot resembles a 3-D-Gaussian function. In the
case when the peak is wide, the spot resembles a plateau.

2) Volcano-shaped spot [Fig. 1(b)]; this type of spot is defined
as the peak-shaped spot having a small hole in the area of
its peak. It therefore resembles a volcano.

3) Doughnut-shaped spot [Fig. 1(c)]; this type of spot has a
narrow rim of high intensity and a large hole of very low
intensity at its central region.

B. A Conventional Genetic Algorithm

Genetic Algorithm is a powerful optimization search
methodology and a promising alternative to conventional
heuristic methods as it exhibits a number of advantages: it can
optimize a large number of variables of extremely complex
cost surfaces and solve problems for which there is little or no
a priori knowledge of the underlying processes. Furthermore,
it permits the implementation of our method automatically
without human intervention which in turn has the following
benefits: i) acceleration of the process of microarray images
and ii) prevention of eventual variations of the results.

A conventional genetic algorithm emulates the principles
of natural selection and evolution [33]. Its search begins by
constructing a finite number of potential solutions encoded
as alpha-numerical sequences called chromosomes. These
chromosomes, which constitute an initial population Pop , are
evaluated using a fitness function. Subsequently, the population
Pop evolves into a new population Pop using the following
three genetic operators: reproduction, crossover, and mutation.
This evolutionary cycle of a current population Pop (where

stands for the consecutive number of populations) to its
next Pop continues until a specific termination criterion
is satisfied. In conclusion, the following four basic elements
are deemed necessary for the determination of a particular
problem: chromosome representation, chromosome evaluation,
evolutionary cycle, and termination criteria.

C. Fuzzy Logic

The fundamental assumption upon which the two-valued
logic (or classical logic) is based is that every proposition is
either true or false. However, it is now well acknowledged that
many propositions can simultaneously be partially true and
partially false. In order to accommodate the concept of un-
certainty appearing in propositions, fuzzy logic [34] broadens
the two-valued logic by permitting intermediate values to be
defined between the two conventional ones. As a result, the
“truth value” of a proposition is represented by a value between

Fig. 2. The compartment model � and its components. (a) The solid
curve represents the main body � of the spot model, the dashed curve rep-
resents the inner dip � of the spot model, while the dotted surface represents
the average background intensity � of the compartment model. (b) The cor-
responding compartment model.

0 and 1 according to the amount of certainty that the proposition
is truth.

In 1965, Zadeh [34] described mathematically the fuzzy logic
using the concept of fuzzy subsets. More precisely, let
be a nonempty set, called the “universe of discourse,” consisting
of all the possible elements of concern in a particular context.
A fuzzy subset of is defined as a set of ordered pairs as
follows:

(1)

where is an element of Universe and is defined as
the membership function of in the fuzzy set , which assigns
to each element a value between 0 and 1 . The
value of is called the “membership degree” of in the
fuzzy set , and it expresses the degree in which the element

belongs to the fuzzy set . If the value of equals 0,
then does not belong to the fuzzy set , or in other words, the
proposition “ belongs to ” is completely false. Respectively,
if the value of equals 1, then belongs to the fuzzy set ,
or in other words, the proposition “ belongs to ” is completely
true.

III. PROPOSED MODELING OF A MICROARRAY COMPARTMENT

Due to the aforementioned common spots’ characteristics, a
microarray compartment can be represented by a 3-D compart-
ment model, in which the third dimension represents the in-
tensity. More precisely, let be a compartment of a real
microarray image containing one individual spot and its back-
ground. A compartment model can represent, in a 3-D
space, the real one by modeling the latter’s intensity
values. The can be expressed as a 3-D curve consti-
tuted of two components: i) a surface representing the average
background intensity of the compartment model and ii) a
3-D curve representing the spot model . In turn, the
spot model can be expressed as a 3-D curve made of
two components: The first component represents the 3-D
curve of the main body of the spot model, while the second one

represents the 3-D curve of the inner dip of the spot model
(Fig. 2).
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Fig. 3. Components of the spot model. (a), (b) The main body � ��� �� of the spot model. (c), (d) 3-D representation of the � ��� �� 3-D curve, the initial
3-D curve, and the horizontal surface ���� ��.

