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Abstract 

1 
In this paper, a precise and fully-automatic 

approach to the determination of the grid alignment 
(Gridding) on microarray images is presented. The 
proposed approach is compared to state-of-the-art 
software programs and techniques. The conducted 
experiments demonstrate that it is very effective even 
when it is applied to noisy or distorted images as well 
as to images containing spots with various intensities.  
 
1. Introduction 
 

Over the last decades, cDNA microarrays have 
increasingly become one of the most indispensable 
tools in biological and medical research as they enable 
researchers to simultaneously monitor the expression 
levels of thousands of genes. The end product of a 
microarray experiment is a digital image which 
contains one or more distinct blocks, each one 
containing an equal number of spots. 

The first crucial stage in microarray image 
processing is gridding, which is the process of 
segmenting a microarray image into numerous 
compartments, each containing one individual spot and 
background. Gridding however, remains, until 
nowadays, a challenging task. The main difficulty lies 
in the nature of microarray images [1]. More precisely, 
the quality of images is often degraded due to various 
sources of noise during image acquisition. 
Additionally, the locations of blocks or spots may 
slightly vary from image to image due to 
imperfections, such as rotations, and misalignments of 
the ideal rectangular grid. Finally, microarray images 
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may contain low-intensity spots which are not clearly 
visible.  

Due to the aforementioned nature of microarray 
images, existing software  packages for gridding 
microarray images require different levels of human 
intervention in order to locate or correct the grid [2][3]. 
Moreover, the techniques that have been proposed to 
solve the rotation and misalignment problems [4][5] 
are not always adequately effective. As a result, they 
also require human intervention in order to correct the 
grid. This lack of automation in the gridding procedure 
is detrimental as human intervention affects the gene 
expression results.  

In this paper, an original, precise and fully-
automatic approach to gridding microarray images is 
presented. The proposed approach improves the one 
reported in [6] since it is noise-resistant and it can 
effectively cope with rotations, misalignments and 
local deformations of the ideal rectangular grid, while 
retaining the ability to be applied to images containing 
low-intensity spots. Experiments - over microarray 
images containing thousands of spots - showed that the 
proposed approach achieves an accuracy of more than 
95% and it outperforms existing methods.  

The rest of this paper is structured in three sections 
as follows: In Section 2, the proposed gridding method 
is presented. Experimental results are discussed in 
section 3 and concluding remarks are apposed in 
section 4. 
 
2. Proposed approach 
 

The proposed approach to gridding microarray 
images is divided into the following two main sub-
stages: Firstly, the microarray image is segmented into 
blocks, and subsequently, each block of the microarray 
image is segmented into spots.  In both sub-stages, a 
specific Genetic Algorithm (GA) - which optimally 
determines parallel and equidistant line-segments 
constituting the grid structure of the microarray image 
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- is used twice: Firstly, the GA determines optimally 
the “vertical” line-segments (i.e. LV1, LV2, LV3, fig.1) 
and subsequently the GA determines optimally the 
“horizontal” line-segments (i.e. LH1, LH2, LH3 , fig.1).  

 
More precisely, the GA searches for the optimal 

line-segments as follows: Firstly, it creates an initial 
Population (Pop1) of Chromosomes. Each 
Chromosome represents the “vertical” line-segments 
(i.e. LV1, LV2, LV3, fig.1) or the “horizontal” line-
segments (i.e. LH1, LH2, LH3 , fig.1). In the case when 
the Chromosome represents the “vertical” line-
segments, it encodes the variables of the line-segment 
LV1 and the distance dV (fig.1). In the case when 
Chromosome represents the “horizontal” line-segments 
it encodes the variables of the line-segment LH1 and the 
distance dH (fig.1). 

Subsequently, the Chromosomes constituting the 
Pop1 are evaluated using the Fitness Function. For this 
scope, we define the probability ( )iP L  of a line-
segment iL to be part of the grid by the following 
equation: 

 

 ( ) ( ) ( )Li LiR R
i B i S iP L f L f L= −  (1) 

 

LiR denotes the region of the image or block which 
contains those pixels whose distance from the line-
segment iL is less than a margin w (fig. 1). The real-

valued function ( )LiR
B if L expresses the percentage of 

pixels of the region LiR which belong to the background 

while the real-valued function ( )LiR
S if L expresses the 

percentage of pixels of the region LiR which belong to 
areas containing spots.   