A. The Spot Model and Its Components

Let us consider a curve whose 3-D shape resembles
the 3-D Gaussian or plateau curve. The 3-D curve can
be defined by the following equation:

erf erf (2)

where

(3)

controls the height of the 3-D curve. erf denotes the error
function encountered in integrating the normal distribution.

are the center coordinates of the 3-D curve.
control the slope of the 3-D curve on the two main directions

of the 2-D plane. controls the shape of the 3-D curve.
For , resembles a 3-D Gaussian function, while
for , resembles a plateau or a saturated spot.

In order for the 3-D curve to have any possible di-
rection on the 2-D plane, a rotation transformation is applied;
the 3-D curve is rotated by an angle in respect to the
vertical axis passing through its center .

The main body of the spot model can be expressed
as a 3-D curve deriving from (2) [Fig. 3(a), (b)]. Correspond-
ingly, the inner dip of the spot model can be defined as
a symmetrical 3-D curve to an “initial 3-D curve” (deriving from
(2)), in respect to an horizontal surface [Fig. 3(c), (d)].

The total spot model is constructed by com-
bining the and 3-D curves, and is defined
as

(4)

Fig. 4 depicts 2-D illustrations of two spot models by por-
traying the cross sections of their and 3-D
curves. The resulting spot models are the sur-
faces colored in grey. It is worth pointing out that the resulting
total model in Fig. 4(b) is a peaked-shaped spot. The cross sec-
tion of its 3-D curve is identical to the cross section of the 3-D
curve of its main body .

B. The Compartment Model

The compartment model corresponds to a 3-D
curve whose function is defined as

(5)

Fig. 4. 2-D illustrations of spot models.

Fig. 5. Examples of the 3-D compartment models containing: (a) a volcano-
shaped spot and (b) a doughnut-shaped spot.

where denotes the average background intensity of the
compartment model . corresponds to a threshold
of the lowest values of the . Pixels whose values
are lower than belong to the background and their values
are set equal to .

Two examples of compartment models are de-
picted in Fig. 5. The first compartment model contains a vol-
cano-shaped spot model, while the second compartment model
contains a doughnut-shaped spot model.

IV. PROPOSED GENETIC ALGORITHM TO SEGMENTING

MICROARRAY IMAGES VIA OUR SPOT MODEL

Given that is one of the compartments of a real mi-
croarray image containing one individual spot and back-
ground , the segmentation procedure aims at the delin-
eation of the boundaries of the spot . The segmentation
procedure is divided into two stages.
Stage 1: The compartment of the microarray image is

optimally represented by a 3-D compartment model
.
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Fig. 6. The three segments of a chromosome �.

Fig. 7. A typical histogram of a real microarray compartment. The left curve
corresponds to background pixels while the right corresponds to spot pixels.

Stage 2: The boundaries of the microarray spot are
depicted by drawing the contour of the spot model

.
The first stage of the segmentation procedure is regarded as an

optimization problem of modeling a microarray compartment,
and it is tackled by using the proposed genetic algorithm. The
genetic algorithm determines the values of the variables of the
compartment model (5) so that the resulting compartment model
represents optimally the real one.

A. Chromosome Representation

A chromosome represents a specific compartment model
in a 3-D space, where stands for a specific chro-

mosome. It is therefore a simple numerical sequence which en-
codes the values of the variables defining the specific compart-
ment model. It consists of three segments (Fig. 6). The first seg-
ment encodes the value of the average background intensity of
the compartment model . The second segment encodes the
values of the variables of the main body of the spot model

, while the third segment encodes the values of the vari-
ables of the inner dip of the spot model . The use of
a numerical sequence instead of a binary sequence is preferred
in the present application of genetic algorithms. The reason lies
in the fact that a real-coded genetic algorithm reveals numerous
benefits over the binary-coded genetic algorithms [35].

B. Fuzzy Logic for Determining the Error Estimation Between
the Model Compartment and the Real One

The aim of the genetic algorithm is the maximization of the
resemblance between the compartment model and the
real one . However, since the real compartment is con-
taminated with noise and artifacts, its intensity values are no-
ticeably fluctuated—even between two consecutive pixels—re-
sulting in a scabrous 3-D curve that contains many peaks. As a
result, pixels belonging to the spot area may have lower
intensity values than the pixels belonging to the background area

. Correspondingly, pixels belonging to the background
area may have higher intensity values than the pixels
belonging to the spot area . To deal with the ambiguity
and vagueness of the intensity values of pixels—due to noise,

Fig. 8. The membership functions � �� � and � �� �.

artifacts, and uneven background—we set the membership de-
gree of a pixel to belong to the background area or to the spot
area according to the following two rules of fuzzy logic theory:

1) The smaller the intensity’s value is, the greater
the membership degree that belongs to the background
area becomes.

2) The higher the intensity’s value is, the greater
the membership degree that belongs to the spot area
becomes.

Based on the two aforementioned rules, the membership
function of a pixel so that it belongs to the back-
ground area, and the membership function of a pixel
so that it belongs to the spot area, are defined by the following
equations:

(6)
and

(7)

where and are two intensity values. More precisely, let
be the intensity corresponding to the minimum between the

maxima of those two normal distributions which represent the
distributions of background pixels and spot pixels (Fig. 7).
and are the minimum and maximum intensity values that
appear in the . Let be the number of pixels whose
intensity values are less or higher than , respectively. is
chosen so that number of pixels has intensity lower than
or equal to , where is a constant . is chosen
so that number of pixels has intensity higher than or equal
to .

Fig. 8 represents the membership functions and
. Pixels with intensity lower than or equal to belong

to the background area ( and ), while
pixels with intensity higher than or equal to belong to the
spot area ( and ). Pixels with intensity
between and have a membership degree so as
to belong to the background area and a membership degree

so as to belong to the spot area. In this case, the values
of and range between (0,1).

Contrary to the scabrous 3-D curve of the real compartment,
the compartment model has a smooth 3-D curve. Consequently,
some of the points of the 3-D curve of the compartment model
are identical to the points of the real one, while some others in-
terpolate the points of the real one. The identical points should
belong mostly to the region near the spot’s contour, while the
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Fig. 9. Overlapping of the real compartment � and compartment model � . The dotted curve represents the real spot � , while the dashed curve
represents the spot model � . The chromosome � representing the � in (d) should have progressively higher fitness value than that of (c), (b), and
(a).

interpolated points should belong mostly to spot areas or back-
ground areas. Therefore, the relative intensity error
between a model-compartment’s pixel and its corresponding
real compartment’s pixel is defined according to the pixels’
locations, as follows:

if spot background area
if near spot's contour area

(8)

where the function calculates the relative intensity
error in the case of the and pixels belonging to the spot
area or the background area. Likewise, function
calculates the relative intensity error in the case of the and

pixels being situated near the spot’s contour area.
More precisely, in the case when the membership value

(or ) of the pixel is higher than or equal to
a constant , the and its corresponding pixel are con-
sidered to be located in the background area (or the spot area,
respectively) (Fig. 8). In this case, the optimal intensity value of
the compartment model on the pixel may interpolate a set of
intensity values near the pixel of the real one. Therefore, the

relative intensity error is defined as the minimum
relative error between the intensity of the model-compartment’s
pixel , and the intensity values of the pixels located in
a 3 3 window around its corresponding pixel of the real
compartment

(9)

Otherwise, according to (8), the pixel and its corre-
sponding pixel are considered to be located in the region
near the spot’s contour. In this case, the optimal intensity value
of the compartment model at pixel should equal to the inten-
sity value of the real one at pixel. Therefore, the
relative intensity error is defined as the relative error between
the intensity of the model compartment’s pixel , and the
intensity value of its corresponding real compartment’s pixel