The Fitness Function ( )F m of a Chromosome m 
that encodes a possible solution to the particular 
optimization problem is defined by the following 
equation: 

 

 ( ) ( ), ( )
( )

( ),
p LS Max

p

S m N m if f m f
F m

S m otherwise

⋅ ≤⎧⎪= ⎨
⎪⎩

  (2) 

 
The real-valued function ( )pS m denotes a total sum 

of the probabilities ( )iP L of the line-segments iL  that 
are represented by the Chromosome m, and have a 
high probability ( )iP L to be part of the grid. The real-
valued function ( )LSf m denotes the percentage of the 
line-segments iL that are represented by the 
Chromosome m, and have a low probability ( )iP L to be 
part of the grid. A high probability ( )iP L is the one 
which is higher than a threshold MAXP while a low one 
is the one which is lower than a threshold LOWP . 

Thereafter, the GA makes the Population Pop1 
evolve into a new Population Pop2 using Genetic 
Operators. This Evolutionary Cycle from one 
Population to the next (Pop1 to Pop2, Pop2 to Pop3 and 
so forth) continues until a maximum number of 
Populations is reached, for which the best Fitness 
Value has remained unchanged. 

It should be noted that the line-segments - having 
the same direction and constituting the borders of 
blocks (or spots) - are ideally equidistant. However, 
this observation may not come true when rotations, 
misalignments and local deformations of the ideal 
rectangular grid exist. As a result, the determined line-
segments may slightly vary from the optimal ones.  

In order to tackle this problem, each line-segment 
iL  determined by the GA is replaced with a new one, 

Li’, on the condition that the following are valid:  
 

 'i LiL R∈  and ( ') ( )i i pP L P L T− >   (3) 

 
where Tp is a positive threshold. 
 

3. Experimental Results 
 

The proposed approach has been put to test using 
two sets of microarray images [7][8] containing 
thousands of spots. The Box-Cox transformation was 
applied as a pre-processing step, prior to gridding, in 

 
Fig. 1. Line-segments constituting the grid structure in 
a microarray image or block. In the former case, the 
polygons represent blocks while in the latter case, the 
polygons represent spots. The high-lighted areas on 
either sides of LV1 , …,LV3  and LH1 , …,LH3  denote the 
regions RV1,…,RV3 and RH1,…,RH3  correspondingly. 
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order to adjust microarray spot intensities [9]. It should 
be noted that the gridding outcome of the proposed 
method is superimposed onto the original image 
directly, in order for the Box Cox transformation not to 
distort the subsequent data processing of the 
microarray images. 

The accuracy of the proposed method was analyzed 
by means of a statistical analysis. In detail, applying 
the proposed approach in both datasets, 95.1% of spots 
were perfectly placed inside a compartment, 4.3% 
were very nearly gridded while only 0.6% of spots 
were gridded incorrectly.  
Additionally, the aforementioned results of the 
proposed approach were compared to the ones reported 
by Blekas et. al [7]. The proposed method outperforms 
the method proposed by Blekas et. al as well as both 
the ScanAlyze and SpotFinder software programs.  

Two gridding results of microarray sub-images are 
presented in figures 2, and 3. In the first figure, it is 
clear that the proposed method has efficiently located 
the grid structure even though the block contains low 
intensity spots and it is contaminated with noise. In the 
second figure, the proposed method has efficiently 
located the grid structure in a distorted sub-image. 

 

 
 
4. Conclusions  
 

In this paper, an original method for the 
determination of the grid structure in a microarray 
image has been presented. The proposed method is 
fully-automatic. The experimental results demonstrate 
that the proposed method is efficient and it 
outperforms existing software programs and other 
state-of-the-art gridding techniques. It is also noise-
resistant and it can be applied to distorted microarray 
images as well as to images containing spots of various 
intensities.  
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Fig. 3. A gridding result in an area of a distorted 
microarray image. 

 

 
 

Fig. 2. A gridding result in an area of a microarray 
image containing low intensity spots and noise.  
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