(10)

C. Chromosome Evaluation

The aim of the genetic algorithm is satisfied by the appro-
priate evaluation of the chromosomes. Each chromosome
is evaluated using a fitness function , which assigns to
it a degree of how appropriate a solution to the optimization
problem it is. As far as the specific optimization problem of
modeling a microarray compartment, the higher the resem-
blance of a compartment model to the real one
is, the higher the value of the fitness function of the chromo-
some becomes. During evaluation, a chromosome can be
classified into one of the following two categories.

1) An inefficient chromosome: This is a chromosome which
represents a compartment model that hardly re-
sembles the real one . In this case, the spot model

satisfies one of the following attributes: i) its
component is mostly or entirely located in the background
area [Fig. 9(a)] or ii) its component approxi-
mates deficiently the real spot [Fig. 9(b)].

2) An acceptable chromosome: This is a chromosome which
represents a compartment model that resem-
bles—to a degree—the real one . In this case,
the spot model satisfies one of the following
attributes: i) its component approximates—to a
degree—the real spot , but its component does
not [Fig. 9(c)] or ii) both its and components of
the spot model resemble—to a degree—the real
spot [Fig. 9(d)].

The main difference between an inefficient chromosome and
an acceptable one is that the former’s component approx-
imates deficiently the real spot . Therefore, there is no
need for a precise estimation of the fitness value in the former
case. The fitness function of a chromosome is defined
by the following equation:

“inefficient”
“acceptable”

(11)

where denotes a rough estimation of the resemblance
degree between the real compartment and the model
compartment , while denotes a precise estima-
tion of the above resemblance degree.

More precisely, the is defined as the product of the
following two percentages:
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Fig. 10. The dotted curve represents the 3-D curve of the real spot while the dashed curve represents the 3-D curve of the spot model. Spot models whose values
fall within the margin, defined by the solid curves, efficiently represent the real microarray spot. (a) An efficient spot model. (b) An inefficient spot model.

i) the portion of spot pixels (their intensity’s value is higher
than —Fig. 8) whose intensity value has been effi-
ciently represented by the main body of the spot
model, and

ii) the portion of background-pixels (their intensity’s value
is less or equal to —Fig. 8) whose intensity value has
been efficiently represented by the average background
intensity .

A pixel is considered to be efficiently represented by its
corresponding pixel if its relative intensity error is less or
equal to a constant . is
a positive constant which controls an acceptable margin of the
error existing between the intensity values of the compartment
model and the intensity values of the real compartment. For ex-
ample, Fig. 10 depicts the margin in the area of the real mi-
croarray spot. Spot models whose values fall within this margin
represent efficiently the real microarray spot.

The precise estimation of the resemblance’s degree
is defined as

(12)

where

(13)

(14)

TP TN (15)

(16)

denotes the degree of the real spot’s pixels whose
intensity values have been efficiently represented by the spot
model . denotes the degree of the background’s
pixels whose intensity values have been efficiently represented
by the average background intensity . is a weight coef-
ficient which is set equal to 0.1 or to 1 according to the value
of the error. If , the rela-
tive intensity error between the compartment model
and the real one , on the corresponding pixels, is consid-
ered negligibly small and thus insignificant. Consequently, the

is multiplied by 0.1 . Otherwise is set
equal to 1.

is a weight coefficient which is set equal to 1 or to 1
according to the values of the or . If one of the

or value is negative, is set equal to 1 so that
the resemblance also becomes negative. Otherwise, it is
set equal to 1.

denotes the degree to which the area containing the
spot model overlaps the area containing the real spot. TP
denotes the true positive rate: the portion of the compartment
model’s pixels which have been correctly identified as spot
pixels; in other words the portion of pixels which have been
identified as spot pixels and their intensity value is higher than

(Fig. 8). TN denotes the true negative rate: the portion
of the compartment model’s pixels which have been correctly
identified as background pixels; in other words the portion of
pixels which have been identified as background-pixels and
their intensity value is lower or equal to (Fig. 8). Due to
the uncertainty existing in the pixel’s intensities, the pixels
contributing to the calculations of TP and TN are
weighted: For the calculation of TP , the weight coefficient
of a pixel equals to its corresponding membership degree

, while for the calculation of TN the weight coef-
ficient of a pixel equals to its corresponding membership
degree . The higher the TP and the TN are, the
higher the overlapping of the spot model with the real one is.

Last but not least, an inefficient chromosome in (11) rep-
resents a model-compartment having one of the following at-
tributes: i) its resemblance to the real compartment is
less than a threshold or ii) its resemblance to the
real compartment is higher than the threshold but its resem-
blance to the real compartment is negative. Otherwise,
a chromosome is acceptable.

It is worth mentioning that by using this fitness function
the genetic algorithm can progressively assign—from left to
right—a higher fitness value to the chromosomes representing
the compartment models in Fig. 9.

D. Evolutionary Circle Termination Criteria

A new population Pop is created from the current Pop
by applying the following stages: i) Reproduction stage: of



188 IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 9, NO. 3, SEPTEMBER 2010

TABLE I
PROPOSED METHOD VERSUS ESTABLISHED TECHNIQUES

Fig. 11. Spot-segmentation result of a block in a good-quality artificial mi-
croarray image.

the best chromosomes of the current population Pop are car-
ried over to the new population Pop . ii) Crossover-mutation
stage: The chromosomes needed to complete the new popula-
tion Pop are produced through iterations of the following:
Four chromosomes of the population Pop are selected using
the tournament selection method; these chromosomes are sub-
sequently subjected in turn to the joint application of the BLX-a,
and the dynamic heuristic crossover operator (according to a

probability) and then to the wavelet mutation operator (ac-
cording to a probability). The best two of the four re-
sulting chromosomes proceed to the new population Pop .
New populations are thus produced until the genetic algorithm
is executed up to a maximum number of populations for
which the best fitness value has remained unchanged. Due to

Fig. 12. Spot-segmentation result of a block in a low-quality artificial mi-
croarray image.

Fig. 13. Segmentation results of two magnified artificial spots. Two spots from
a GQI (a), with their spot models (b) and their segmentation results (c).

Fig. 14. Segmentation results of two magnified artificial spots. Two spots from
a LQI (a), with their spot models (b) and their segmentation results (c).

the evolutionary circles of the genetic algorithm, it is obvious
that its execution time is higher than the ones of relevant tech-
niques (see results section). This drawback is compensated by:
i) the high accuracy of the proposed method’s segmentation re-
sults, which, as demonstrated in the results section, is higher
than the ones provided by established techniques and software
programs and ii) the lack of variations in the results of gene ex-
pression levels due to human intervention, since the proposed
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Fig. 15. Segmentation results of a region of a real microarray block obtained from the Stanford microarray database.

method is fully automatic. These attributes are very significant
since erroneous segmentation results can detrimentally affect
the final gene-expression results [27]. Moreover, the compu-
tational speed of modern microcomputers is ever increasing,
while the execution time of the proposed method can be de-
creased by parallelizing the genetic algorithm.

V. RESULTS

Several experiments on various images, including synthetic
and real cDNA microarray images of different manufacturing
techniques, were conducted so as to evaluate the performance of
our proposed method in spot segmentation. Given that spot seg-
mentation is the second stage in the process of microarray image
analysis as the gridding stage precedes the spot-segmentation
one [6], gridding is necessary to be executed before applying
the spot-segmentation algorithm. Although any gridding tech-
nique could be used in combination with our spot-segmentation
approach, in our conducted experiments, gridding has been per-
formed as described in our past publication [36]. More precisely,
in this preceding stage of gridding, a genetic algorithm deter-
mines near optimally the line segments constituting the borders
of each compartment. The main reason for choosing our past
method is that its performance achieves the high accuracy value
of 95%, and it outperforms other methods.

Moreover, in all the experiments, the values of the , ,
, , and parameters of the genetic algorithm have been

set equal to their corresponding values of the genetic algorithm
described in [36]. This can be explained by the fact that these
parameters do not depend on the optimization problem at hand.
The parameters mentioned in Sections IV-B and IV-C have been
experimentally adjusted once. Actually, the constant of 0.6
was adopted as the most appropriate for the definition of the

and membership functions of a pixel. The
constant of 0.7 was adopted as the most suitable for the cal-
culation of the model compartment’s error on a specific pixel.

A constant of 0.2 was adopted so as to control the max-
imum acceptable error of a model compartment on a specific
pixel. A threshold of 0.15 was adopted in order to define
the minimum rough estimation of an acceptable chro-
mosome . Since all of the above parameters were adjusted
once, they remained constant during all experiments. Thus, the
whole experimental procedure on the synthetic and real cDNA
microarray images took place without any human intervention.

A. Comparison of the Proposed Segmentation Approach With
Established Methods Using Synthetic Microarray Images

In order to objectively compare the proposed segmentation
method with established methods, a dataset of synthetic cDNA
microarray images was used, which is available on the Internet
[38]. This dataset contains 50 good-quality images (GQI) and 50
low-quality images (LQI) for which the ground truth is known.
Each image is digitized at 330 750 pixels, it contains 1000
spots, and it has been produced by the microarray simulator
of Nykter, which generates synthetic cDNA microarray images
with realistic characteristics [39]. The good-quality images have
low variability in spot sizes and shapes, and their noise level is
reasonably low. On the contrary, the low-quality images contain
spots whose shape and size vary significantly. In addition, their
noise level is significantly higher in the low-quality images.

The aforementioned dataset has already been used for the
comparison of various established segmentation techniques (see
Table I, first nine rows), by means of the statistical analysis de-
scribed in [23]. In order to compare our method with the afore-
mentioned techniques, we evaluated its efficiency by means of
the same statistical analysis. According to this statistical anal-
ysis, we have examined the pixel-level accuracy of our segmen-
tation’s method by using the following two measures.

1) The first one is the probability of error PE which measures
the missegmented pixels, and it is defined as

PE (17)
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where and are the a priori probabilities of
foreground and background. denotes the prob-
ability of error in classifying background as foreground,
while denotes the probability of error in classi-
fying foreground as background.

2) The second one is the discrepancy distance , which gives
different weights for missegmented pixels, based on how
spatially far they are located from the nearest correct seg-
mentation result. It is defined as

(18)

where is the number of missegmented pixels, is
the Euclidian distance from the th missegmented pixels to
the nearest pixel that actually belongs to the missegmented
class. is the total number of pixels in the image.

The evaluation results of the proposed method are shown in
Table I (last row). It is evident that the proposed method can
near optimally segment the spots of good-quality images while
it can very efficiently segment the spots of low-quality images.
In the same table we have included the results of nine estab-
lished segmentation techniques (first nine rows), as they are re-
ported by Lehmussola et al. [23]. By comparing the results, one
can conclude that the proposed method is radically more suc-
cessful than the first eight techniques, indicating its high perfor-
mance. Compared with the K-means technique, in the case of
HQI the proposed method yields the same results. However, in
the case of LQI the proposed method is significantly superior.
The significant number of spots which are contained in the used
dataset additionally supports these arguments. Indeed, the eval-
uation of all methods has been statistically calculated in 50 000
artificial microarray spots for which the ground truth is given,
which means that the correct segmentation result is known.

Fig. 11 illustrates the segmentation result of a microarray
block taken from a good-quality synthetic image, while Fig. 12
illustrates the segmentation result of a microarray block taken
from a low-quality synthetic image. On these segmentation re-
sults, one can observe that the proposed approach has near-opti-
mally segmented all the microarray spots of Fig. 11 and most of
the microarray spots of Fig. 12. Moreover, the proposed method
has not segmented any spurious spot.

Figs. 13 and 14 illustrate four magnified spots isolated from
a good and low synthetic microarray image respectively. They
also depict their spot models determined by the genetic algo-
rithm, as well as their segmentation results, produced by our
proposed method. It is obvious that the proposed approach has
near optimally segmented these microarray spots. Moreover,
this example demonstrates that the proposed segmentation al-
gorithm is able to segment not only circular spots but also spots
of various shapes (Fig. 14).

B. Evaluation of the Performance Using Real Microarray
Images

In order to evaluate the performance of our segmentation
method, on real cDNA microarray images, we used the Stanford
Microarray Database (SMD) [40], which is publicly available.

Fig. 16. Spot-segmentation results of several magnified real microarray
compartments.

These microarray images have been produced by comprehen-
sively analyzing the gene expression profiles in 54 specimens
of acute lymphoblastic leukemia, 37 positive and 17 negative
to BCR-ABL [2]. BCR-ABL is a fusion gene product resulting
from translocation between the 9th and the 22nd chromosomes.
From these images we have arbitrary selected ten microarray
blocks. Each block is digitized at 450 450 pixels at 16-bit
gray level depth, and it contains 864 spots. Thus, these blocks
contain 8640 spots in total.

Fig. 15 illustrates the segmentation results of a region of a
poor quality image obtained from the Stanford Microarray Data-
base. This image contains several spots whose intensity value is
low while the background level and noise is high enough. In
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Fig. 17. Segmentation results of three magnified real spots whose shape resem-
bles a volcano (first line) or a doughnut curve (2nd and 3rd lines). (a) Two real
spots, with (b) their spot models and (c) their segmentation results.

order for the reader to be able to observe the results even for the
low-intensity spots, we have increased the brightness. On this
image, it is apparent that the proposed method has very effi-
ciently segmented the real microarrays spots. It should be noted
that the proposed method segmented all the low-intensity spots,
even those which are not easily distinguished. However, in two
cases, the proposed method segmented two spurious spots.

Fig. 16 illustrates 16 magnified microarray compartments
which have been isolated from real microarray blocks obtained
from the Stanford Microarray Database. The first 15 com-
partments contain very low intensity spots, while the last one
contains a high-intensity spot. Although the ground truth is not
known, it is clear that the proposed method has very efficiently
segmented the real microarrays spots.

Fig. 17 illustrates the spot models and the segmentation re-
sults of three real magnified spots of different shapes. The real
spots have been isolated from a real microarray image and their
shapes resemble a volcano (1st line) or a doughnut 3-D curve
(2nd and 3rd lines). The proposed method has very efficiently
represented the real spots with the spot models and therefore has
very efficiently segmented the real microarrays spots.

VI. CONCLUSION

Spot segmentation in microarray images is undoubtedly one
of the most challenging stages of the microarray image analysis
sequence. In this paper, the segmentation procedure is a result
of an optimization problem which is tackled by using a genetic
algorithm, which represents, in a 3-D space, the real spots of the
microarray image with spot models. To this end, fuzzy logic is
adopted in order to take into account the uncertainty existing in
the pixels’ intensities, which can be caused by noise, artifacts,
and/or uneven background. The segmentation of the real spots
is conducted by drawing the contours of the spot models.

The proposed approach is robust, very accurate, and efficient
under the following adverse conditions: i) the appearance of
various spot shapes, such as peak-shaped spots, volcano-shaped
spots and doughnut-shaped spots; ii) the appearance of spots

of diverse intensities, such as low-intensity spots which are not
clearly visible or saturated spots; and iii) the appearance of
various spot sizes. Additionally, it is fully automatic since all
needed parameters have been adjusted once and they have been
kept fixed during all the experiments. Consequently, there is no
requirement of any input parameter or human intervention in
order to determine properly the contours of microarray spots.
The experimental results over synthetic and real images firmly
confirm the validity of our method, as well as its robustness and
effectiveness.
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